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Abstract Planar impulsive semi-dynamic systems
arising biological applications including integrated
pest management have been paid great attention
recently. However, most of works only focus on very
special cases of proposed models, and the complete
dynamics are far from being resolved due to com-
plexity. Therefore, a planar impulsive Holling II prey–
predator semi-dynamic model has been employed with
aims to develop analytical techniques and provide a
comprehensive qualitative analysis of global dynam-
ics for whole parameter space. To do this, we initially
assume that the proposed ODE model does not exist
positive steady state. We determine the Poincaré map
for impulsive point series defined in the phase set and
analyze its properties including monotonicity, continu-
ity, discontinuity and convexity. We address the exis-
tence, local and global stability of an order-1 limit cycle
and obtain sharp sufficient conditions for the global sta-
bility of the boundary order-1 limit cycle. Moreover,
the existence of an order-3 limit cycle indicates that
the proposed model exists any order limit cycles. If the
proposed ODE model exists an unstable focus, then
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the results show that a finite or an infinite countable
discontinuity points for the Poincaré map imply the
model exists a finite or an infinite number of order-
1 limit cycles. The bifurcation analyses show that the
model undergoes a transition to chaos via a cascade of
period-adding bifurcation and also multiple attractors
can coexist.
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1 Introduction

Impulsive semi-dynamical system is widely used to
model biological systems with threshold control strat-
egy, such as biological resource and pest manage-
ment programmes, and chemostat cultures in eco-
logical systems [24,29,34–37,39,40], virus dynam-
ical systems (HIV) [26,41,48,50,51], diabetes mel-
litus and tumor control in pharmacological systems
[18,23,42], vaccination strategies and epidemiological
control in epidemiology [16,31,32,43,49]. These sys-
tems involve an interacting mixture of continuous and
discrete dynamics exhibiting discontinuity on appro-
priatemanifolds, which are called as impulsive sets and
hence give rise to impulsive dynamics [2,4,19–21].

Recently, the qualitative theory for impulsive semi-
dynamical system has been developed extensively, and
the analytical techniques include the Lyapunovmethod
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[24,34,36,37,39,40], invariant and limiting sets [5,7–
10,27], the LaSalle’s invariance principle [6] and the
Poincaré–Bendixson theorem [8,52]. Moreover, some
prototype models with biological motivations have
been proposed and investigated with aims to guide the
development of a general qualitative theory of semi-
dynamical systems [34,36,37,39,40].

State-dependent feedback control strategy can be
defined in broad terms in real biological problems,
which is usually modeled by an impulsive semi-
dynamical system. For example, control tactic (graz-
ing, harvesting, pesticide application, treatment, etc.)
is implemented only when a specific species abun-
dance reaches a previously given threshold density.
In particular, a good example in the series of mod-
els motivated by integrated pest management (IPM)
[34,36,39,40] has been formulated and investigated.
Note that IPM is a long-termmanagement strategy that
uses a combination of biological, cultural and chem-
ical tactics to reduce pests to tolerable levels, control
tactics must be taken once a critical density of pests
(economic threshold, ET) is observed in the field so
that the economic injury level (EIL) is not exceeded
[34,40,46,47].

For the model with IPM strategy [34,40], the classi-
cal Lotka–Volterra system with state-dependent feed-
back control is used, and some novel techniques are
developed to examine the existence and stability of
an order-1 limit cycle, nonexistence of limit cycles
with order no less than 3, the coexistence of multi-
ple attractors and their basins of attraction. Liu et al.
[25] have extended those methods to study the Holling
II predator–prey model with IPM under which the
model exits a stable focus, and similar results have been
obtained. Recently, the modeling framework and the
developed analytical techniques in [34,40] have been
used in a number of recent studies. For example, Huang
et al. [18] proposed mathematical models depicting
impulsive injection of insulin for type 1 and type 2 dia-
betes mellitus and considered the existence and local
stability of an order-1 limit cycle.When considering the
biomass concentration as an index, chemostat models
with state-dependent feedback control have been pro-
posed and analyzed in [29,33,45]. The work [43] also
considered the existence and stability of limit cycles
with different orders, in relation to the biological issue
of maintaining the density of infected plant population
below a certain threshold level. See also similar work

on population dynamics [28,44,52] and epidemiology
[43].

Based on the properties of the successor function
and the Poincaré map, the existence and local stability
of the order-1 periodic solution have been addressed
in the above-mentioned work. One common assump-
tion in those papers is that any solution initiating from
the phase set must experience infinite many impulses.
Further, if the proposed model exists a first integral
[34,40], the existence of the order-2 periodic solutions
andother richdynamics canbediscussed inmoredetail.
Even so the global dynamics of proposed models with
state-dependent feedback control arising from mod-
eling IPM and other fields are far from being solved
[25,34,36,39,40]. The challenge for investigating the
global dynamics remains due to the state-dependent
impulsive control and the complexity of the Poincaré
map. For example, the Poincaré map still includes sev-
eral discontinuous points even if any solution starting
from phase set experiences infinitely many impulsive
effects (seemore details from themain text).Moreover,
a more and more extensive applications in the wide
fields require much more advanced qualitative tech-
niques and new methods to reveal complete dynamics
of the proposedmodelwith threshold control policy and
consequently to discuss the biological implications.

The main purpose of this study is to develop ana-
lytical techniques and provide a comprehensive quali-
tative analysis of the global dynamics through analyz-
ing a planar impulsive Holling II prey–predator semi-
dynamic model. To do this, we firstly examine the
properties of the Poincaré map for impulsive point
series defined in the phase set including monotonicity,
continuity, discontinuity and convexity. The existence,
local and global stability of an order-1 limit cycle have
been addressed and sharp sufficient conditions for the
global stability of the boundary order-1 limit cycle are
obtained. Moreover, the existence of an order-3 limit
cycle indicates that the proposedmodel exists any order
limit cycles. An infinite countable discontinuity points
for the Poincaré map imply the model may exist an
infinite number of order-1 limit cycles, and the bifur-
cation analyses show that themodel undergoes a transi-
tion to chaos via a cascade of period-adding bifurcation
and also multiple attractors can coexist. All the results
can help us to further understand and give insight into
the qualitative theory and the dynamic complexity of
impulsive semi-dynamical system.
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2 The model with state-dependent feedback
control

The basic ODE model employed in this work is the
following classicalHolling II predator–preymodel [38]

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)

dt
= r x(t)

[

1 − x(t)

K

]

− βx(t)y(t)

1 + ωx(t)
,

dy(t)

dt
= ηβx(t)y(t)

1 + ωx(t)
− δy(t),

(1)

where x(t) and y(t) represent the densities of prey
(pest) and predator (natural enemy), respectively, r is
the intrinsic growth rate of the prey population and K
represents its carrying capacity, (βx(t))/(1 + ωx(t))
denotes the Holling II functional response, which is a
saturating function of the amount of pest present, and
δ denotes the death rate of the predator population.

Model (1) always exists a (0, 0) steady state, which
is unstable and a boundary equilibrium (K , 0). The pos-
itive steady state

E∗ = (xe, ye) =
(

δ

ηβ − δω
,
rη(Kηβ − K δω − δ)

K (ηβ − δω)2

)

exists provided

ηβ − δω > δ/K ⇔ R0
.= K [ηβ − δω]

δ
> 1.

Moreover, if R0 ≤ 1, then (K , 0) is globally stable, and
if R0 > 1, then (K , 0) becomes unstable. Further, if

ωK ≤ ηβ + ωδ

ηβ − ωδ
⇔ R1

.= ηβ + ωδ

ηβ − ωδ

1

ωK
≥ 1,

then E∗ is a globally stable node or focus. Otherwise,
it is an unstable node or focus, and model (1) has a
unique limit cycle which is stable.

The eigenfunction at E∗ is as follows

λ2 − rδ(−βη + Kβηω − K δω2 − δω)

Kβη(βη − δω)
λ

+rδ(Kβη − K δω − δ)

Kβη
= 0,

i.e., we have

λ2 − C3C1

C0
λ + C3C2 = 0

with C0 = βη − δω, C1 = −βη + Kωξ − δω,C2 =
K ξ − δ and C3 = (rδ)/(Kβη). Therefore, we denote

� =
(
C3C1

C0

)2

− 4C3C2.

Two isoclines can be defined as follows:

L1 : y= r

β

[
1− x

K

]
(1+ωx), and L2 : x= δ

ηβ−δω
.

Now, we take the integrated control tactics into
account for model (1). Once the density of the pest
population reaches the ET, impulsive reduction in its
density is possible after its partial destruction by trap-
ping or by poisoning with chemicals, and an impulsive
increase in a controlling predator or parasitoid pop-
ulation density is possible by artificial breeding and
releases [3,34,40]. Then, model (1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
=r x(t)

[

1− x(t)

K

]

− βx(t)y(t)

1+ωx(t)
,

dy(t)

dt
= ηβx(t)y(t)

1 + ωx(t)
− δy(t),

⎫
⎪⎪⎬

⎪⎪⎭

x<ET,

x(t+) = (1 − θ)x(t),
y(t+) = y(t) + τ,

}

x = ET,

(2)

where x(t+)
.= x+ and y(t+)

.= y+ denote the num-
bers of pests and natural enemies after an integrated
control strategy is applied at time t , and x(0+) and
y(0+) denote the initial densities of pest and natural
enemy populations. Throughout this paper, we assume
that the initial density of the pest population is always
less than ET (i.e., x(0+)

.= x+
0 < ET, y(0+)

.=
y+
0 > 0) and ET < K . Otherwise, the initial values
are taken after an integrated control strategy applica-
tion. Inmodel (2), 0 ≤ θ < 1 is the proportion bywhich
the pest density is reduced by killing and/or trapping
once the number of pests reaches ET , while τ (τ ≥ 0)
is the constant number of natural enemies released at
this time t .

The above model can be defined as an impulsive
semi-dynamic system in the sense that it is defined by
both a continuous and a discrete event. This structure
makes the model very interesting and complexity. Note
that this model has been investigated recently [25], but
the authors only focused on the very special case, i.e.,
model (1) has a global stable equilibrium E∗, which
cannot reveal the rich dynamics. Indeed, the state-
dependent feedback control to the classical Holling
II predator–prey model will result in rich dynamic
behaviors, which cannot appear in model (1), includ-
ing multiple limit cycles, period-adding bifurcations
and chaotic solutions. Thus, in this work we would like
to rigorously address these different behaviors from a
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mathematical point of view. To do this, we first intro-
duce some basic definitions and preliminaries related
to impulsive semi-dynamic system, which are useful
throughout this work.

3 Planar impulsive semi-dynamic systems and
preliminaries

The generalized planar impulsive semi-dynamical sys-
tems with state-dependent feedback control can be
described as follows:

⎧
⎨

⎩

dx

dt
= P(x, y),

dy

dt
= Q(x, y), (x, y) /∈ M,

�x = a(x, y), �y = b(x, y), (x, y) ∈ M,

(3)

where (x, y) ∈ R2, �x = x+ − x and �y = y+ −
y. P, Q, a, b are continuous functions from R2 into
R, M ⊂ R2 denotes the impulsive set. For each point
z(x, y) ∈ M, the map or impulsive function I : R2 →
R2 is defined as

I (z) = z+ = (x+, y+) ∈ R2, x+ = x + a(x, y),

y+ = y + b(x, y)

and z+ is called as an impulsive point of z.
Let N = I (M) be the phase set (i.e., for any

z ∈ M, I (z) = z+ ∈ N ), and N ∩ M = ∅. Let
(X,Π, R+) or (X,Π) be a semi-dynamical system
[1], where X = R2 is a metric space, R+ is the set
of all nonnegative reals. For any z ∈ X , the func-
tion Πz : R+ → X defined by Πz(t) = Π(z, t) is
clearly continuous such thatΠ(z, 0) = z for all z ∈ X ,
and Π(Π(z, t), s) = Π(z, t + s) for all z ∈ X and
t, s ∈ R+. The set
C+(z) = {Π(z, t)|t ∈ R+}
is called the positive orbit of z. For all t ≥ 0 and z ∈ X ,
we define F(z, t) = {w : Π(w, t) = z}, and further
for any set M ⊂ X , let

M+(z) = C+(z) ∩ M − {z}.
Based on above notations, we now provide the defi-

nitions of impulsive semi-dynamic system and order-k
periodic solution as follows [8,11–13,19,20,22].

Definition 1 An planar impulsive semi-dynamic sys-
tem (R2,Π;M, I ) consists of a continuous semi-
dynamic system (R2,Π) together with a nonempty

closed subsetM (or impulsive set) of R2 and a contin-
uous function I : M → R2 such that for every z ∈ M,
there exists a εz > 0 such that

F(z, (0, εz)) ∩ M = ∅ and Π(z, (0, εz)) ∩ M = ∅.

Throughout the paper, we denote the points of dis-
continuity of Πz by {z+n } and call z+n an impulsive
point of zn . We define a function Φ from X into
the extended positive reals R+ ∪ {∞} as follows: let
z ∈ X , if M+(z) = ∅ we set Φ(z) = ∞, otherwise
M+(z) �= ∅ andwe setΦ(z) = s, whereΠ(z, t) /∈ M
for 0 < t < s but Π(z, s) ∈ M.

Definition 2 A trajectory Πz in (R2,Π, M, I ) is said
to be periodic of period Tk and order k if there exist
nonnegative integers m ≥ 0 and k ≥ 1 such that k is
the smallest integer for which z+m = z+m+k and Tk =
∑m+k−1

i=m Φ(zi ) = ∑m+k−1
i=m si .

For more details of the concepts and properties of
continuous semi-dynamic systems and impulsive semi-
dynamic systems, see [1,8,19,27,53] for more details.
For simplicity, we denote a periodic trajectory of period
Tk and order-k by an order-k periodic solution. An
order-k periodic solution is called as an order-k limit
cycle if it is isolated. The local stability of an order-k
periodic solution can be determined by using following
analogue of Poincaré criterion [30].

Lemma 1 Let φ(x, y) be a sufficiently smooth func-
tion with gradφ(x, y) �= 0, and we denote φ(x, y) �= 0
as (x, y) /∈ M and φ(x, y) = 0 as (x, y) ∈ M. The
order-k periodic solution x = ξ(t), y = η(t) of model
(3) is orbitally asymptotically stable and enjoys the
property of asymptotic phase if the multiplier μ2 satis-
fies the condition |μ2| < 1. Where

μ2=
q∏

k=1

�kexp

[∫ T

0

(
∂P

∂x
(ξ(t), η(t))+ ∂Q

∂y
(ξ(t), η(t))

)

dt

]

,

�k =
P+
(

∂b
∂y

∂φ
∂x − ∂b

∂x
∂φ
∂y + ∂φ

∂x

)
+ Q+

(
∂a
∂x

∂φ
∂y − ∂a

∂y
∂φ
∂x + ∂φ

∂y

)

P ∂φ
∂x +Q ∂φ

∂y

,

and P, Q, (∂a)/(∂x), (∂a)/(∂y), (∂b)/(∂x), (∂b)/
(∂y), (∂φ)/(∂x), (∂φ)/(∂y) are calculated at the point
(ξ(τk), η(τk)) and P+ = P(ξ(τ+

k ), η(τ+
k )), Q+ =

Q(ξ(τ+
k ), η(τ+

k )) with τ+
k = Φ(ξ(τ+

k−1), η(τ+
k−1)).

It is interesting to know as well that given z ∈ R2,
one of the three properties for the positive orbits of
model (3) or planar impulsive semi-dynamic system
holds:
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– M+(z) = M+(z+0 ) = ∅, and thus, the orbit of z+0
has no discontinuities, i.e., it is completely deter-
mined by the corresponding orbit of ODE model.

– There exists a positive integer n such that z+k is
defined for any k = 1, 2, . . . , n, M+(z+k ) �= ∅ for
k < n andM+(z+n ) = ∅. In this case, the trajectory
of z exists a finite number of discontinuities, i.e., the
trajectory experiences finitely many impulses.

– If for any k ≥ 1, z+k is defined and M+(z+k ) �= ∅,
then the trajectory of z has infinitely many discon-
tinuities, i.e., the trajectory experiences infinitely
many impulses.

4 Poincaré map and its properties

In order to address the dynamic behavior of system
(2), we first construct a Poincaré map determined by
the impulsive points in phase set. From a biological
point of view, we focus on the space R2+ = {(x, y) :
x ≥ 0, y ≥ 0} to investigate model (2).

4.1 Impulsive semi-dynamic system defined by model
(2)

Define two straight lines as follows:

L3 : x = (1 − θ)ET; and L4 : x = ET.

According to the fact of 0 < ET < K and sub-
stituting x = ET into the line L1, one yields the
intersection point of two lines L1 and L4, denoted by
QET = (ET, yET) with

yET = r

β

[

1 − ET

K

]

(1 + ωET).

Similarly, we denote the intersection point of two lines
L1 and L3 as QθET = ((1 − θ)ET, yθET) with

yθET = r

β

[

1 − (1 − θ)ET

K

]

(1 + ω(1 − θ)ET).

Define the open set in R2+ as follows

Ω = {(x, y)|x > 0, y > 0, x < ET} ⊂ R2+. (4)

To address the exact domains of the impulsive sets
and phase sets and consequently define the impulsive
semi-dynamic system for model (2), based on the exis-
tence and stability of the steady state E∗ of model (1),
we consider the following three cases:

(C1) : R0 ≤ 1; (C2) : R0 > 1 and R1 < 1;
(C3) : R0 > 1 and R1 ≥ 1.

For case (C1), the interior equilibrium E∗ does not
exist, and there are two feasible equilibria (0, 0) which
is an unstable saddle and (K , 0) which is globally sta-
ble in first quadrant. This indicates that any solution of
model (1) initiating from Ω will reach at the line L4 in
a finite time. Now we can define the impulsive set M
of model (2)

M = {(x, y)| x = ET, 0 ≤ y ≤ yET}, (5)

which is a closed subset of R2+. Define the contin-
uous function I : (ET, y) ∈ M → (x+, y+) =
((1− θ)ET, y + τ) ∈ Ω . Thus, the phase setN can be
defined as follows

N = I (M) = {
(x+, y+) ∈ Ω| x+ = (1 − θ)ET,

τ ≤ y+ ≤ yET + τ
} .= {

(x+, y+) ∈ Ω| x+

= (1 − θ)VL , y+ ∈ YD
}

(6)

with YD = [τ, yET + τ ]. Therefore, (R2+,Π;Ω,M, I )
or (R2+,Π;M, I ) with respect to model (2) defines an
impulsive semi-dynamic system.

Unless otherwise specified in the following, we
assume the initial point (x+

0 , y+
0 ) ∈ N . For conve-

nience in defining the Poincaré map, we use YD =
[τ,+∞) in the rest work due to any solution of model
(2) initiating from (x+

0 , y+
0 ) with y+

0 > yET + τ will
satisfy y+

k ≤ yET + τ for all k ≥ 1.
Note that for case (C2), there exists a unique stable

limit cycle of model (1), denoted by Γ(1), which inter-
sects with the isocline L1 at two points EΓ1(xΓ1 , yΓ1)

and EΓ2(xΓ2 , yΓ2)with xΓ1 < xΓ2 . Therefore, any solu-
tion starting from ((1 − θ)ET, y+

0 ) with y+
0 ≥ 0 will

experience infinitely many impulses for case (C2) pro-
vided ET ≤ xΓ2 and case (C3) provided ET < xe. Oth-
erwise, any solution starting from ((1−θ)ET, y+

0 )with
y+
0 ≥ 0 may be free from pulse effect or experiences
finitely (infinitely) many impulses which depends on
the initial conditions. Therefore, the impulsive sets and
phase sets of model (2) could vary, which will result in
complex dynamics for model (2) under cases (C2) and
(C3), and we will address those in next section.

4.2 Poincaré map and its properties for case (C1)

The Poincaré map of model (2) could be defined in dif-
ferent ways, and all of them are useful for investigating
the dynamics of model (2).
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Define two sections as follows:

SET =
{
(x, y)|x = ET, y ≥ 0

}
,

SθET =
{
(x, y)|x = (1 − θ)ET, y ≥ 0

}
.

Choosing the section SθET as a Poincaré section.
Assume that the point P+

k = ((1 − θ)ET, y+
k ) lies

in the section SθET, and the trajectory �(t, t0, (1 −
θ)ET, y+

k )
.= (x(t, t0, (1 − θ)ET, y+

k ), y(t, t0, (1 −
θ)ET, y+

k )) initiating from P+
k will reach at the

section SET in a finite time t1 (i.e., x(t1, t0, (1 −
θ)ET, y+

k ) = ET) denote the intersection point as
Pk+1 = (ET, yk+1). This indicates that yk+1 is deter-
mined by y+

k , i.e., we have yk+1 = y(t1, t0, (1 −
θ)ET, y+

k )
.= P(y+

k ). For simplification of notation,
we denote y((1−θ)ET, y+

k ) = y(t1, t0, (1−θ)ET, y+
k )

throughout this work. One time state-dependent feed-
back control action is implemented at point Pk+1 such
that it jumps to point P+

k+1 = ((1 − θ)ET, y+
k+1) with

y+
k+1 = yk+1 + τ on SθET. Therefore, we can define
the Poincaré map PM as

y+
k+1=P(y+

k ) + τ = y((1 − θ)ET, y+
k ) + τ

.= PM (y+
k ).

(7)

Similarly, if we choose the section SET as another
Poincaré section. Assume that the point Pk = (ET, yk)
lies on the Poincaré section SET, then P+

k = ((1 −
θ)ET, yk +τ) lies on the section SθET due to impulsive
effects, and the trajectory starting from P+

k will reach
at the Poincaré section SET within a finite time at point
Pk+1 = (ET, yk+1), in which yk+1 is determined by
yk . Thus, the Poincaré map PM can be also defined as

yk+1 = PM (yk + τ). (8)

In order to address the dynamic behavior of sys-
tem (2) more details, we could define the Poincaré map
determined by the impulsive points in phase set accord-
ing to the phase portrait. To do this, we denote

P(x(t), y(t)) = r x(t)

[

1 − x(t)

K

]

− βx(t)y(t)

1 + ωx(t)
,

Q(x(t), y(t)) = ηβx(t)y(t)

1 + ωx(t)
− δy(t)

and we have following scalar differential equation in
phase space

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dx
=

ηβxy

1 + ωx
− δy

rx
(
1 − x

K

)
− βxy

1 + ωx

=̇g(x, y),

y((1 − θ)ET) = y+
0 .

(9)

For model (9), we only focus on the region

Ω1=
{

(x, y)

∣
∣
∣
∣ x>0, y>0, y<

r

β

[
1− x

K

]
(1+ωx)

}

,

(10)

in which the function g(x, y) is continuously differ-
entiable. Further, we denote x+

0 = (1 − θ)ET, y+
0

.=
S, S ∈ N with S < yθET, i.e., we have (x+

0 , y+
0 ) ∈ Ω1.

Then, we have

y(x) = y(x; (1 − θ)ET, S)

= y(x, S), (1 − θ)ET ≤ x ≤ ET (11)

and it follows from model (9) that

y(x, S) = S +
∫ x

(1−θ)ET
g(s, y(s, S))ds. (12)

Thus, the Poincaré map PM in the region Ω1 takes the
form

PM (S) = y(ET, S) + τ. (13)

Theorem 1 Assume that there is no interior equilib-
rium for model (1), i.e., R0 ≤ 1, then the Poincaré map
PM of model (2) satisfies the following properties, as
described in Fig. 1.

(i) The domain and range of PM are [0,+∞) and
[τ, PM (yθET)) = [τ, y((1 − θ)ET, yθET) + τ),
respectively. It is increasing on [0, yθET] and
decreasing on [yθET,+∞).

(ii) PM is continuously differentiable.
(iii) PM is concave on [0, yθET).
(iv) A unique positive fixed point ỹ exists for PM. In

particular, if τ > 0 and PM (yθET) < yθET, then
ỹ ∈ (0, yθET); if τ > 0 and PM (yθET) > yθET,
then ỹ ∈ (yθET,+∞).

(v) There is a horizontal asymptote y = τ for PM as
y+
k → +∞.

Proof (i) It follows from the vector field of system
(2) without impulsive effects that the definition
domain of PM is [0,+∞). For any y+

k1
, y+

k2
∈
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Fig. 1 The Poincaré map
PM and stability of fixed
point y∗. The parameter
values are fixed as follows:
r = 1.5, K = 100, β =
0.3, η = 0.75, ω =
0.3,ET = 50, δ = 0.8, τ =
15.5 and θ = 0.3.
a τ = 5.5, b τ = 15.5,
c τ = 17.5, dτ = 18.2
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k
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[0, yθET] with y+
k1

< y+
k2
, it is easy to see that

y((1−θ)ET, y+
k1

) < y((1−θ)ET, y+
k2

) according
to the uniqueness of the solution of model (1), and
consequently we have PM (y+

k1
) < PM (y+

k1
). For

y+
ki

∈ [yθET,+∞), i = 1, 2 with y+
k1

< y+
k2
, the

orbits�(t, t0, (1−θ)ET, y+
ki

)will cross the line L3

once before it hits the line L4. Denote the vertical
coordinates of two orbits �(t, t0, (1 − θ)ET, y+

ki
)

intersecting with the line L3 are as y+
qi , i = 1, 2,

and note that the order of the two new positions
y+
q1, y

+
q2 are inverted (i.e., y+

q1 > y+
q2 ). The similar

process of the previous case yields

PM (y+
k1

) = PM (y+
q1) > PM (y+

q2) = PM (y+
k2

).

Therefore, PM is increasing on [0, yθET] and
decreasing on [yθ ET,+∞). Meanwhile, the range
of PM takes the form [τ, y((1− θ)ET,yθET) + τ ].

(ii) It follows from model (1) that both functions
P(x, y) and Q(x, y) are continuous and differ-
entiable in the first quadrant. Therefore, the conti-
nuity and differentiability of PM can be confirmed
by using the theorem of continuity and differen-

tiability of the solution of an ordinary differential
equation with respect to its initial condition, i.e.,
the theorem of Cauchy and Lipschitz with para-
meters. Furthermore, since P(x, y) and Q(x, y)
areC∞, and thus, the theorem of Cauchy and Lip-
schitz with parameters implies that the Poincaré
map PM is also C∞.

(iii) It follows from (9) that

∂g

∂y
=

r x
(
1 − x

K

)(
ηβx
1+ωx − δ

)

[
r x
(
1 − x

K

)
− βxy

1+ωx

]2 ,

∂2g

∂y2
=

2r x
(
1 − x

K

)(
ηβx
1+ωx − δ

)
βx

1+ωx
[
r x
(
1 − x

K

)
− βxy

1+ωx

]3 .

Since x ≤ ET,we obtain (ηβx)/(1 + ωx)−δ < 0

while r x
(
1 − x/K

)
− (βxy)/(1 + ωx) > 0 for

y < yθET and r x(1− x/K )− (βxy)/(1 + ωx) <

0 for y > yθET. Those indicate that (∂g)/(∂y) < 0
and (∂2g)/(∂y2) < 0 for all y < yθET.
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According to the theorem of Cauchy and Lipschitz
with parameters on the scalar differential equation,
we have
∂y(x, S)

∂S

= exp

(∫ x

(1−θ)ET

∂

∂y

(
Q(z, y(z, S))

P(z, y(z, S))

)

dz

)

> 0 (14)

and

∂2y(x, S)

∂S2
= ∂y(x, S)

∂S

∫ x

(1−θ)ET

∂2

∂y2
(
Q(z, y(z, S))

P(z, y(z, S))

)
∂y(z, S)

∂S
dz. (15)

It is easy to see that (∂2y(x, S))/(∂S2) < 0, and
consequentlywe have PM ismonotonic increasing
and concave for y < yθET, as shown in Fig. 1.

(iv) Since PM is decreasing on [yθET,+∞), there
exists a y ∈ [yθET,+∞) such that PM (y) < y.
Moreover, it is easy to see that PM (0) = τ ≥ 0,
which indicates that there is ỹ ∈ [0, y) such
that PM (ỹ) = ỹ, i.e., there exists a fixed point
on [0,+∞) for PM . Note that if τ > 0, then
ỹ ∈ (0, y) must hold true.
If τ > 0 and PM (yθET) < yθET, then the fixed
point ỹ ∈ (0, yθET). On the one hand, since PM is
decreasing on [yθET,+∞), we have PM (y+

k ) <

PM (yθET) < yθET for y+
k ∈ [yθET,+∞),

which indicates no fixed point exists for PM on
[yθET,+∞). On the other hand, PM is concave
on (0, yθET), so a unique fixed point exists for PM
on (0, yθET).
If τ > 0 and PM (yθET) > yθET, on the one hand,
no fixed point exists for PM on (0, yθET] due to
the concavity and PM (0) > 0; on the other hand,
since PM is decreasing on (yθET,+∞), there is a
unique fixed point for PM on (yθET,+∞).

(v) Denote the closure of the Ω1 as

Ω̄1 =
{

(x, y) : y ≤ r

β

[
1 − x

K

]

(1 + ωx), x ≥ 0 and y ≥ 0

}

.

We claim that the set Ω̄1 is an invariant set of system
(1) if model (1) does not exist interior equilibrium E∗.
In fact, let

L = y − r

β

[
1 − x

K

]
(1 + ωx)

and Ω̄1 is an invariant set of system (1) if the vector
field is flowing into of the boundary Ω̄1. This is true if

[

(P(x, y), Q(x, y)) ·
(
r

β

(
1

K
+ 2ω

K
x−ω

)

, 1

)]

L=0
≤0,

where · stands for the scalar product of two vectors, so
it is equivalent to

Gm(x)|L=0 =̇
(

ηβx

1 + ωx
− δ

)

y

−x

[

r
(
1 − x

K

)
− βy

1 + ωx

]

· r
β

(
1

K
+ 2ω

K
x − ω

)

=
(

ηβx

1 + ωx
− δ

)

y < 0.

Moreover, for any (x, y) belongs to the interior
of Ω̄1 (i.e., Ω1), we have (dx(t))/(dt) > 0 and
(dy(t))/(dt) < 0. Therefore, we claim that P(+∞) =
0 with ((1 − θ)ET,+∞) ∈ N , i.e., PM (+∞) =
τ . Otherwise, there exists a positive y∗ such that
P(+∞) = y∗ with P∗ = (ET, y∗) ∈ M. Taking any
point P1 = (ET, y1)with 0 < y1 < y∗, then according
to the invariance of the set Ω̄1 and the uniqueness of
solution of model (1) the backward orbit initiating P1
will reach a point P+

0 = ((1 − θ)ET, y+
0 ) ∈ N with

y+
0 > +∞, which is a contradiction. Thus, we have
P(+∞) = 0 and PM (+∞) = τ , and consequently,
there does exist a horizontal asymptote y = τ for PM ,
as shown in Fig. 1. This completes the proof. ��

It is worth mentioning that the unique fixed point of
Poincaré map PM corresponds to an order-1 periodic
solution or order-1 limit cycle of system (2), which we
address in more detail in the following subsection.

4.3 Global stability of boundary order-1 limit cycle
for τ = 0

Letting τ = 0 and considering the following subsystem

⎧
⎨

⎩

dx(t)

dt
= r x(t)

[

1 − x(t)

K

]

x < ET,

x(t+) = (1 − θ)x(t), x = ET.

(16)

Solving the first equation with initial condition
x(0+) = (1 − θ)ET, one yields

x(t) = K

1 +
[

K
(1−θ)ET − 1

]
exp(−r t)

.
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Assume that x(t) reaches the line L4 at time T , then
we have

ET = K

1 +
[

K
(1−θ)ET − 1

]
exp(−rT )

.

Further, solving the above equation with respect to T ,
one has

T = 1

r
ln

[
K − ET(1 − θ)

(1 − θ)(K − ET)

]

.

Therefore, model (16) has a periodic solution, denoted
by xT (t) and

xT (t) = K

1 +
[

K
(1−θ)ET − 1

]
exp(−r t)

with period T , which means that for model (2) there
exists a boundary order-1 limit cycle (xT (t), 0), and
we have following main results.

Theorem 2 For case (C1), if τ = 0, then the boundary
order-1 limit cycle (xT (t), 0) is globally asymptotically
stable.

Proof We first prove that the boundary order-1 limit
cycle (xT (t), 0) is locally stable. To do this, by using
Lemma 1, we denote φ(x, y) = x − ET, a(x, y) =
−θx and b(x, y) = τ . By simple calculations, we have

∂P

∂x
= r(K − 2x)

K
− βy

(1 + ωx)2
,
∂Q

∂y
= ηβx

1 + ωx
− δ,

∂a

∂x
= −θ,

∂a

∂y
= ∂b

∂x
= ∂b

∂y
= 0,

∂φ

∂x
= 1,

∂φ

∂y
= 0

and �1 = P+((1 − θ)ET, 0)/P(ET, 0) = ((1 − θ)

(K − (1 − θ)ET))/(K − ET). Thus,
∫ T

0

(
∂P

∂x
+ ∂Q

∂y

)

dt =
∫ T

0

(
r(K − 2xT (t))

K

+ ηβxT (t)

1 + ωxT (t)
− δ

)

dt

.= I1 + I2 + I3,

where the first term can be calculated as follows

I1 = ln

[
K − ET

(1 − θ)(K − ET (1 − θ))

]

,

the second term can be calculated as

I2 = − ηβK

(1 + ωK )r

ln

[
1 + ωET(1 − θ)

1 + ωET
· K − ET

K − ET(1 − θ)

]

and the third term is as follows

I3 = −δT = −δ

r
ln

[
K − ET(1 − θ)

(1 − θ)(K − ET)

]

.

Hence, we have

|μ2| = (1 − θ)(K − (1 − θ)ET)

K − ET
exp (I1 + I2 + I3)

= exp(AET)

with

AET = I2 + I3. (17)

Therefore, if |μ2| < 1 (i.e., AET < 0), then the
boundary order-1 limit cycle is orbitally asymptotically
stable and enjoys the property of asymptotic phase.

Now, we claim |μ2| < 1 when R0 ≤ 1. In fact,
it follows from [1 + ωET(1 − θ)][K − ET] − [1 +
ωET][K −ET(1− θ)] = −θET(1+ωK ) < 0 that we
have I2 > 0, and it is easy to see that I3 < 0 always
holds true. This indicates that the sign of AET could
vary which depends on the different parameter sets. It
follows from R0 ≤ 1 (i.e., ηβ − δω ≤ δ/K ) that we
have ηβK ≤ δ(1 + ωK ), and consequently, we have

I2+ I3 ≤−δ

r
ln

[
1+ωET(1−θ)

1+ωET
· K − ET

K − ET(1 − θ)

]

−δ

r
ln

[
K − ET(1 − θ)

(1 − θ)(K − ET)

]

= −δ

r
ln

[
1 + ωET(1 − θ)

(1 + ωET)(1 − θ)

]

< 0.

Finally, we show that the boundary order-1 limit
cycle (xT (t), 0) is globally attractive. To do this, we
assume, without loss of generality, that the impulsive
point series y+

k of any solution starting from the phase
set N satisfies y+

k ∈ [0, yθET] for all k ≥ 0. Since
R0 ≤ 1 and ET < K , we have (dy)/(dt) < 0
for x ≤ ET. Thus, we conclude that y+

k is a strictly
decreasing sequence with limk→∞ y+

k = y∗. More-
over, y∗ = 0 must hold; otherwise, it contradicts with
(dy)/(dt) < 0 for x ≤ ET. Therefore, the boundary
order-1 limit cycle (xT (t), 0) is globally attractive. This
completes the proof. ��

The stability of the boundary order-1 limit cycle
has been numerically shown in Fig. 2a–c for case (C1),
from which we can see that the natural enemy popula-
tion decreases and dies out eventually if the releasing
constant τ = 0, while the pest population will oscillate
periodically with a relative high frequency.
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Fig. 2 Stability of the boundary order-1 limit cycles for cases
(C1) and (C2). The parameter values are fixed as follows: a–c
r = 1.5, K = 100, β = 0.3, η = 0.75, ω = 0.3,ET = 50, δ =
0.8, θ = 0.3, τ = 0 for case (C1); d–i r = 1, K = 52, β =

0.19, η = 0.45, ω = 0.19,ET = 35, δ = 0.56 in d–f with
AET < 0 and δ = 0.36 in g–i with AET > 0, τ = 0 for case (C2)

4.4 Existence and stability of order-k periodic
solutions for τ > 0

Before we address the existence of order-k periodic
solution, we initially provide a generalized result for
the stability of the order-1 limit cycle (ξ(t), η(t)). To

do this, without loss of generality, we assume that the
period of the order-1 periodic solution is T , and we
have

(ξ(T ), η(T )) = (ET, y∗), (ξ(T+), η(T+))

= ((1 − θ)ET, y∗ + τ).
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Thus, �1 = P+((1−θ)ET,y∗+τ)

P(ET,y∗) and
∫ T

0

(
∂P

∂x
+ ∂Q

∂y

)

dt =
∫ T

0

(
r(K − 2ξ(t))

K

− βη(t)

(1 + ωξ(t))2
+ ηβξ(t)

1 + ωξ(t)
− δ

)

dt

.=
∫ T

0
G(t)dt.

Therefore, according to Lemma 1, we have the follow-
ing generalized result.

Theorem 3 For case (C1), the order-1 limit cycle
(ξ(t), η(t)) of model (2) is locally stable if |�1| exp(∫ T

0 G(t)dt
)

< 1.

For case (C1), there is an infinite sequence {y+
n }

for any y+
0 ∈ [0,+∞), where y+

n = Pn
M (y+

0 ). In the
following, we examine the convergence of {y+

n }, which
indeed refers to the stability of the order-k (k ≥ 1)
periodic solutions or limit cycles of system (2).

Theorem 4 If PM (yθET) < yθET, then the Poincaré
map PM has a unique fixed point y∗ (i.e., model (2)
exists a unique order-1 limit cycle), which is globally
asymptotically stable.

Proof To prove Theorem 4, we only need to show that
the unique fixed point of the Poincaré map PM is glob-
ally asymptotically stable. It follows from property (iv)
of the Poincaré map PM shown in Theorem 1 that there
exists a unique y∗ ∈ (0, yθET) such that PM (y∗) = y∗
if PM (yθET) < yθET.

For any y+
0 ∈ [0, y∗), according to the concavity

of the PM on [0, yθET), we have y∗ > PM (y+
0 ) > y+

0 ,
which indicates that Pn

M (y+
0 ) is monotonically increas-

ing as n increases and limn→+∞ Pn
M (y+

0 ) = y∗, as
shown in Fig. 1a.

For any y+
0 > y∗, we consider the following

two cases: (a) for all n, we have Pn
M (y+

0 ) > y∗.
It follows from PM (y+

0 ) < y+
0 that the series of

Pn
M (y+

0 ) ismonotonically decreasing asn increases and
limn→+∞ Pn

M (y+
0 ) = y∗. (b) Pn

M (y+
0 ) > y∗ does not

hold true for all n, and according to the property (v) of
the PM , we conclude that there exists a smallest posi-
tive integer n1 such that Pn1

M (y+
0 ) < y∗. Therefore, by

employing the same method as those in case (a), we
have that Pn1+ j

M (y+
0 ) is monotonically increasing as

j increases and lim j→+∞ Pn1+ j
M (y+

0 ) = y∗. Thus, the
results shown in Theorem 4 are true, and this completes
the proof. ��

Remark 1 By using samemethods as those in Theorem
4, we can prove that if PM (yθET) = yθET, then the
Poincaré map PM has a unique fixed point yθET (i.e.,
model (2) exists a unique order-1 limit cycle), which is
globally asymptotically stable.

If PM (yθET) > yθET, then the dynamics of the
Poincaré map PM and model (2) could be very com-
plex, as shown in Fig. 1. Therefore, for the existence
and stability of order-1 or order-2 limit cycles, we first
provide some sufficient or sufficient and necessary con-
ditions, and then, we address the complex dynamics.

Theorem 5 If PM (yθET) > yθET and P2
M (yθET) ≥

yθET, then the Poincaré map PM has a stable fixed
point or a stable two-point cycle. Consequently, there
is a stable order-1 or order-2 limit cycle for system (2),
as shown in Fig. 1b, c.

Proof We claim that for ((1 − θ)ET, y+
0 ) ∈ N with

y+
0 ∈ [0,+∞), there is an integer p such that
y+
p = P p

M (y+
0 ) ∈ [yθET, PM (yθET)]. In fact, for y+

0
∈ [0, yθET], according to the Theorem 1, we con-
clude that there is no fixed point for PM on inter-
val [0, yθET] and PM is monotonically increasing on
[0, yθET]. Therefore, there is an integer p such that
y+
p−1 < yθET and y+

p ≥ yθET. It follows that y+
p =

PM (y+
p−1) ≤ PM (yθET), which indicates that y+

p ∈
[yθET, PM (yθET)]. For y+

0 ∈ (yθET,+∞), since PM
is monotonically decreasing on (yθET,+∞), y+

1 =
PM (y+

0 ) ≤ PM (yθET) and further there is an integer
p ≥ 1 such that y+

p ∈ [yθET, PM (yθET)].
It follows from PM is monotonically decreasing on

[yθET, PM (yθET)] and P2
M is monotonically increasing

on [yθET, PM (yθET)] that
PM ([yθET, PM (yθET)])

= [P2
M (yθET), PM (yθET)] ⊂ [yθET, PM (yθET)].

Based on above relations, for any y+
0 ∈ [yθET,

PM (yθET)] without loss of generality, we assume that
y+
1 = PM (y+

0 ) �= y+
0 and y+

2 = P2
M (y+

0 ) �= y+
0 with

y+
n = Pn

M (y+
0 ), i.e., the solution of model (2) initiat-

ing from ((1−θ)ET, y+
0 ) is neither an order-1 periodic

solution nor an order-2 periodic solution. Thus,we only
need to consider the following four possible cases:

(i) PM (yθET) ≥ y+
1 + > y+

0 > y+
2 ≥ yθET. In this

case, we have y+
3 = PM (y+

2 ) > PM (y+
0 ) = y+

1
and further y+

4 = PM (y+
3 ) < PM (y+

1 ) = y+
2 , so
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y+
3 > y+

1 > y+
0 > y+

2 > y+
4 . By induction, we

obtain

PM (yθET) ≥ · · · > y+
2n+1 > y+

2n−1 > · · · >

y+
1 > y+

0 > y+
2 > · · · > y+

2n > y+
2n+2 > · · ·

≥ yθET. (18)

(ii) PM (yθET) ≥ y+
1 > y+

2 > y+
0 ≥ yθET. In this

scenario, we obtain that PM (y+
1 ) = y+

2 < y+
3 =

PM (y+
2 ) < PM (y+

0 ) = y+
1 and PM (y+

2 ) = y+
3 >

y+
4 = PM (y+

3 ) > PM (y+
1 ) = y+

2 , which results
in y+

1 > y+
3 > y+

4 > y+
2 > y+

0 . Again, by induc-
tion, we derive

PM (yθET) ≥ y+
1 > · · · > y+

2n−1 > y+
2n+1 > · · · >

y+
2n+2 > y+

2n > · · · > y+
2 > y+

0

≥ yθET. (19)

(iii) yθET ≤ y1 < y2 < y0 ≤ PM (yθET). The similar
process to (ii) yields

yθET ≤ y+
1 < · · · < y+

2n−1 < y+
2n+1 < · · · <

y+
2n+2 < y+

2n < · · · < y+
2 < y+

0

≤ PM (yθET). (20)

(iv) yθET ≤ y+
1 < y+

0 < y+
2 ≤ PM (yθET). Perform-

ing the similar discussion to (1) gives

yθET ≤ · · · < y+
2n+1 < y+

2n−1 < · · · >

y+
1 < y+

0 < y+
2 < · · · <

y+
2n < y+

2n+2 < · · · ≤ PM (yθET). (21)

For cases (ii) and (iii), there either exists a unique y∗
with y∗ ∈ [yθET, PM (yθET)] such that limn→∞ y2n+1

= limn→∞ y2n = y∗ or exists two distinct values
y∗
1 , y

∗
2 with y∗

1 , y
∗
2 ∈ [yθET, PM (yθET)] and y∗

1 �= y∗
2

such that limn→∞ y2n+1 = y∗
1 and limn→∞ y2n = y∗

2 .
While for cases (i) and (iv), only the late case can be
true. All those confirm that the results shown in Theo-
rem 5 hold true. ��

Although Theorem 5 provides a useful sufficient
condition for existence and stability of an order-1 or
order-2 limit cycle of model (2) when PM (yθET) >

yθET, this can not determine whether the order-1 limit
cycle is globally stable or not. So we present the fol-
lowing main results with respect to the global stability
of order-1 limit cycle [19–21].

Theorem 6 If PM (yθET) > yθET, then the sufficient
and necessary condition for the global stability of the
order-1 limit cycle of model (2) is P2

M (y+) > y+ for
all y+ ∈ [yθET, y∗), as shown in Fig. 1b.

Proof If PM (yθET) > yθET, then according to the The-
orem 1, we conclude that there exists a unique fixed
point y∗ of the Poincaré map such that it satisfies: (i)
PM (y+) > y+ for y+ ∈ [0, y∗) and PM (y+) < y+
for y+ ∈ (y∗,+∞); (ii) PM (y+) reaches its maximal
value at yθET with yθET ∈ (0, y∗); moreover, PM (y+)

is monotonically decreasing for y+ ∈ (yθET, y∗), as
shown in Fig. 1b, c.

Sufficient condition In order to prove the suffi-
cient condition of Theorem 6, based on above dis-
cussion, we consider the following three intervals:
(a) y+ ∈ [yθET, y∗); (b) y+ ∈ [0, yθET); and (c)
y+ ∈ (y∗,+∞).

For case (a), it follows from yθET ≤ y+ < y∗
and the monotonicity of PM in this interval that
we have PM (yθET) ≥ PM (y+) > y∗, and further
from P2

M (y+) > y+ for all y+ ∈ [yθET, y∗] that
y+ < P2

M (y+) < y∗. By induction, we conclude that

P2( j−1)
M < P2 j

M < y∗ for all j ≥ 1, which indi-

cates that P2 j
M (y+) is monotonically increasing with

lim j→+∞ P2 j
M (y+) = y∗ and the monotonicity of

P2 j−1
M (y+) follows as well.
For case (b), it is easy to know that PM is monoton-

ically increasing, and then, there exists a positive
integer p such that either P p

M (y+) ∈ [yθET, y∗) or
P p
M (y+) > y∗. It follows from case (a) that the

former case P p
M (y+) ∈ [yθET, y∗) indicates that

lim j→+∞ P p+2 j
M (y+) = y∗ monotonically. The late

case P p
M (y+) > y∗ implies that there exists a ȳ+ ∈

(yθET, y∗) such that P p
M (y+) = PM (ȳ+). Again it fol-

lows from case (a) that we have lim
j→+∞ P p+2 j

M (y+) =
y∗ monotonically.

For case (c), if for all j we have P j
M (y+) > y∗,

then it follows from PM (y+) < y+ that P j
M (y+) is

monotonically decreasing with lim
j→+∞ P j

M (y+) = y∗;

if there exists a positive integer p such that P p
M (y+) ∈

(0, yθET)(or [yθET, y∗)), then according to cases (a)
and (b) we see that the result is true.

Necessary condition Assume that y∗ is globally
stable and we prove P2

M (y+) > y+ for all y+ ∈
[yθET, y∗). Otherwise, there exists at least a ŷ+ ∈
[yθET, y∗) such that P2

M (ŷ+) < ŷ+. It follows from the
local stability of y∗ that there exists y̌+ ∈ (y∗−ε, y∗+
ε) (where ε is small enough) such that P2

M (y̌+) > y̌+.
Therefore, it follows from Theorem 1 that the Poincaré
map is continuous and there exists a y∗∗ which lies
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Fig. 3 Bifurcation
diagrams with respect to θ

under which the model does
not exist interior
equilibrium. The parameter
values are fixed as follows:
a, b r = 1.5, K = 100, β =
0.3, η = 0.75, ω =
0.3,ET = 30, δ = 0.8, τ =
15.5; c, d r = 1.5, K =
100, β = 0.3, η =
0.75, ω = 0.3,ET =
50, δ = 0.8, τ = 15.5
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between ŷ+ and y̌+ such that P2
M (y∗∗) = y∗∗, i.e., the

solution of model (2) initiating from ((1 − θ)ET, y∗∗)
is an order-2 periodic solution. This contradicts with
the global stability of y∗, i.e., the global stability of the
order-1 limit cycle. ��
Theorem 7 If PM (yθET) > yθET, P2

M (yθET) < y+
c ,

where y+
c = min{y+ : PM (y+) = yθET}, then there

exists a nontrivial order-3 periodic solution for model
(2), and so nontrivial order-k (k ≥ 3) periodic solution
exists for system (2).

Proof Since PM (yθET) > yθET, there is a unique
fixed point y∗ of the Poincaré map PM satisfying
y∗ ∈ (yθET, PM (yθET)).

Let H(y) = P3
M (y) − y, and then, H(y) is contin-

uous on [0,+∞). It follows from

P3
M (y+

c ) = P2
M (yθET) < y+

c ⇒ H(y+
c ) < 0 and

P3
M (0) = P2

M (τ ) > 0 ⇒ H(0) > 0

that there is a number ỹ+ ∈ (0, y+
c ) such that

P3
M (ỹ+) = ỹ+. It follows from y+

c < yθET, y∗ >

yθET and the uniqueness of y∗ that model (2) exists
a nontrivial order-3 periodic solution initiating from
((1− θ)ET, ỹ+). Further, it follows from Sarkovskii’s
theorem [15] that any order-k periodic solution exists
for system (2). This completes the proof.

As an example, we fixed all parameter values as
those shown in Fig. 3, from which we can see that the

parameter set satisfies case (C1), i.e., model (2) does
not exist interior equilibrium E∗. The bifurcation dia-
grams with respect to θ (0.1 ≤ θ ≤ 0.95) show that
the dynamic behavior of model (2) is very complex.
In particular, the order-3 periodic solution exists for a
wide range of θ , as shown in Fig. 3a, b), which fur-
ther confirms that the results shown in Theorem 7 are
true. Comparing with both bifurcation diagrams with
different threshold value ET, we conclude that varying
ET could dramatically change the dynamics of model
(2), and it is interesting to note that the period doubling
and period halving bifurcations occur as ET= 50, as
shown in Fig. 3c, d. The islands in themiddle of Fig. 3c,
d indicate that the densities of both pest and natural
enemy populations reveal complex patterns when the
instantaneous killing rate θ lies in the interval around
(0.6, 0.7).

In the following, we provide a sufficient condition
for the existence and global stability of an order-1 limit
cycle of model (2) based on all parameters rather than
using the Poincaré map PM .

Theorem 8 There exists a thresholdωc which depends
on the other parameters of model (2) such that the
unique order-1 limit cycle of model (2) is globally sta-
ble for ω > ωc and fixed all other parameters.

Proof Note that we focus on the nonexistence of
the interior equilibrium in this section, i.e., R0 =
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(K [ηβ − δω])/δ ≤ 1. Therefore, if we consider the R0

as a function of ω, then there exists a threshold value
ωc = (ηβ)/δ such that R0 < 1 and ηβ −δω < 0 for all
ω > ωc. In the interior of Ω , we have P(x, y) > 0 and
Q(x, y) < 0 due to the nonexistence of equilibrium.
Thus, we have following inequality within Ω

Q(x, y)

P(x, y)
<

Q(x, y)

r x
(
1 − x

K

) . (22)

Considering the following Cauchy problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dY

dx
=

ηβxY

1 + ωx
− δY

rx(1 − x

K
)

=̇G(x,Y ),

Y ((1 − θ)ET) = yθET

(23)

and solving above equation for x ∈ [(1 − θ)ET,ET],
one yields

Y (x) = yθET

(
(1 − θ)ET

x

)δ

r

(
K − x

K − (1 − θ)ET

)δωK − ηβK + δ

r(1 + ωK ) ·

(
1 + ωx

1 + ω(1 − θ)ET

) ηβK

r(1 + ωK ) , (24)

which indicates that (denote YET = Y (ET) and θ1 =
1 − θ )

YET = yθET

(
θ1

1

)δ

r
(

K − ET

K − θ1ET

)δωK − ηβK + δ

r(1 + ωK )

(
1 + ωET

1 + ωθ1ET

) ηβK

r(1 + ωK )
. (25)

Furthermore, we have

lim
ω→+∞

(
θ1

1

)δ

r
(

K − ET

K − θ1ET

)δωK − ηβK + δ

r(1 + ωK )

(
1 + ωET

1 + ωθ1ET

) ηβK

r(1 + ωK )

=
(

θ1(K − ET)

K − θ1ET

)δ

r < 1

and limω→+∞ yθET = +∞.
All those confirm that the difference yθET − YET

satisfies

lim
ω→+∞ [yθET − YET] =

⎡

⎢
⎣1 −

(
θ1(K − ET)

K − θ1ET

)δ

r

⎤

⎥
⎦

lim
ω→+∞ yθET = +∞. (26)

Moreover, it follows from the comparison theorem of
scalar differential equation and the theorem of Cauchy
and Lipschitz with parameters that

yθET − yET > yθET − YET (27)

and PM (yθET) = yET + τ . Thus, according to the
limitation (26), we conclude that for the fixed para-
meter set there exists a threshold value ωc = (ηβ)/δ

which depends on the parameters ofmodel (2) such that
yET + τ < yθET, i.e., we have PM (yθET) < yθET for
all ω > ωc. Further, it follows from Theorem 4 that the
fixed point y∗ of the Poincaré map PM is globally sta-
ble, and consequently, the unique order-1 limit cycle of
system (2) is globally stable. This completes the proof.

5 Complexity of definition domain of map PM for
existence of E∗

For case (C2), we see that the equilibrium E∗ exists and
it is an unstable node or focus. In this case, the definition
domain of PM could be very complex, which depends
on the relations among the positions of (1− θ)ET,ET,
xΓ1 and xΓ2 . Thus, we investigate the dynamics of
model (2) based on those relations.

Wefirst assume that (1−θ)ET ≤ xΓ1 and ET < xΓ2 ,
then any solution starting from ((1 − θ)ET, y+

0 ) with
y+
0 ≥ 0 will not only experience infinite many impul-
sive effects, but also the Poincaré map PM can be well
defined which satisfies all properties listed in Theorem
1. Those indicate that the existence and stability of the
order-k periodic solutions can be discussed similarly.
Thus, we only provide the different main result with
regard to the boundary order-1 limit cycle in the fol-
lowing for this subcase.

Theorem 9 For case (C2), let τ = 0 and (1−θ)ET ≤
xΓ1 and ET < xΓ2 . The boundary order-1 limit cycle
(xT (t), 0) is locally asymptotically stable provided
AET < 0; the boundary order-1 limit cycle (xT (t), 0)
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is unstable and model rm (2) exists an interior order-1
periodic solution if AET > 0.

Proof It follows from the proof of Theorem 2 that
the boundary order-1 limit cycle (xT (t), 0) is locally
asymptotically stable provided AET < 0, and it is
unstable if AET > 0.

To showmodel (2) exists an interior order-1 periodic
solution when AET > 0, we first show P ′

M (0) > 1. It
follows from (11) and (14) that (∂y(x, S))/(∂S) > 0
and

P ′(0) = ∂y(ET, 0)

∂S

= exp

(∫ ET

(1−θ)ET

∂

∂y

(
Q(z, y(z, 0))

P(z, y(z, 0))

)

dz

)

= exp

(∫ ET

(1−θ)ET

(
ηβz − δ(1 + ωz)

r z(1 − z/K )(1 + ωz)

)

dz

)

= exp

((
K (ηβ − δω)

r(1 + Kω)
ln

1 + ωz

1 − z/K

)∣
∣
∣
∣

ET

(1−θ)ET

−
(

ln z− 1

1+Kω
ln(1−z/K )− Kω

1+ωz

)∣
∣
∣
∣

ET

(1−θ)ET

))

= exp

(

− ηβK

(1 + ωK )r
ln

[
1 + ωET(1 − θ)

1 + ωET

· K − ET

K − ET(1 − θ)

]

− δ

r
ln

[
K − ET(1 − θ)

(1 − θ)(K − ET)

])

= exp(I2 + I3) = exp(AET). (28)

This indicates that P ′(0) = P ′
M (0) > 1, and it

follows from the properties of the Poincaré map PM
shown in Theorem 1 that there must exist an intersec-
tion point between PM and identical map, as shown in
Fig. 1. Thus, model (2) exists an interior order-1 peri-
odic solution provided AET > 0. This completes the
proof.

Taking the parameter values as those shown in Fig. 2
for case (C2), we can see that the boundary order-1 limit
cycle is stable if AET < 0, and it becomes unstable once
AET > 0 and an interior periodic solution appears in
this case, as shown in Fig. 2g–i).

Now, we assume that xΓ1 < (1 − θ)ET < ET <

xΓ2 , then the properties of the Poincaré map could be
very complex, i.e., the definition domain of the map
PM has a complex shape with discontinuity points. For
convenience, we assume, without loss of generality,
that the unstable equilibrium E∗ ofmodel (1) is a focus,
i.e., we have � = ((μC1)/ξ)2 − 4μC2 < 0.

If we fixed all parameter values as those shown in
Fig. 4, then the Poincaré map PM has six disconti-
nuity points at y+

k ≈ 11.28, 14.50, 15.38, 15.7416.15
and 16.93, as shown in Fig. 4a which are indicated
as Di , i = 1, 2, . . . 6. Meanwhile, it has six fixed
points with y∗ ≈ 11.48, 13.42, 15.22, 15.81, 16.24
and 17.00, and consequently, model (2) exists six
order-1 periodic solutions which lie in the interior
of the unique limit cycle of model (1), as shown in
Fig. 4b. Furthermore, numerical simulations indicate
that only the order-1 periodic solution initiating from
((1 − θ)ET, 11.48) (i.e., the red one) is stable and all
others are unstable. Therefore, compared with themain
results for ODE model (1), the interesting question is
how to determine the uniqueness of stable order-1 peri-
odic solution or limit cycle of model (2), which could
correspond to the uniqueness of the limit cycle ofmodel
(1).

We note that the number of discontinuity points of
the Poincaré map PM for xΓ1 < (1 − θ)ET < ET <

xΓ2 depends on the number of intersection points of
spiral orbits initiating from the line L3 with the phase
set N before it reaches at the line L4, as shown in
Fig. 4a. At each of these intersection points, the map
PM is undefined and there exists a jump of the values
of the map PM , as shown in Fig. 5 for different θ and
the bifurcation diagrams with respect to θ shown in
Fig. 6. Figure 5 clearly shows the complexity of the
definition domain of the Poincaré map PM , at which
we can see that the numbers of discontinuity points and
fixed points depend on the parameter θ , i.e., depend on
the positions of reset line L3.

The bifurcation diagrams shown in Fig. 6 show how
the numbers of discontinuity points and fixed points of
map PM change as the parameter θ varies. There exists
only one discontinuity point and does not has any fixed
point once θ is small enough, for example, Fig. 5f. Two
fixed points emerge as θ increases, and then, one more
fixed point appears once the θ reaches another thresh-
old valuewhich corresponds to one discontinuity point.
After that the numbers of discontinuity points and fixed
points of map PM increase dramatically as θ increases.
In particular, it is interesting to note that once the reset
line L3 coincideswith the unstable equilibrium E∗, i.e.,
(1 − θ)ET = xe, then the E∗ could be considered as a
singularity point of model (2). If so the negative orbit
spirals around E∗ and converges to it, there exists an
infinite countable sequence of intersection points in the
reset line L3. This indicates that the Poincaré map PM
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Fig. 4 Discontinuity of
Poincaré map and multiple
fixed points with parameter
set r = 1, K = 52, β =
0.19, η = 0.45, ω =
0.19, δ = 0.36, θ =
0.42, τ = 5, ET = 35. In
this case, the Poincaré map
has six discontinuity points
and six fixed points, and
consequently, model (2)
exists six order-1 limit
cycles
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Fig. 5 Complex shapes of the Poincaré map PM with different θ . The other parameter values are fixed as: r = 1, K = 52, β =
0.19, η = 0.45, ω = 0.19, δ = 0.36, τ = 5,ET = 35. a θ = 0.8, b θ = 0.6, c θ = 0.52, d θ = 0.48, e θ = 0.3, f θ = 0.1
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Fig. 6 Bifurcation
diagrams of discontinuity
points and values of y+

0 for
PM with respect to
parameter θ in a, and
bifurcation diagram of
number of fixed points and
values of y∗ for PM with
respect to parameter θ in b.
The other parameter values
are fixed as: r = 1, K =
52, β = 0.19, η =
0.45, ω = 0.19, δ =
0.36, τ = 5,ET = 35
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for xΓ1 < (1−θ)ET < ET < xΓ2 with (1−θ)ET = xe
exists an infinite countable discontinuity points and the
fixed points could also be infinite, as shown in Fig. 6.
Consequently,model (2)mayhave infinite order-1 peri-
odic solutions or limit cycles. Once the θ increases and
exceeds another threshold value such as θ = 0.8 shown
in Fig. 5a, then the map PM becomes continuous and
exists a uniqueness fixed point.

The period-incrementing or period-adding cascade
of bifurcation scenarios has been recently studied, and
such behavior has been observed with complex neu-
ron models [14]. Here, if we choose ω as a bifurca-
tion parameter and fixed all others as those in Fig. 7,
then a period-adding bifurcation interspersedwithwin-
dows of chaos has been observed. Thus, model (2)
presents sharp transitions from chaotic windows to
order-2 periodic solutions via a period halving bifurca-
tion and then from order-k periodic solutions to order-
(k + 1) periodic solutions for k ≥ 2 via period-adding
bifurcations. It is interesting to note that the order-k
and order-(k + 1) periodic solutions for k ≥ 2 can
coexist [17]. For examples, in Fig. 8, we show that an
order-2 and an order-3, an order-3 and an order-4, an
order-4 and an order-5 periodic solutions can coexist.
This indicates that the outbreak patterns and frequen-
cies of the pest population depend on the initial condi-
tions.

Now, we assume that ET ≥ xΓ2 , then there exists a
trajectory of model (1) which tangents to the impulsive
setM at point (ET, yET) in the isocline L1, denoted by

ΓT . If we denote the smaller intersection point between
the trajectory ΓT and the isocline L1 as xmin, then we
have following main results.

Lemma 2 If (1 − θ)ET ≤ xmin, then the definition
domain of PM is [0,+∞), and any trajectory initiating
from N satisfies M+(z+k ) �= ∅ for any k ≥ 1; If (1 −
θ)ET > xmin, then the line L3 intersects the orbitΓT on
a bounded interval (ymin, ymax) (as shown in Fig. 9a),
from which we have M+(z+0 ) = ∅, and the definition
domain of the PM is the union of two intervals, i.e.,

YD = [0, ymin] ∪ [ymax,+∞)
.= YD1 ∪ YD2

with PM (YD2) ⊂ PM (YD1).

Proof If (1−θ)ET ≤ xmin, then the results are obvious.
If (1 − θ)ET > xmin, then it follows from the prop-
erties of the trajectory ΓT that the definition domain
is defined by YD . Moreover, any orbit initiating from
((1 − θ)ET, y+

0 ) with y+
0 ∈ YD2 will cross the line L3

on the interval YD1 after one time impulsive effect, and
thus, we have PM (YD2) ⊂ PM (YD1). ��
Theorem 10 If PM (ymin) ∈ (ymin, ymax), then any
trajectory of model (2) initiating from z+0 = ((1 −
θ)ET, y+

0 ) either exists a positive integer n such that z+k
is defined for any k = 1, 2, . . . , n with M+(z+k ) �= ∅
for k < n and M+(z+n ) = ∅ orM+(z+0 ) = ∅.
Proof It follows from PM (ymin) ∈ (ymin, ymax) thatwe
have PM (ymin) > ymin and PM (ymin) < ymax, and we
show that any solution starting from ((1 − θ)ET, y+

0 )
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Fig. 7 Bifurcation
diagrams with respect to ω

under which model (1)
could exist a stable limit
cycle Γ(1). The parameter
values are fixed as follows:
a, b r = 1.5, K = 100, β =
0.2, η = 0.9,ET = 40, δ =
0.2, θ = 0.9, τ = 4.5; c, d
r = 1.5, K = 100, β =
0.2, η = 0.9,ET = 80, δ =
0.2, θ = 0.9, τ = 4.5
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with y+
0 ∈ YD1 will reach the interval (ymin, ymax) after

finitely many impulsive effects. In fact, by using the
same methods as those in proof of Theorem 1, we can
show that the Poincaré map on the interval YD1 is con-
tinuous and convex, and this indicates that PM does
not exist any fixed point on the interval YD1 due to
PM (ymin) > ymin, as shown in Fig. 9b for τ = 5. All
those confirm that there exists a positive integer j such
that y+

j−1 is monotonically increasing for all y+
k ∈ YD1

with k < j and y+
j ∈ (ymin, ymax). Moreover, for any

initial y+
0 ∈ YD2 , we have PM (y+

0 ) ⊂ PM (YD1). Based
on above proof, we conclude that the results of Theo-
rem 10 are true.

Theorem 11 If PM (ymin) < ymin, then any trajectory
of model (2) starting from YD experiences infinitely
many impulsive effects, and there exists a stable order-
1 limit cycle (Fig. 9b for τ = 0.8); if PM (ymin) > ymax,
then the trajectory starting from YD experiences either
finitely or infinitely many impulsive effects, depending
on the initial conditions, and also there exists a unique
fixed point y∗ ∈ YD2 (Fig. 9b for τ = 8).

Proof If PM (ymin) < ymin, then we conclude that any
trajectory starting from ((1−θ)ET, y+

0 )with y+
0 ∈ YD

will experience infinitely many impulsive effects and
satisfies y+

k ∈ YD1 for all k ≥ 1, i.e., M+(z+k ) �= ∅
for any k ≥ 1. There are two possibilities: y+

k ∈ YD1

is either monotonically increasing or monotonically
decreasing, and consequently, we have limk→∞ y+

k =
y∗ with y∗ ∈ YD1 and PM (y∗) = y∗, as shown in
Fig. 9b for τ = 0.8. Thus, model (2) exists a stable
order-1 limit cycle.

Assume that PM (ymin) > ymax, we consider the fol-
lowing two cases: (i) τ < ymax and (ii) τ ≥ ymax.
For the former case, we claim that there exists a crit-
ical value yc satisfied PM (yc) = ymax such that all
the trajectory with initial condition ((1 − θ)ET, y+

0 )

with y+
0 ∈ [0, yc) (or (yc1 , yc) with 0 < yc1 <

yc) ⊂ YD1 will be free from impulsive effects after
one impulse, M+(z+0 ) �= ∅ and M+(z+1 ) = ∅. This
indicates that the behavior of model (2) depends on
the initial condition and that the shape of the Poincaré
map could be very complex. For the later case, it is
easy to see that all the trajectory with initial condi-
tion ((1 − θ)ET, y+

0 ) with y+
0 ∈ YD will experience

infinitely many impulses. Finally, since the Poincaré
map on the interval YD1 is continuous and convex, the
unique fixed point y∗ exists which belongs to YD2 due
to PM (ymin) > ymax, as shown in Fig. 9b for τ = 8.
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Fig. 8 Multiple attractors coexist with different ω, here order-
2 and order-3, order-3 and order-4, order-4 and order-5 coexis-
tences are shown in a–f, respectively. The other parameter values

are same as those shown in Fig. 7. The initial conditions for the
first row are (1−θ)ET, 1), for the second row are (1−θ)ET, 0.7)

6 Discussion

It follows from introduction and main results obtained
in present work that the models with state-dependent
feedback control cannot only provide natural descrip-
tions of real-life problems, but can also result in the rich
dynamics [25,34,40]. In present work, we have devel-
oped novel analytical techniques and numerical meth-
ods to reveal the new dynamics of proposed Holling
II predator–prey model with state-dependent feedback
control.

Compared with the previous studies mentioned in
the introduction, we can see that the rich dynamics
appear when model (2) does not exist the interior equi-
librium E∗, which have not been addressed in previ-
ous studies [18,25,28,29,34,40,52]. Moreover, this is
a reasonable assumption, i.e., the density of the pest
population could reach its carrying capacity if there is

no any control actions. For this scenario, the Poincaré
map in the phase set is continuously differentiable, and
its monotonicity and convexity are also well defined.
Those allow us to provide sharp threshold conditions
for the global stability of the order-1 limit cycle and
to address the dynamic complexity of the proposed
model such as the existence of order-3 limit cycles or
periodic solutions. This confirms that model (2) exists
any order-k periodic solutions under certain conditions.
Further, in Theorem 8 we have provided the sufficient
conditions for global stability of the order-1 limit cycle
in whole parameter space. In particular, the threshold
value for the parameter ω which guarantees the exis-
tence and global stability of an order-1 limit cycle has
been obtained.

Once model (1) has an interior steady state which
lies in the first quadrant; then, the dynamics of model
(2) depends on a number of facts including the stability
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Fig. 9 Illustrations of PM
with respect to parameter θ

for (1 − θ)ET > xmin and
ET ≥ xΓ2 . The other
parameter values are fixed
as: r = 1, K = 52, β =
0.19, η = 0.45, ω =
0.19, δ = 0.36,ET = 48
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Fig. 10 Bifurcation
diagrams with respect to θ

under which model (1)
exists a stable interior node
E∗. The parameter values
are fixed as follows: a, b
r = 1.2, K = 100, β =
0.185, η = 0.7, ω =
0.15,ET = 50, δ =
0.8, τ = 15.5; c, d
r = 1.2, K = 100, β =
0.185, η = 0.7,
ω = 0.15,ET = 68,
δ = 0.8, τ = 15.5
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of E∗ and its type (node or focus), the positions of the
two lines L3 and L4 related to the limit cycle of model
(1). To reveal the interesting dynamics of the proposed
model, we first provide the threshold conditions for the
local stability of boundary order-1 limit cycle and the
existence of an interior order-1 periodic solution when
(1 − θ)ET ≤ xΓ1 and ET < xΓ2 , and then, we mainly
focus on the case xΓ1 < (1 − θ)ET < ET < xΓ2 for
model (2) with an unstable focus E∗.

The definition domain of the Poincaré map PM is
quite complex for this case, which could have a finite
number of discontinuous points or an infinite count-
able discontinuity points. Furthermore, the Poincaré
map may have multiple fixed points even an infinite
countable fixed points, and consequently, model (2)
exists multiple order-1 periodic solutions, as shown
in Figs. 4 and 7. Moreover, the period-incrementing
or period-adding cascade of bifurcation scenarios has
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been observed if we choose ω as a bifurcation para-
meter, see Fig. 7 for more details. The coexistence of
the order-k and order-(k + 1) periodic solutions for
k ≥ 2 indicates that the outbreak patterns and fre-
quencies of the pest population depend on the initial
conditions.

Note that any solution initiating from the phase set
experiences infinitely many pulse actions in this case.
However, our results reveal that we cannot simply
show the existence of an order-1 limit cycle or peri-
odic solution by using the successor function or the
Poincaré map [18,25,33,44,45], unless we can prove
the continuity of the successor function or the Poincaré
map, and obviously, this itself is a highly nontrivial
task.

For the case ET ≥ xΓ2 , the Poincaré map PM could
be defined on the two subintervals. This indicates that
there are three possibilities for any solution initiating
from the basic phase set: (a) be free from reset pulses;
(b) experiences finite many impulses and (c) experi-
ences infinite many pulse actions. Those confirm that
the dynamics of model (2) strictly depend on the initial
conditions. We need to emphasize here is that model
(2) also has complex dynamics when the equilibrium
E∗ of model (1) is a stable node or focus, as shown in
Fig. 10, and as mentioned before, this special case has
been investigated by Liu et al. [25].

The innovative analytical techniques developed in
this paper could not only be easily employed to study
more generalized models with state-dependent feed-
back control [18,25,33,44,45], but also can help us to
further understand the qualitative behavior of the pla-
nar impulsive semi-dynamical system and facilitate us
to address more comprehensive issues. For example,
what are the relationships between the uniqueness of
the limit cycle of model (1) and multiple order-1 limit
cycles of model (2)?

Moreover, our results have provided some funda-
mental theoretical conclusions that could be of applied
importance to the pest control. For instance, under some
conditions, any solution of our main model (2) will
jump into a positive invariant set and then free from
impulsive effects, which means that finite many impul-
sive actions can successfully control the pest population
such that its density is below the previously chosen ET.
The stability of an order-1 or order-2 limit cycle implies
that the periodic interventions with fixed period can
maintain the density of the pest population below the
ET.
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