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Abstract Chaotic delay systems are abundant in
nature and play a significant role in engineering appli-
cations and in describing global behaviors of physical
systems. This work presents novel first-order chaotic
delay systems with the simplest nonlinearities. The
exponential, absolute value, and hyperbolic and signum
functions, which arise in many systems like electronic
circuits, are utilized to generate chaotic delay systems.
Thepractical realization of chaotic delay systems is car-
ried out with all-pass filters and diode-based electronic
circuits. Bifurcation diagrams using numerical simu-
lations and experimental results are provided to verify
the existence and feasibility of the novel chaotic delay
systems. It is expected that the novel chaotic delay sys-
tems and the novel electronic implementation circuits
will contribute to some practical applications and mod-
eling of physical systems or events in different fields.

Keywords Chaos · Delayed chaos · Electronic
circuits · Filters · Delay systems · Diode · Bifurcations

1 Introduction

Chaos can occur in third- or higher-order continuous-
time nonlinear systems, second- or higher-order non-
autonomous continuous-time nonlinear systems, and
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first-order invertible discrete maps. Recently, it has
been shown that chaos can also occur in time-delayed
nonlinear dynamical systems [1–12]. Delay systems
take place in a wide variety of engineering, physical,
chemical, economic, and biological systems, and their
networks and play important roles.

It is well known that the delay term in a dynamical
system results in infinite dimensional ordinary differ-
ential equations and may yield limit cycles, bifurca-
tions, chaos, hyperchaos, multistability, and instabili-
ties. Therefore, delay systems have been getting a great
deal of attention of researchers in different fields, for
getting the mathematical models of naturally occur-
ring phenomena and high-dimensional chaotic behav-
iors for various applications. Some natural events mod-
eled by delay systems include population dynamics
[13,14], El-Nino oscillations [15], the electrodynamics
of interacting charged particles [16], dynamics of opti-
cal systems [17], neural networks [18], circulating-fuel
fission reactor [19], and blood production in patients
with leukemia [20]. The most recent studies have been
devoted to the design of simple and well-characterized
delay systems to produce chaos for secure communi-
cations [21–26], random number generators [27], and
various other applications [28–35].

The main aim of this work is to introduce some
chaotic delay systems that can occur in electronic cir-
cuits and a practical electronic design approach to real-
ize chaotic delay differential equations. A first-order
delay system can consist of infinite dimensional ordi-
nary systems and can model a phenomenonor can be
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utilized for practical applications including commu-
nications and high-performance circuit designs. The
delay systems to be seen in this study are the sim-
plest chaotic delay systems consisted of a single con-
stant delay and a nonlinear term. All delay systems
are realized with simple electronic circuits by utiliz-
ing all-pass filters as delay elements, while the delay
unit designs available in the literature are based on
the inductor–capacitor–inductor (LCL) filters [1,29,
31,35], and inbuilt delay lines [36,37]. Themain advan-
tage of the all-pass filters over other delay elements is its
non-attenuating output. These novel circuit realizations
of the novel chaotic delay systems pose high potentials
for various applications in scientific, engineering, and
industrial fields.

The following sections present the novel chaotic
delay systems, their electronic implementations, and
a conclusion to the paper.

2 Novel chaotic delay systems and electronic
solutions

Delay (or retarded) systems arise in many practical
models of problems in engineering, science, and medi-
cine, where there is a time lag or after effect [38]. A
delay systemwith a constant delaymay be described by

ẋ = f (t, x, xτ ) (1)

where xτ = x(t − τ) is the time-delayed term with
a positive delay constant τ . System (1) is a closed
form of many practical dynamical systems, includ-
ing optics [17,39], biology [20,40], and economics
[41]. Some specific delay system examples are the
business model [42], population dynamics [43], tumor
growth [44], immune systems [45], and lossless elec-
trical transmission lines [46,47]. For example, a model
for blood production in patients with leukemia [20]
is given by ẋ = −bx + (axτ )/(1 + xcτ ), the dynam-
ics of an optical bistable resonator [17] is given by
ẋ = −ax − b sin(xτ ), a chaos–hyperchaos generator

[3] is given by ẋ = sin(xτ ), and the self-oscillation
model of shipbuilding industry [2] is described by
ẋ = αxτ −εx3τ . There are also some non-chaotic delay
systems occurring in nature, including ẋ = x − xxτ

for modeling single-species population growth [48],
ẋ = x − x3 − αxτ for explaining El-Nino temperature
oscillations [15], and ẋ = −αxτ (x +1) for modeling a
circulating-fuel fission reactor [19]. For these reasons,
several novel delay systems to be introduced in this
work are going to be in the form of the system (1).

Practical applications and experimental realizations
of the chaotic delay systems can be performed with
electronic circuit designs. Electronic implementation
of delay systems available in the literature is based on
the T-type LCL filter with matching resistors at the
input and output of the delay unit [1,29,31,35], and the
inbuilt delay lines (bucket brigade line) [36,37]. Most
of the delay units used in the literature are based onLCL
filters. Figure 1 illustrates the delay unit constructed
with LCL filters. The LCL filters provide a lossless
filter configuration, but they require matching circuits
which result in signal attenuation, and inductances need
a large space. In addition, integrated circuit (IC) realiza-
tions of such filters are not possible (or very difficult).

These attenuation, space, and matching issues can
simply be solved with the use of all-pass filters. An all-
pass filter requires only one op-amp, one capacitor, and
one resistor to add delay to the response of the circuit
[49]. The amplitude of the all-pass filter is unity for
all frequencies. Figure 2 shows first-order and second-
order all-pass filter configurations. The delay function
can be obtained from a RC low-pass function (Fig. 2a),
a RC high-pass function (Fig. 2b), and a second-order
all-pass structure (Fig. 2c). Both first-order all-pass fil-
ter structures hold the same delay equations, but the
signal is inverted in the low-pass configuration; on the
other hand, the second-order all-pass filter needs only
one op-amp. The transfer function of the first-order all-
pass filters is given by

vo/vin = (sRC − 1)
/
(sRC + 1) (2)

Fig. 1 Delay unit
constructed with T-type
LCL filters L L LL
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Fig. 2 All-pass filter
configurations. a RC
low-pass function, b RC
high-pass function, and c
second-order all-pass filters
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Fig. 3 Dynamic response
of an all-pass filter. a Phase
diagram, b input-output
waveforms

(a) (b)

where time constant of the filter is τ = RC. Similarly,
Eq. (2) becomes second order for a second-order all-
pass filter.

An all-pass filter passes all frequency components of
the input signal without attenuation, but provides pre-
dictable phase shifts for different frequencies of the
input signals. If input is sin(ωt), then the output is
sin(ωt + φ). The phase shift, φ, of the first-order all-
pass filters is given by

φ = π − 2 tan−1(2πFRC), 0 < φ < π (3)

where F (in Hz) is the frequency and the phase shift is
frequency dependent. The dynamic behavior of a first-
order all-pass filter with the output lagging behind the
input is illustrated in Fig. 3 for R = 40 k�, C = 10 nF
and F = 80Hz. It is seen that a given phase shift corre-
sponds to a larger time difference for lower frequencies.
The phase shift varies from π (or 180) at F = 0 to 0
at F = ∞, and φ = π/2 when 2πFRC = 1. However,
since the bandwidth of the practical operational ampli-
fiers is limited, an infinite frequency is not possible.
It should be noted that the phase shift of the cascaded
all-pass filters varies from nπ to 0 where n represents
the number of cascades. The all-pass filters can be used
for time-delayed feedback control [50,51] and chaotic
circuit designs. For chaotic delay systems, the delay
term will be realized with the phase shift.

System (1) with various simple nonlinear terms and
all-pass filters given in Fig. 2 will serve as reference
structures in the following subsections for developing

novel chaotic delay systems and electronic circuit real-
izations.

2.1 A chaotic delay system with exponential
nonlinearity

Consider a delay system in the form of (1) described
by

ẋ = −δxτ + (exτ − 1) (4)

where the parameters are τ = 1 and δ = 3.29. The sat-
urated exponential function is the well-known diode’s
characteristic equation, which will facilitate electronic
implementations directly. System (4) has two fixed
points at xe = (0, γ ) in which origin is stable (note
that γ is the solution of eγ − δγ − 1 = 0, and γ > 0
when δ > 1 and γ < 0 when δ < 1) when the sys-
tem delay is neglected. If we consider the effects of the
delay term, for an eigenvalue λ = α + βi where α and
β are real, by using the linear stability analysis at the
origin, the following characteristic equation is obtained

λ + (δ − 1)e−λτ = 0 (5)

In (5), for τ = 0, we have λ = 1 − δ, and thus the
origin is stable for δ > 1. If τ �= 0, then Eq. (5) is a
transcendental equation with infinite number of roots.
To figure out conditions on δ and τ for stability of the
fixed point at the origin, substituting λ = α + βi into
Eq. (5), one can get the following relations
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Fig. 4 Bifurcation
diagrams of the chaotic
delay system (4), a for δ

versus maximum x , b for τ

versus maximum x(δ = 10)

Fig. 5 Chaotic attractor of
the chaotic delay system (4)
for δ = 3.29 and τ = 1
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α + (δ − 1)e−ατ cos(βτ) = 0

β − (δ − 1)e−ατ sin(βτ) = 0 (6)

Following the procedure given in [52], it is obvious that
the fixed point at the origin is stable if 1 < δ < 1 +
π/2τ , and a Hopf bifurcation occurs at δ = 1 + π/2τ
for initial conditions selected around the origin. The
existence of the bifurcations and chaos can be shown
with bifurcation diagrams and phase plane analysis via
numerical simulations.

Bifurcation diagrams exhibiting a period-doubling
route to chaos for the new chaotic system (4) are shown
inFig. 4 for the parameter δ versusmaximum x (Fig. 4a)
and for τ versus maximum x(Fig. 4b). All numerical
results are obtained by using MATLAB/Simulink pro-
grams. There exists a quite complicated and atypical
bifurcation scenario. There is an interleaving of chaos
and order for 3.26 ≤ δ ≤ 3.3. The bifurcation dia-
grams show that the chaotic structure is non-symmetric

in the phase plane, and thebifurcationdiagram for small
delay variations when δ = 10 is quite different than
the one obtained for δ variations. Figure 5 shows the
ring-shaped attractor of the chaotic system (4) for its
nominal values δ = 3.29 and τ = 1.

A simple electronic circuit implementation of the
novel chaotic system (4) is provided in Fig. 6. Elec-
tronic elements of the circuit include a single quad
TL08× JFET-input op-amp and 10BQ015 Schottky
diode as the nonlinear element of the circuit. The cir-
cuit is composed of four parts: integrator, cascaded
first-order all-pass filters, sign inverter, and a nonlin-
ear feedback element. By assuming that a first-order
all-pass filter has a linear phase response, each filter
block can provide a delay around τ = RC at a phase
shift φ = π/2. Therefore, if n blocks are cascaded,
we should get a total time delay of τ = nRC. How-
ever, the phase shift (or delay) is frequency dependent,
and the resistors of the all-pass filters, together with the
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Fig. 6 An electronic circuit
implementation of the
chaotic delay system (4)
with diode nonlinearity

Fig. 7 Phase-portrait analysis of the electronic circuit of the
system (4) in the phase-space x − xτ .

feedback resistor of the nonlinear element, should be
adjusted to getting a desired chaotic behavior. In the
following circuit realizations, the amplitude of the sig-
nal from the nonlinear feedback element, i.e., diode, is
controlled by a resistance for bifurcations and chaos.

Figure 7 displays the ring-shaped attractor of the
system (4) which is generated by the electronic circuit
given in Fig. 6. It is clear that both numerical and exper-
imental results are compatible with each other (as seen
in Figs. 5, 7) and prove the existence of the chaotic
dynamics.

2.2 A chaotic delay system with absolute value
nonlinearity

The effectiveness of the absolute value nonlinearitywas
shown in non-autonomous chaotic systems [53]. It is
also possible to obtain a chaotic delay system by

ẋ = δxτ − xτ |xτ | (7)

where the system parameters are δ = 3 and τ = 1. The
system (7) has three fixed points at xe = (−δ, 0, δ)with
stable nonzero fixed points, if the delay is neglected. By
considering the effects of the delay term, the following
characteristic equation is obtained for an eigenvalue λ

as

λ + δe−λτ = 0 (8)

Similar to the analysis given in Sect. 2.1, the fixed
points xe = ±δ are stable if 0 < δ < π/2τ , and a
Hopf bifurcation occurs at δ = π/2τ .

Bifurcation diagrams exhibiting a period-doubling
route to chaos for the chaotic delay system (7) are
shown in Fig. 8 for the parameter δ versus xmax
(Fig. 8a), and τ versus xmax (Fig. 8b). There is an
interleaving of chaos and order for δ ≥ 2.9. Figure 9
illustrates the chaotic attractor of this new chaotic sys-
tem for its nominal values δ = 3 and τ = 1.

Figure 10 shows an electronic circuit implementa-
tion of the chaotic system (7). The circuit includes two
quad TL08× JFET-input op-amps, a multiplier, and a
1N4002 diode. In this electronic circuit realization, the
number of the circuit elements is increased compared
to the Fig. 6 due to the complexity of the nonlinear
element. The chaotic attractor of this electronic circuit
seen in Fig. 11 carries the features obtained in numer-
ical simulations (e.g., for δ = 3.28).

2.3 A chaotic delay system with hyperbolic
nonlinearity

Trigonometric (sinusoidal) nonlinearity-based simple
chaotic delay systems [3,39] exist in literature. This
section will show that chaotic delay systems can also
be obtained with simple hyperbolic functions. Let a
delay system be defined by the following equation

ẋ = δxτ − sinh(xτ ) (9)

where δ = 2.27 and τ = 1. The system (9) has three
fixed points at xe = (0,±η) (η is the solution of δη −
sinh(η) = 0 for δ > 1) with stable nonzero fixed points
without any delay.

By considering effects of the delay term, the follow-
ing characteristic equation is obtained for an eigenvalue
λ as
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Fig. 8 Bifurcation diagram
of the delayed chaotic
system (7), a for δ versus
maximum x , b for τ versus
maximum x(δ = 10)

Fig. 9 Chaotic attractor of
the chaotic delay system (7)
for δ = 3, τ = 1 and
x0 = 0.1
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Fig. 10 An electronic circuit implementation of the chaotic delay system (7) with all-pass filters and a diode
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Fig. 11 Phase-portrait analysis of the electronic circuit of the
system (7) in the phase-space x − xτ

λ + (cosh(η) − δ) e−λτ = 0 (10)

With numerical evaluation of the function cosh(η) −
δ = π/2, one can find that the fixed points xe = ±η

are stable if 1 < δ < 1.67, and Hopf bifurcation occurs
at around δ ≈ 1.67.

Bifurcation diagrams of the system (9) are shown in
Fig. 12 for the parameter δ versus xmax, and τ versus
xmax. A periodic doubling route to chaos is seen in
Fig. 12 and there is an interleaving of chaos and order
for 2.22 < δ < 2.31. Figure 13 shows the attractor of
the novel chaotic delay system for δ = 2.27 and τ = 1.

It is interesting to see that the bifurcation diagrams
of the chaotic delay systems (7) and (9) have very simi-
lar characteristics.While both systems have completely
different nonlinear structures, for small x values, i.e.,
−3 ≤ x ≤ 3, their nonlinearities produce very close
values to each other. This resemblance results in similar
chaotic dynamics. Therefore, the electronic implemen-
tation of the system (9) should be the same as the circuit
diagram of the system (7) and will not be repeated in
this subsection.

2.4 A chaotic delay system with signum nonlinearity

A chaotic delay system can be defined by

ẋ = −δxτ + sgn(xτ ) (11)

where δ = 1.8, τ = 1, and the sgn(·) is the signum
function. If xτ �= 0, then sgn(xτ ) = xτ / |xτ |. The
sgn(·) function can also be approximated to sgn(xτ ) ≈
tanh(kxτ ) for k>>1 (e.g., k = 100) for smooth results.
Note that Eq. (11) is studied by Lakshmanan and
Senthilkumar [52] for large delay constant values, but
in this work it is shown that the chaotic dynamics can
also be obtained for small delay constants and that its
existence can be verified with an electronic circuit.

The system (11) has three fixed points xe =
(−1/δ, 0, 1/δ) where the nonzero fixed points are sta-
blewhen the systemdelay is ignored.On theother hand,
to analyze the effects of the delay term, the following
characteristic equation is obtained for an eigenvalue λ

as

λ + δe−λτ = 0 (12)

From (12), the fixed points xe = ±1/δ are stable if 0 <

δ < π/2τ , and a Hopf bifurcation occurs at δ = π/2τ .
Bifurcation diagrams of the chaotic delay system (11)
are shown in Fig. 14 for the parameter δ versus xmax,
and τ versus xmax. There is an interleaving of chaos
and order for δ > 1.55.

Electronic circuit implementation of the chaotic sys-
tem (11) is shown in Fig. 15, which includes a single
quad TL08× JFET-input op-amp and 1N4002 diodes
to get the nonlinear element of the circuit. Similar to
Fig. 6, the electronic circuit is composed of an integra-
tor, cascaded first-order all-pass filters, and a nonlinear
element. The chaotic attractor of this electronic circuit
is seen in Fig. 16b, which is compatiblewith the numer-
ical simulations given in Fig. 16a.

Fig. 12 Bifurcation
diagram of the chaotic delay
system (9), a for δ versus
maximum x , b for τ versus
maximum x(δ = 5)
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Fig. 13 Chaotic attractor of
the chaotic delay system (9)
for δ = 2.27 and τ = 1
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diagram of the chaotic delay
system (11), a for δ versus
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Fig. 15 An electronic
circuit implementation of
the chaotic delay system
(11) with signum
nonlinearity 2.2kΩ
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It should be noted that for quantitative measure of
the system dynamics, the first five Lyapunov exponents
(LEs) of the above chaotic delay systems are computed
using theWolf algorithm [54]. For example, LEs of the
system (4) are found as λ1 = 0.2736, λ2 = −0.3081,
λ3 = −1.2203, λ4 = −1.303, and λ5 = −1.815. For
small delay values, τ ≤ 1, all systems provided in this
work have only one positive LE in the chaotic region, so
hyperchaos indication is not found. On the other hand,
multiple positive LEs are found for large delay values,

but the related results are not illustrated since one of
the goals of this work is to show the existence of chaos
for small delays in simple nonlinear delay systems.

3 Conclusion

This study presents novel first-order chaotic delay sys-
tems and their electronic circuit realizations.
The chaotic delay systems include the simplest
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Fig. 16 Phase-portrait of the system (11) in the phase-space
x − xτ : a numerical results and b the electronic circuit imple-
mentation results

nonlinearities that can be seen in nature, medicine,
and engineering systems, e.g., electronic circuit ele-
ments. Electronic circuit implementation of the chaotic
delay systems is achieved with simple all-pass filters
and diode nonlinearities. The all-pass filters eliminate
the matching, space, and signal attenuation issues of
LCL type filters in practical applications, and the use
of diodes simplifies the circuits. Chaotic delay systems
introduced in this paper have high potentials in many
applications including secure communications, circuit
designs, and random number generations and can also
be used tomodel natural, scientific, electronic,medical,
and engineering systems.
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