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Abstract In the design of high-speed aircraft particu-
lar attention must be given to the effect of stiffness and
aerodynamic nonlinearities. Additionally the thermal
effects cannot be ignored since the harsh thermal envi-
ronment influences the dynamic behaviour of a struc-
ture. In the current paper the aeroelastic response of a
three-degree-of-freedom wing with a control surface,
and stiffness and aerodynamic nonlinearities has been
analysed. The nonlinear unsteady aerodynamic forces
applied to the model are calculated using third-order
piston theory and piecewise linear, and cubic stiffening
nonlinearities are implemented in the control surface.
The effect of temperature on the model is determined
by a steady-state analysis with a predefined tempera-
ture distribution. The onset of limit cycle oscillations
and the bifurcation behaviours is compared for the dif-
ferent nonlinearities. The effect of initial conditions is
determined to quantify their impact on the limit cycle
behaviour. This article extends the nonlinear analysis
of the aeroelastic response of a wing at hypersonic
speeds with an added control surface degree of free-
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dom, with the effect of nonlinear aerodynamics and
stiffness included in the model. The results show that
different nonlinearities influence the response of the
system uniquely and heat plays an important role in
the order of excited harmonics.
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1 Introduction

For many years linear models have served the aeroelas-
tician well. Most of our understanding of aeroelastic
phenomena, such as divergence and flutter, has been
obtained by the study of linear models. The success
of linear models can be ascertained to the small effects
of nonlinearities. However sometimes nonlinear effects
are crucial to the survival of the model [12], and many
experiments have shownphenomena that cannot bepre-
dicted using linear theory [1]. Examples of this are limit
cycle oscillations (LCOs) and chaotic responses of the
aero-surfaces [21], which have been observed during
flight [11]. Limit cycle oscillations of wing models in
low subsonic flow have been extensively studied by
Tang et al. [39–41]; however application of aerody-
namic and stiffness nonlinearities to high-speed flow
on three-dimensional models with a control degree of
freedom has not been analysed.

Several examples of aerodynamic and stiffness non-
linearities exist in aircraft. Control surfaces with loose
or worn hinges is a case of a concentrated stiffness
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nonlinearity, which can lead to limit cycle oscilla-
tions. Lee and Tron [21] showed that loose control sur-
faces can be adequately represented via either a bilin-
ear spring stiffness or a cubic nonlinearity, by mod-
elling the LCOs seen in the CF-18 aircraft. A consid-
erable amount of research has gone into investigating
the aeroelastic response of an aerofoil with bilinear
nonlinearities in either the plunge or pitch degrees of
freedom [2,22,29,32,33,36], with limited research on
three-dimensional aeroelastic models for high-speed
application [3,4,23,30]. Free-play nonlinearities usu-
ally occur in the control surface [16], whereas the cubic
stiffness comes mainly from the large amplitude oscil-
lation of the flexible wing [19]. Aerodynamic nonlin-
earities arise from: high wing angles of attack, shock
waves in transonic [45], supersonic and hypersonic
regimes and high-speed phenomena such as ionisation
and plasma in the free-stream [25,26]. Librescu et al.
[24] performed a flutter analysis on infinitely long flat
panels in a high-temperature field and concluded that
the effect of temperature tended to reduce the flutter
speed.

A sensitivity analysis on the aeroelastic response
to the initial conditions has been performed for two-
dimensional cases [8,33]. The presence of LCOs is
strongly dependent on the initial conditions of the aero-
foil. Price et al. [33] concluded that LCOs can occur
for velocitieswell below the linear flutter boundary, and
this is in agreement with the numerical predictions of
McIntosh et al. [27] and Yang and Zhao [50].Woolston
et al. [48] and Shen [35] performed experiments using
a rigid two-dimensional wing section with a free-play
in the pitching degree of freedom. They showed that a
response of the nonlinear system to an initial displace-
ment in pitching could produce flutter well below the
critical flutter speed obtained through linear analysis.

Jiffri and Mottershead [17] addressed the control
of systems with non-smooth stiffness nonlinearities,
namely free-play, for a system with pitch, plunge and
flap degrees of freedom. Wang et al. [47] looked at
the response of flexible control surfaces at hypersonic
speeds. Li et al. [22] analysed the dynamic response of
a typical two-dimensional aerofoil section with three
degrees of freedom, with a free-play nonlinearity in the
control surface.Daochun and Jinwu [9] investigated the
chaotic response of an aerofoil with cubic nonlinearity,
for the case when the moment caused by circulatory
flow is not zero. Tang and Dowell [37] developed a
componentmodal analysis to derive the structural equa-

tions ofmotion for a deltawingwith a store.A free-play
nonlinearity is added to the store connection, and the
results are compared with wind tunnel test results.

RecentlyAbdelkefi et al. [4] performed an analytical
and experimental investigation into the dynamics of a
two-dimensional plunging and pitching aerofoil, with
a nonlinearity in the pitch degree of freedom. When
the unsteady aerodynamics were incorporated into the
analytical model, the results agreed with the experi-
mental analysis. Padmanabhan et al. [30] analysed the
spanwise varying displacement of a wing carrying a
store, modelled by a beam-rod representation with two
degrees of freedom.

The present study focuses on extending this work to
a three-degree-of-freedomwing, with an added control
surface degree of freedom, and coupling the nonlinear
structural dynamics with the nonlinear aerodynamics
and a steady-state heat model. The analysis of stiffness
nonlinearities and the effects of initial conditions on
two-dimensional aerofoils has been studied [20]. Pre-
vious investigations have also focused on the effects of
unsteady aerodynamics on the flutter response of aero-
foil geometries [1]. The aeroelastic response of three-
dimensional wings has been analysed with structural
nonlinearities in the store connection [30] and for flex-
ible wings with high aspect ratios [5] and dynamic stall
considerations [6,31]. Finally research has been done
on the reduction in the flutter boundary due to a harsh
thermal environment [43].

2 Theoretical analysis

The aeroelastic model used for this analysis is the Han-
cock model [14]. It is composed of a uniform rigid
rectangular wing with pitch (θ), flap (γ ) and control
surface (β) degrees of freedom. These degrees of free-
dom are introduced via three springs at the root of the
wing, two at the flexural axis and one on the control
surface hinge line, as shown in Fig. 1.

2.1 Structural model

The general equations ofmotion for the aeroelastic sys-
tem used in this article can be written as:

Aq̈ + (B + ρUC) q̇ +
(
D + ρU 2E

)
q = Q (1)

where q = [
γ θ β

]T
represents the displacement vec-

tor of the system, A is the inertia matrix, B, D, C and
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Fig. 1 Aeroelastic model with control surface

E are the structural damping, structural stiffness, aero-
dynamic damping and aerodynamic stiffness matrices,
respectively, ρ is the air density,U is the aircraft veloc-
ity and Q is the external force excitation vector. Using
the axis system defined in Fig. 1, the vertical displace-
ment of the wing, zw, can be written as a function of
the x and y positions as well as the angles, γ , θ and
β. Assuming all displacement angles are small leads to
the following expression:

zw(x, y) = yγ + (x − x f )θ (2)

Further, the vertical displacement for the control sur-
face can be defined as:

zc(x, y) = yγ + (x − x f )θ + (x − xh)β (3)

where x f is the chord position of the flexural axis and
xh is the chord location of the hinge axis (Fig. 1).

With the geometric equations defined, the equations
of motion (Eq. 1) can be defined using Lagrange’s

equation. Lagrange’s equation for a multiple-degree-
of-freedom system is defined by:

d

dt

∂Te
∂q̇

+ ∂Ve
∂q

= Qx = ∂(δW )

∂(δq)
(4)

where Te is the kinetic energy of the system and can be
expressed in terms of the three degrees of freedom of
the system:

Te = Iγ
γ̇ 2

2
+ Iθ

θ̇2

2
+ Iβ

β̇2

2
+ Iγ θ

(
γ̇ θ̇

)

+ Iγβ

(
γ̇ β̇

) + Iθβ
(
θ̇ β̇

)
(5)

and Ve is the potential energy of the system and is
defined as:

Ve = 1

2

(
Kγ

)
γ 2 + 1

2
(Kθ ) θ2 + 1

2

(
Kβ

)
β2 (6)

where Kγ , Kθ and Kβ represent the spring stiffness of
the restraining spring in each degree of freedom and
Iγ , Iθ and Iβ are the mass moments of inertia about the
three degrees of freedom. The equations of motion for
the system prior to the implementation of the aerody-
namic and temperature models are given by:
⎡
⎢⎣

Iγ Iγ θ Iγβ

Iγ θ Iθ Iθβ

Iγβ Iθβ Iβ

⎤
⎥⎦

⎧⎪⎨
⎪⎩

γ̈

θ̈

β̈

⎫⎪⎬
⎪⎭

+
⎡
⎢⎣
Kγ 0 0

0 Kθ 0

0 0 Kβ

⎤
⎥⎦

⎧⎪⎨
⎪⎩

γ

θ

β

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

Qγ

Qθ

Qβ

⎫⎪⎬
⎪⎭

(7)

2.2 Aerodynamic model

In the high Mach number (up to 7 [25]) flight regime,
the pressure distribution across thewing is significantly
influenced by the presence of the shock wave [25].
As a result, the pressure distribution across the wing
becomes a function of the location of a single point, the
shock wave [7,13]. This behaviour is modelled using
piston theory. Piston theory depends on the premise
that the pressure on a wing surface can be assumed to
be equivalent to the movement of a piston in a column
of air. For a 2D wing section this gives:

p(x) = p∞
(
1 + γc − 1

2

w(x)

a∞

) 2γc
γc−1

(8)

where p∞ and a∞ are the pressure and speed of sound
of the free-stream, respectively,γc is the ratio of specific
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heats and w(x) is the downwash velocity of the wing.
Equation 8 provides an exact solution for an expan-
sion and an approximate solution for a compression
due to the presence of the shock wave [25]. However
the power term 2γc

γc−1 , does not provide an explicit solu-
tion to the integration of Eq. 8. Therefore as outlined
by Lighthill [25], an approximate solution can be deter-
mined accurate to within 0.06% of the given value
using the third-order binomial expansion:

p(x) = 1 + γc

(
w(x)

a∞

)
λ + γc(γc + 1)

4

(
w(x)

a∞

)2

λ2

+γc(γc + 1)

12

(
w(x)

a∞

)3

λ3 (9)

where:

λ = M∞√
M2∞ − 1

(10)

M∞ is the Mach number of the free-stream. The pres-
sure p(x) can then be integrated across the chord, c,
and strip theory can be used to generalise the solution
for the three-degree-of-freedom wing [18].

2.2.1 Aerodynamic coefficients

The lift across a 2D aerofoil section, l, is defined as
the summation of the difference in pressure,Δp, of the
upper and lower surface.

l =
xc∫

0

Δpdx +
c∫

xc

Δpdx (11)

Equation 11 includes the lift contribution from the con-
trol surface. Strip theory is then applied to determine
the lift of the three-degree-of-freedomwing, L , by inte-
grating across the span, s:

L =
s∫

0

ldy (12)

similarly, the expression for the moment about the flex-
ural axis, M f a , and the hinge moment, Mha , due to the
control surface can be defined by:

M f a =
xc∫

0

Δp(x − x f )dx +
c∫

xc

Δp(x − x f )dx (13a)

Mha =
c∫

xc

Δp(x − xh)dx (13b)

Substituting thebinomial expansion for pressure (Eq. 9)
into the above equations gives the expressions for the
lift and moments across the aerofoil chord. Strip the-
ory was verified by Jones and Gallagher [18] in which
they confirmed the “surface pressure distribution to be
predicted using strip theory with reasonable accuracy
up to angles of attack of 27◦”.

2.3 Temperature model

This section describes the method for applying a tem-
perature load to the aeroelastic model and how the
model parameters are updated.

2.3.1 Updating the stiffness

Heating the structure results in a reduction in stiffness
[42]. This is a consequence of the reduction in elastic
modulus of the material with increase in temperature.
Vosteen [46] showed that it is appropriate to use the
dynamic reduction in Young’s modulus with varying
temperature for aeroelastic structures. The following
method can be developed for determining the equiva-
lent stiffness reduction in Kγ , Kθ and Kβ that repre-
sents the structural stiffness reductiondue to the applied
temperature loads. The dynamic modulus is defined as
a function of the oscillating frequency, ωn by:

E = 4π2s4Γ Aω2
n

λ2 Ii (1 + αmΔT )
(14)

where s is the length of the wing model, αm is the coef-
ficient of thermal expansion, Γ = ρm

s with ρm being
the material density, A is the area of the structure, λ

is the eigenvalue of the mode, the subscript i repre-
sents the degree of freedom, Ii is the heated moment of
inertia of each mode and ΔT is the change in temper-
ature acting on the structure. The above equation can
be rearranged to get the heated natural frequency for a
particular mode:

ωn =
√

Eλ2 Ii (1 + αmΔT )

4π2s4Γ A
(15)

where E is extracted from Fig. 2. The heated natural
frequency ωn for each mode can be used to obtain the
heated values for Kγ , Kθ and Kβ using the following
equation:

Ki = (2πωni )
2 Ii (16)
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Fig. 2 Variation of
aluminium 2024-T3
Young’s modulus with
temperature

Fig. 3 Applied temperature
distribution adapted from
[28]

2.3.2 Applying the temperature distribution

The temperature distribution was applied by approx-
imating experimental data gained from the X-15 air-

craft [28]. These temperature distributions can be
found in Fig. 3. Two primary distribution types are
shown in Fig. 3, the hot curves and the spike curves.
The hot curves represent a fairly uniform temperature

123



1670 D. J. Munk et al.

distribution, and the spike curves represent a leading
edge concentrated temperature distribution [28]. The
spike 1 and hot 1 represent 100% temperature load-
ing, spike 2 and hot 2 represent 50% temperature load-
ing, scaled down for use with aluminium. The flutter
velocity for each temperature distribution is calculated,
and the temperature distribution with the lowest flutter
velocity is applied to the nonlinear cases. The tem-
perature distributions shown in Fig. 3 are applied to
the aeroelastic model (Sect. 2.1) of the wing through a
panel method. This method splits the wing into a series
of panels, in the span and chordwise directions, that
can be heated individually. This allows any tempera-
ture distribution to be implemented over the span and
chord. Since the aeroelastic model has a small thick-
ness, the temperature gradient across the thickness of
the plate is considered to be orders of magnitude less
than that across the chord and span. Therefore the gra-
dient across the thickness of the plate is assumed to be
uniform for each panel.

2.3.3 Updating the inertia

Aerodynamic heating of a vehicle at a given flight con-
dition changes a number of parameters that affect the
aeroelastic systemof equations,mainly elasticmodulus
degradation, due to stiffness reduction, and changes in
inertia, due to the expansion of a material under heat.
The inertia equations can be solved using the panel
method, where the moments of inertia are equal to the
sum of the inertia evaluated for each panel across the
entire wing. Hence the moment of inertia equations,
see Eq. 5, can be defined as:

Iγ =
Ns∑
i=1

Nc∑
j=1

ρmt (i, j)
[
xi+1−xi

] [
y3i+1

3
− y3i

3

]
(17)

Iθ =
Ns∑
i=1

Nc∑
j=1

ρmt (i, j)

⎡
⎢⎢⎣

(
x3i+1
3 − x2i+1x f + xi+1x2f

)

−
(

x3i
3 − x2i x f + xi x2f

)

⎤
⎥⎥⎦

× [
yi+1 − yi

]
(18)

Iβ =
Ns∑
i=1

Nc∑
j=1

ρmt (i, j)

⎡
⎢⎢⎣

(
x3i+1
3 − x2i+1xh + xi+1x2h

)

−
(

x3i
3 − x2i xh + xi x2h

)

⎤
⎥⎥⎦

× [
yi+1 − yi

]
(19)

Iγ θ =
Ns∑
i=1

Nc∑
j=1

ρmt (i, j)

[(
x2i+1

2
− xi+1x f

)

−
(
x2i
2

− xi x f

)] [
y2i+1

2
− y2i

2

]
(20)

Iγβ =
Ns∑
i=1

Nc∑
j=1

ρmt (i, j)

[(
x2i+1

2
− xi+1xh

)

−
(
x2i
2

− xi xh

)] [
y2i+1

2
− y2i

2

]
(21)

Iθβ =
Ns∑
i=1

Nc∑
j=1

ρmt (i, j)

×

⎡
⎢⎢⎣

(
x3i+1
3 − x2i+1

2 (x f + xh)+xi+1xhx f +1

)

−
(

x3i
3 − x2i

2 (x f + xh) + xi xhx f

)

⎤
⎥⎥⎦

×[yi+1 − yi ] (22)

where Nc and Ns represent the number of panels in the
chord and spanwise directions, respectively, and t (i, j)
is the thickness of the relevant panel. This method
allows the evaluation of inertia for the expansion of
individual panels due to a nonuniform applied temper-
ature distribution.

2.3.4 Thermal expansion

A beam of consistent cross-sectional area under uni-
form heating conditions can be assumed to expand lin-
early according to the following relationship:

Lnew = L(1 + αmΔT ) (23)

where Lnew is the length of the beam under increase
in temperature, ΔT . L is the original beam length at
a reference temperature, Tref (288K). The linear ther-
mal expansion coefficient is defined as αm . The above
thermal expansion methodology can be adapted and
applied to all the individual panels in the model. There-
fore the expansion of each panel becomes a function of
the temperature applied to that panel only. The number
of panels has to be large enough to capture the details
of the applied temperature distribution (Fig. 4). The
effects of thermal stresses caused by the temperature
gradients are not considered in this analysis. A finite
element solution needs to be performed to calculate
the thermal stresses present in the analysis.
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Fig. 4 Thermal expansion of wing under spike 1 temperature
loads with deformation enlarged by 10%

2.4 Stiffness nonlinearities

The stiffness nonlinearities are introduced in the stiff-
ness term for the control surface degree of freedom
(Kβ ). The stiffness nonlinearities [20,49] shown in
Fig. 5 can be expressed by a series of equations and
solved using a Dormand/Prince routine [10]. The bifur-
cation behaviours are investigated through a variable
step Runge–Kutta time integration. The nonlinearities
are defined as:

Free-play:

M(h) =
⎧⎨
⎩

Khh + Khδ h > δ

0 −δ ≤ h ≤ δ

Khh − Khδ h < −δ

(24)

Bilinear:

M(h)=
⎧⎨
⎩

Kh1h + (Kh2 − Kh1)δ h > δ

Kh2h −δ ≤ h ≤ δ

Kh1h − (Kh2 − Kh1)δ h < −δ

(25)

Cubic:

M(h) =
{
Kh(h3) nonlinear hardening

−Kh(h3) nonlinear softening
(26)

where h represents the degree of freedom of interest,
the Kh terms are the slopes of the curves shown in Fig. 5
and δ is a measure of the dead zone where 2δ is the size
of the free-play region. The effects of nonlinearities in
the structure can be modelled by updating the stiffness
of the control restoring spring (Kβ ).

3 Results and discussion

The model under consideration uses the parameters as
defined in Table 1 [49]:

3.1 Linear system

The linear systemwas evaluated to obtain a benchmark
comparison for the instability speed against the nonlin-
ear responses. The stiffness nonlinearitieswere coupled
with the linear aerodynamic model to determine their
effects independent of the nonlinear aerodynamics; the
nonlinear aerodynamics and structural dynamics are
then coupled.

Figure 6 shows the frequency-damping plots for the
hot and cold structures. The flutter velocity of the cold
structure is calculated to be 2157.7ms−1. The hot tem-
perature response is obtained by applying the spike 1
temperature distribution to thewingmodel. The drop in
flutter speedwith changes in temperature is highlighted
in Fig. 6, where the temperature/flutter speed relation
becomes clear. An increase in temperature causes a
decrease in flutter speed, and a reduction in flutter speed
of 257ms−1 is observed. This is highlighted in Fig. 6
since the hot damping ratio approaches zero before the
cold damping ratio.

Figure 7 shows the time-marching response at the
flutter speed for the hot structure (red), which in this
case gives a flutter velocity of 1901.6ms−1 (Fig. 6).

At the flutter velocity for the hot structure, the
cold structure exhibits a decaying response, as shown
in Fig. 7.

The temperature distribution was linearly varied
between the various temperature models, as shown in
Fig. 3, and the resulting flutter velocities were calcu-
lated (Fig. 8). The spike 1 temperature distribution has
the lowest flutter speed (Fig. 8), and this is in agreement
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Fig. 5 Nonlinear structural
stiffness characteristics

Table 1 Initial parameters of aeroelastic model

Parameter Value

x f 0.4c

xh 0.8c

c 0.9m

s 2m

Kβ 1.632(105)Nm/rad

Kθ 3.071(106)Nm/rad

Kγ 4.842(107)Nm/rad

with Rodgers [34]; therefore it is the only temperature
model applied to the structure, because it is the worst
case.

3.2 Nonlinear structural dynamics

The response of the system with a stiffness nonlinear-
ity in the control degree of freedom is now analysed.
A free-play nonlinearity is implemented followed by
bilinear and cubic nonlinearities.

3.2.1 Free-play stiffness

For the free-play nonlinearity the gradient (Kh , Eq. 23)
was set to twice the stiffness of the control degree

of freedom (Kβ ) [44], with a dead zone of δ =
10−4 radians, determined from the magnitude of the
LCOs (Fig. 7). When a nonlinearity is introduced, the
speed at which instabilities occur is altered. This is
shown in the bifurcation plot of the system (Fig. 9).
Figure 9 shows the response with and without heat. As
expected, the bifurcation point has shifted away from
the linear stability point as a consequence of the pres-
ence of heat. The addition of heat also reduces the num-
ber of high-frequency harmonics that are excited in the
system’s response. The bifurcation plot displays the
values of amplitude of the limit cycle at zero veloc-
ity for the nonlinear degree of freedom, i.e. the control
surface deflection β at β̇ = 0. This gives an indica-
tion of the number of harmonics present in the sys-
tem’s simulation, i.e. the number of excited frequen-
cies, hence the system’s complexity. Figure 9 shows
that the response is quasi-periodic; the wing no longer
oscillates in a smooth sinusoidal pattern, but rather has
a number of high-frequency components. This is high-
lighted in Fig. 10, which shows a close up view of
the response for the free-play stiffness. The addition of
heat reduces the range of airspeeds at which limit cycle
oscillations occur, from 165 to 140ms−1. The bifurca-
tion point occurs at the same velocity where the linear
system goes unstable, for the cold case seen in Fig. 9.
However unlike the linear system where the ampli-
tude of the response is not bounded, the nonlinearity
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Fig. 6 Frequency and
damping ratio of hot and
cold structure

Fig. 7 Response of linear
system at flutter speed
(1901.6ms−1)

and heat cause the system to oscillate symmetrically
between two bounds,±1.2(10−4). A typical phase plot
for this response for all degrees of freedom is shown
in Fig. 11, the nonlinear degree of freedom, bottom

plot of Fig. 11, shows a quasi-periodic nature with
a number of high harmonics present (Fig. 12). The
frequency content of the signal further suggests the
quasi-periodic nature of the response, dominated by

123



1674 D. J. Munk et al.

Fig. 8 Flutter speed
dependency on steady-state
temperature

a number of frequencies with a low-level broadband
spectrum of noise. There are two low-frequency com-
ponents at 49.4 and 49.6Hz and some low-amplitude
components just above 150Hz, but the response is dom-
inated by frequencies at around 250, 350 and 450Hz.
These high-frequency components are the 5th, 7th and
9th harmonic terms and present a double mode, i.e. the
frequency around 250Hz has a definite component at
247.1 and 247.8Hz, followed by a third at 256.6Hz
and a fourth at 258.6Hz. These final two frequencies
are

√
3multipliers of the fundamental frequencies. The

nonlinear region ends at a velocity of 2050ms−1 for the
heatedmodel. Hence a stiffening effect is being applied
on the nonlinear system by the presence of heat. Bifur-
cation occurs at a speed of 1905ms−1 (Fig. 9) for the
system with free-play stiffness, and this is higher than
the flutter velocity predicted by linear theory for the
heated system, 1901.6ms−1 (Fig. 6).

3.2.2 Bilinear stiffness

A ratio of Kh2/Kh1 = 2, with Kh1 = Kβ [44], and
δ = 10−4 radians is used for the bilinear nonlinearity.
The bifurcation diagram for the hot structure is shown
inFig. 13.Theonset ofLCOsoccurs at 1901ms−1. This
deviates slightly from the predicted linear flutter speed

(1901.6ms−1) due to the presence of the bilinear non-
linearity in the structure. The bifurcation ends abruptly
at 1912ms−1, with an unstable oscillatory behaviour
occurring beyond this airspeed. The amplitude of oscil-
lation has a maximum of 0.002 radians at 1912ms−1,
slowly growing as the airspeed is increased. The limit
cycles are symmetric, but they display a quasi-periodic
behaviour. This is highlighted in the typical phase plots
for the system’s degrees of freedom in Fig. 14. Fig-
ure 14 clearly shows the quasi-periodic nature of the
response for the nonlinear states of the system, with the
nonlinear state (β) having a number of high-frequency
components in the response.

3.2.3 Cubic stiffness

The hardening effect and softening effect of a cubic
nonlinearity are tested for the aeroelastic system under
consideration. In the presence of a hardening nonlin-
earity, the settling time to steady state increases to over
200s. The response for the hardening cubic stiffness is
shown in Fig. 15. Comparing Figs. 15 and 7 shows that
for the linear system, the flutter speed reaches a steady
state within 50s, whereas for the hardening cubic stiff-
ness the limit cycle oscillations are not reached until
approximately 220s. The hardening effect on the sys-
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Fig. 9 Bifurcation plot for
free-play structural
stiffness, hot system (top)
cold system (bottom)

temwith cubic stiffness increases the transient response
time. The cubic stiffness increases the magnitude of
the response to approximately 1 radian compared to

10−4 for the free-play and linear responses. This is
due to the nature of the nonlinearity, since cubic non-
linearities derive from large amplitude oscillation of

123



1676 D. J. Munk et al.

Fig. 10 Response of heated
free-play structural stiffness
at an airspeed of 1920ms−1

Fig. 11 Phase plot for the
heated free-play stiffness at
a velocity of 1920ms−1
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Fig. 12 Fast Fourier
transform of the heated
free-play stiffness at a
velocity of 1920ms−1

Fig. 13 Bifurcation plot for
the system with bilinear
stiffness hot system

flexible wings [20]; however this order of magnitude is
physically admissible as control surfaces are typically
limited to 30◦. The bifurcation plot of the hot system

with a hardening cubic stiffness, Fig. 16 (top), displays
this behaviour. The corresponding cold bifurcation plot
is shown in Fig. 16 (bottom). There is a reduction in
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Fig. 14 Phase plot for the
heated system with bilinear
stiffness at 1905ms−1

the speed at which limit cycle oscillations occur. A
drop in the number of harmonics that are excited is
observed at any given speed over which limit cycle
oscillations are present. The drop in excited harmonics
is especially evident at the start of the bifurcation. The
effect of heat is to dampen out the higher harmonics,
to reduce the rate of growth of the limit cycles as air-
speed increases and to reduce the flutter boundary. This
was shown for the free-play nonlinearity by comparing
Fig. 9 (top) and (bottom) and is made more clear in
the cubic nonlinearity by comparing Fig. 16 (top) and
(bottom).

As a comparison, a system with a softening cubic
stiffness was modelled. The softening effect tends to
promote the onset of flutter [12]. However this was not
observed as the system underwent limit cycle oscilla-
tions, as shown in Fig. 17. A stable Hopf limit cycle
branch, which increases in limit cycle magnitude with
an increase in the airspeed, is present due to the effect
of heat on the structure. As shown before, the heat
tends to dampen out the effect of instabilities and in
this case creates a stable limit cycle branch instead of
a subcritical unstable branch following bifurcation. By
comparing Figs. 16 (top) and 17 the limit cycles remain
constant for the hardening cubic stiffness; however the
amplitude increases with flight velocity for softening.

The softening cubic stiffness also shows a noticeable
shift in the amplitude bounds for the limit cycle oscil-
lations at higher speeds, see Fig. 17. This shift is a
second oscillation between two bounds as indicated
in Fig. 18. This shift is not observed in the harden-
ing cubic stiffness case (Fig. 15). The softening of
the stiffness nonlinearity normally drives the response
to an unstable solution; however the heating dampens
this out until instability occurs. This is why the limit
cycle oscillations grow in magnitude until the onset
of flutter (Fig. 17). At the higher speeds, two bifur-
cations exist, shown in Fig. 17, with bounded magni-
tudes of 0.5/0.6 to−0.4/−0.3 radians and−0.5/−0.6
to 0.4/0.3 radians. These bifurcations co-exist, i.e. at
a speed greater than 1998ms−1 the wing can oscillate
between either bound.

The type of stiffness nonlinearity present within the
system has a large effect on the response. For bilin-
ear and free-play nonlinearities the response becomes
complex and the speeds at which limit cycle oscilla-
tions occur are increased, delaying instability. Com-
paratively cubic nonlinearities increase the magnitude
of the response; however they do not produce as chaotic
responses as the bilinear and free-play nonlinearities.
The next section will analyse the effects of a nonlin-
earity in the aerodynamics.
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Fig. 15 Response of heated
cubic structural stiffness at
an airspeed of 1903ms−1

3.3 Nonlinear aerodynamics

The previous sections have only used the first-order
terms of piston theory aerodynamics. Therefore this
section looks at the impact of the nonlinear aerody-
namic terms on the response of the three-degree-of-
freedom system. Previous studies [1] have looked at
the effect of the nonlinear aerodynamic terms on a two-
dimensional system. This section extends that analysis
to a wing with three degrees of freedom. Figure 19
shows the restoring force of the nonlinear aerodynam-
ics on the system. As is expected the restoring force
exhibits a cubic nature. The figure also highlights the
hysteretic behaviour of the aerodynamics, since the
curve follows a different path with increasing restor-
ing force compared to decreasing.

3.3.1 Nonlinear aerodynamics with linear structural
stiffness

To isolate the effect of the nonlinear aerodynamics and
understand its influence, the nonlinear aerodynamics
are applied to a system without additional complexi-
ties. The nonlinear aerodynamics have an equivalent

cubic softening effect, resulting in a quicker response
time and delaying instability. Figure 20 shows the bifur-
cation plot for the nonlinear aerodynamic system. As
can be seen from Fig. 20 the amplitude of the response
increases with increasing flight velocity. Figure 20
shows the increase in the response amplitudes at the
higher velocities, similar to the softening stiffness non-
linearity (Fig. 17).

The effect of the nonlinear aerodynamics is demon-
strated in Fig. 21. The time before limit cycle oscilla-
tions occur is dramatically reduced for the system with
nonlinear aerodynamics as seen by comparing Fig. 21
with Figs. 15 (cubic hardening response) and 7 (linear
response).

3.3.2 Coupled nonlinear aerodynamics and nonlinear
structural dynamics

Here the nonlinear aerodynamics are coupled with
the free-play nonlinear stiffness and the steady-state
heat model. The velocity at which the limit cycle
oscillations begin to occur is increased from 1901
to 1905ms−1. This is shown in the bifurcation plot
of Fig. 22. The response decays until a velocity of
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Fig. 16 Bifurcation plot for
hardening cubic structural
stiffness, hot system (top)
cold system (bottom)

1905ms−1 is attained (Fig. 22), the bifurcation speed.
By comparing Figs. 22 and 20 after the bifurca-
tion velocity (1905ms−1) the curves are identical.
Figure 22 has the characteristic jump at bifurcation
associated with piecewise nonlinearities. The magni-

tude of the response for the nonlinear structural system
is low compared to the nonlinear aerodynamics sys-
tem for these velocities. Therefore at higher speeds the
nonlinear aerodynamics dominate the response of the
system.
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Fig. 17 Bifurcation plot for
softening cubic structural
stiffness, hot system

3.4 Sensitivity of response to initial conditions

Previous work on two-dimensional systems indicated
that the speed at which the limit cycle oscillations begin
is heavily dependent on the initial conditions [38]. The
final part of this work is to determine the sensitivity of
the initial conditions for the three-degree-of-freedom
system. An initial displacement is enforced in the con-
trol degree of freedom (β) to start the time-marching
simulations, and the responses are analysed.

First, a nonlinear cubic stiffness is analysed. The
onset speed for the limit cycle oscillations is unchanged;
however the early limit cycle oscillationmagnitudes are
increased when the magnitude of the initial condition
is increased. This is illustrated in Fig. 23. By compar-
ing Fig. 16 with Fig. 23 (β(0) = 0◦) it can be seen
that the speed at which limit cycle oscillations begin to
occur is identical. The system is able to dampen out the
response due to the initial condition before the LCOs
occur. As mentioned in Sect. 3.2.3 the hardening effect
of the cubic stiffness increases the time at which the
LCOs occur. Therefore the system has more time to
remove the effect of any transient behaviour in the sys-
tem due to the initial condition.

For a free-play stiffness the effect of the initial con-
dition is, on the other hand, to reduce the speed at

which the limit cycle oscillations begin. This decreases
the flutter speed, creating a less dynamically stable
system. This is demonstrated in Fig. 24. With an ini-
tial displacement, the response of the system appears
to be chaotic in nature, and the LCO onset speed is
reduced.

A sensitivity analysis on the system with a bilin-
ear and free-play stiffness is given in Figs. 25 and 26,
respectively. Control deflections of −5◦ ≤ δ ≤ 5◦
were applied, and the response was analysed. Figure 25
shows how the response with a bilinear stiffness varies
with control surface deflection. The flutter boundary
varies significantly with an initial input in the control
deflection, decreasing from 1915 to 1912ms−1 for all
control inputs, suggesting that adding a control input
has a destabilising effect regardless of the magnitude.
As the initial deflection is increased, the speed at which
the system decays is reduced. This is in agreement with
Tang and Dowell [38].

Figure 26 shows how the response with a free-
play stiffness varies with control deflection. For the
system with a free-play stiffness, the flutter bound-
ary varies depending on the control input (Fig. 26),
where the larger the control input, the lower the flut-
ter boundary. The sensitivity plot is not symmetric,
meaning that control inputs of the same magnitude but
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Fig. 18 Response for
heated softening cubic
structural stiffness, at
2015ms−1 (top) at
2013ms−1 (bottom)
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Fig. 19 The restoring force
due to the nonlinear
aerodynamics

Fig. 20 Bifurcation plot for
the nonlinear aerodynamics,
hot system

opposite direction do not give the same response. For
the free-play stiffness at certain control deflections, the
system can swap between a decaying response and a
LCO as the airspeed is increased. This is shown in
Fig. 26 by the triangles and circles that appear after the
decay line, indicating small zones where the system is
decaying.

The above results show that having an initial dis-
placement affects the response of the system, through
increased chaotic responses and reduced speeds at

which LCOs occur. It was shown that due to the hard-
ening effect of the cubic stiffness on the system, the
response to a cubic nonlinearity is less affected by ini-
tial conditions as it dampens out the response.

4 Conclusions

The aeroelastic response of a three-degree-of-freedom
hot wing with a control surface and stiffness non-
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Fig. 21 Response for the
system with nonlinear
aerodynamics at an airspeed
of 1925ms−1

Fig. 22 Bifurcation plot for
the system with nonlinear
aerodynamics and structural
dynamics, hot system

linearity has been determined. Three different types
of stiffness nonlinearity have been considered: free-
play, bilinear and cubic nonlinearities. Aerodynamic
nonlinearities arising from piston theory have also

been analysed. The resulting equations of motion were
solved using a variable step Runge–Kutta method.

For both free-play and cubic nonlinearities, limit
cycle oscillations occurred after the flutter speed of
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Fig. 23 Bifurcation plot for
the hot system with cubic
stiffness and an initial
displacement (β(0) = 1◦)

Fig. 24 Bifurcation plot for
the hot system with
free-play stiffness and an
initial displacement
(β(0) = 1◦)

the linear system for the hot structure. For the free-
play nonlinearity the resulting motion became quasi-
periodic. The cubic stiffness nonlinearity contributes a

hardening effect to the system; consequently the time at
which the limit cycle oscillations become fully devel-
oped is increased. The cubic stiffness increased the
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Fig. 25 Decay and flutter
boundary for varying initial
conditions with bilinear
stiffness, hot system

Fig. 26 Decay and flutter
boundary for varying initial
conditions with free-play
stiffness, hot system

magnitude of the response significantly; however it
excited less harmonics compared to the free-play non-
linearity.

The nonlinear aerodynamics had a softening effect
on the structure. This reduced the time required for
the limit cycle oscillations to occur. Furthermore, the
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magnitude of the limit cycle oscillations increased with
airspeed.

Finally it was shown that the system is sensitive to
initial conditions. Adding an initial control deflection
reduced the velocities at which limit cycle oscillations
occurred. The initial conditions had the effect of cre-
ating a chaotic response. The results presented here
add to the work done where chaotic motion and limit
cycle oscillationswere predicted for a two-dimensional
aerofoil with stiffness nonlinearities [15,33,38,50] or
aerodynamic nonlinearities [2].
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