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Abstract The spatial, temporal, and spatiotempo-
ral dynamics of a reaction–diffusion predator–prey
system with ratio-dependent Holling type III func-
tional response, under homogeneous Neumann bound-
ary conditions, are studied in this paper. Preliminary
analysis on the local asymptotic stability and Hopf
bifurcation of the spatially homogeneous model based
on ordinary differential equation is presented. For the
reaction–diffusion model, firstly the parameter regions
for the stability or instability of the unique constant
steady state are discussed. Then it is shown that Tur-
ing (diffusion-driven) instability occurs, which induces
spatial inhomogeneous patterns. Next, it is proved that
the model exhibits Hopf bifurcation, which produces
temporal inhomogeneous patterns. Finally, the exis-
tence and nonexistence of nonconstant steady- state
solutions are established by bifurcation method and
energy method, respectively. Numerical simulations
are presented to verify and illustrate the theoretical
results.
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1 Introduction

Pattern formation is an important research aspect of
modern science and technology. It can be used to
describe the structure changes of interacting species or
reactants of ecology, chemical reaction, and gene for-
mation in nature. Spatial, temporal, and spatiotemporal
patterns could occur in the reaction–diffusion models
via Turing instability, Hopf bifurcation, and noncon-
stant positive solutions.

Turing instability is an important way to study spa-
tial inhomogeneous patterns. In the early 1950s, the
British mathematician Alan M. Turing [42] proposed a
model that accounts for pattern formation in morpho-
genesis. Turing showed mathematically that a system
of coupled reaction–diffusion equations could give rise
to spatial concentration patterns of a fixed characteris-
tic length from an arbitrary initial configuration due
to so-called diffusion-driven instability, that is, diffu-
sion could destabilize an otherwise stable equilibrium
of the reaction–diffusion system and lead to nonuni-
form spatial patterns. Turing’s analysis stimulated con-
siderable theoretical research on mathematical mod-
els of pattern formation, and a great deal of research
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1536 J. Zhou

have been devoted to the study of Turing instability
in chemical and biology contexts (see [4,10,17,43,57]
for Brusselator model; [6,12,24,48] for Gray–Scott
model; [15,16,27,53,55] for Lengyel–Epstein model;
[32,52,56] for Oregonator model, [14,36,47,49] for
Schnakenbergmodel, [5,29,33,45] for Sel’klovmodel,
[18,19,23,37,51] for predator–prey model).

Hopf bifurcation is used to study the temporal peri-
odic patterns. In [54], the authors gave a detailed Hopf
bifurcation analysis for both the ODE and PDE mod-
els, deriving a formula for determining the direction of
the Hopf bifurcation and the stability of the bifurcat-
ing spatially homogeneous periodic solutions (see also
[1,11,21,34,35,41,46] for the studies of Hopf bifurca-
tion in diffusive predator–prey models).

In spatially inhomogeneous case, the existence of
a nonconstant time-independent positive solution, also
called stationary patterns, is an indication of the rich-
ness of the corresponding partial differential equa-
tion dynamics. In recent years, stationary patterns
induced by diffusion have been studied extensively, and
many important phenomena have been observed (see
[3,7,8,20,22,26,30] and references therein).

In this paper, we investigate the spatial, temporal,
and spatiotemporal patterns of the following diffusive
predator–preymodelwith ratio-dependentHolling type
III functional response

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1Δu=u(1 − u)−α(m + 1)u2v

u2 + mv2
, x ∈ Ω, t > 0,

∂v

∂t
− d2Δv = λv

(
1 − v

u

)
, x ∈ Ω, t > 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t>0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1)

To study the stationary patterns, we also consider the
steady-state equations associated with (1):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− d1Δu = u(1 − u) − α(m + 1)u2v

u2 + mv2
, x ∈ Ω,

− d2Δv = λv
(
1 − v

u

)
, x ∈ Ω,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω.

(2)

Here, u and v stand for the densities of the prey and
predator; Ω is a bounded domain of RN , with smooth
boundary ∂Ω,Δ is the Laplace operator with respect
to the spatial variable x = (x1, . . . , xN ), ν is the
unit outward normal on ∂Ω . The homogeneous Neu-
mann boundary conditions indicate that the predator–
prey system is self-contained with zero population flux
across the boundary. The positive constants d1 and d2
are diffusion coefficients, and the initial data u0(x) and
v0(x) are nonnegative functions. The parameters m, λ

are positive constants and 0 < α < 1. Then it is easy to
see that (2) possesses a unique positive constant steady-
state solution

(u, v) = (1 − α, 1 − α). (3)

Problem (1) was studied in [39] recently, and the
uniform persistence of the solution semiflows, the exis-
tence of global attractors, local and global stability of
the positive constant steady state were derived. On the
other hand, the understanding of patterns and mech-
anisms of spatial dispersal of interacting species is
an issue of significant current interest in conserva-
tion biology and ecology, and biochemical reactions
[2,9,25,28,38].

The goal of this paper was to give a comprehensive
mathematical study of the model (1). In particular, we
are interested in the spatiotemporal pattern formation,
Turing instability, bifurcation, and the effect of system
parameters and diffusion coefficients on the dynamics
of the solutions of (1).

The organization of the remaining part of this paper
is as follows. In Sect. 2, we investigate the asymptotical
behavior of the positive equilibrium (1−α, 1−α) and
occurrence of Hopf bifurcation of the local system (4)
of (1). In Sect. 3, we firstly consider the asymptotical
behavior and Turing instability of the positive equilib-
rium (1 − α, 1 − α) for the reaction–diffusion system
(1), and thenwe study the existence ofHopf bifurcation
and the stability of the bifurcating periodic solution. In
Sect. s4, we consider the existence and nonexistence of
positive solutions for problem (2) by bifurcation the-
ory and energy method. Throughout this paper, N is
the set of natural numbers and N0 = N ∪ {0}. The
eigenvalues of the operator −Δ with homogeneous
Neumann boundary condition in Ω are denoted by
0 = μ0 < μ1 ≤ μ2 ≤ . . . ≤ μn ≤ . . ., and the
eigenfunction corresponding to μn is φn(x).
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2 Analysis of the local system

For the diffusive predator–preymodel (1), the local sys-
tem is an ordinary differential equation in the form of
⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= u(1 − u) − α(m + 1)u2v

u2 + mv2
, t > 0,

dv

dt
= λv

(
1 − v

u

)
, t > 0.

(4)

By (3), (1−α, 1−α) is the unique positive equilibrium
of (4). We consider the stability of the constant equi-
librium (1− α, 1− α) with respect to problem (4) and
study the existence of periodic solutions of problem (4)
by analyzing the Hopf bifurcations from the constant
equilibrium (1 − α, 1 − α).

2.1 Stability analysis

The Jacobian matrix of system (4) at (1 − α, 1 − α) is

L0(λ) =
⎛

⎝
2α

m + 1
− 1

(m − 1)α

m + 1
λ −λ

⎞

⎠ . (5)

The characteristic equation of L0(λ) is

ξ2 − T (λ)ξ + D(λ) = 0, (6)

where

T (λ) = 2α

m + 1
− 1 − λ, D(λ) = λ(1 − α) > 0.

Then the equilibrium (1−α, 1−α) is locally asymptot-
ically stable if T (λ) < 0, and it is unstable if T (λ) > 0.
Thus, we have the following conclusions

Theorem 1 The unique positive equilibrium (1 −
α, 1 − α) of the local system (4) is locally asymptoti-
cally stable if α ≤ m+1

2 or α > m+1
2 and λ > 2α

m+1 −1,

and it is unstable if α > m+1
2 and λ < 2α

m+1 − 1.

2.2 Hopf bifurcation

In this part, we analyze the Hopf bifurcation occurring
at (1−α, 1−α)under the assumptionα > m+1

2 .Denote

λ0 := 2α

m + 1
− 1. (7)

Then L0(λ) has a pair of purely imaginary eigenvalues
ξ = ±√

λ0(1 − α) when λ = λ0. Therefore, accord-
ing to Poincaré–Andronov–Hopf Bifurcation Theo-
rem [50, Theorem3.1.3], system (4) has a small ampli-
tude nonconstant periodic solution bifurcated from the
interior equilibrium (1 − α, 1 − α) when λ crosses
through λ0 if the transversal condition is satisfied.

Let ξ(λ) = β(λ) ± iw(λ) be the roots of (6). Then

β(λ) = 1

2
T (λ) = α

m + 1
− 1

2
(1 + λ),

w(λ) = 1

2

√
4D(λ) − T (λ)2

=
√

λ(1 − α) −
(

α

m + 1
− 1

2
(1 + λ)

)2

.

Hence, β(λ0) = 0 and β ′(λ0) = − 1
2 < 0. This shows

that the transversal condition holds. Thus, (4) under-
goes a Hopf bifurcation at (1 − α, 1 − α) as λ passes
through the λ0.

However, the detailed property of the Hopf bifur-
cation needs further analysis of the normal form of
the system. To this end, we translate the equilibrium
(1 − α, 1 − α) to the origin by the translation ũ =
u − (1 − α), ṽ = v − (1 − α). For the sake of conve-
nience, we still denote ũ and ṽ by u and v, respectively.
Thus, the local system (4) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
= (2α − 1)u − u2 + α(1 − α)

− α(m+1)(u+1 − α)2(v + 1 − α)

(u+1 − α)2 + m(v+1 − α)2
, t>0,

dv

dt
= λ(v+1 − α)

(

1 − v+1 − α

u +1− α

)

, t>0.

(8)

Rewrite (8) to

⎛

⎜
⎝

du

dt
dv

dt

⎞

⎟
⎠ = L0(λ)

(
u
v

)

+
(

f (u, v, λ)

g(u, v, λ)

)

, (9)

where

f (u, v, λ) = a1u
2 + a2uv + a3v

2 + a4u
3

+ a5u
2v + a6v

3 + · · ·
g(u, v, λ) = b1u

2 + b2uv + b3v
2 + b4u

3

+ b5u
2v + b6v

3 + · · ·
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and

a1 = αm(3 − m)

(m + 1)2(1 − α)
− 1,

a2 = −a3 = αm(m − 3)

(m + 1)2(1 − α)
,

a4 = 4αm(m − 1)

(m + 1)3(1 − α)2
, a5 = αm(m2 − 14m + 9)

3(m + 1)3(1 − α)2
,

a6 = αm(m2 − 6m + 1)

(m + 1)3(1 − α)2
,

b1 = b3 = −b2 = − λ

1 − α
, b4 = λ

(1 − α)2
,

b5 = − 2λ

3(1 − α)2
, b6 = 0.

Set the matrix

P =
(

1 0
N (λ) M(λ)

)

where

N (λ) = 2α+(m+1)(λ−1)

2α(1−m)
, M(λ) = (m+1)w(λ)

α(1−m)
.

Clearly,

P−1 =
⎛

⎝
1 0

− N (λ)

M(λ)

1

M(λ)

⎞

⎠ ,

and when λ = λ0,

N0 := N (λ0) = 2mα + (m + 1)(1 − m)

α(m + 1)(1 − m)
,

M0 := M(λ0) = m + 1

α(1 − m)

√
λ0(1 − α).

By the transformation (u, v)T = P(x, y)T , system (8)
becomes

⎛

⎜
⎝

dx

dt
dy

dt

⎞

⎟
⎠ = Φ(λ)

(
x
y

)

+
(

f̃ (x, y, λ)

g̃(x, y, λ)

)

, (10)

where

Φ(λ) =
(

β(λ) −w(λ)

w(λ) β(λ)

)

,

and

f̃ (x, y, λ) = f (x, Nx + My, λ)

=
(
a1 + a2N + a3N

2
)
x2

+ (a2M + 2a3MN )xy + a3M
2y2

+
(
a4 + a5N + a6N

3
)
x3

+
(
a5M + 3a6MN2

)
x2y

+ 3a6M
2Nxy2 + a6M

3y3 + · · · ,

g̃(x, y, λ) = 1

M
(g(x, Nx + My, λ)−N f (x, Nx + My, λ))

=b1 + (b2 − a1)N + (b3 − a2)N
2 − a3N

3

M
x2

+
(
b2 + (2b3 − a2)N − 2a3N

2
)
xy

+ (b3M − a3MN )y2

+ b4 + (b5 − a4)N − a5N
2 − a6N

4

M
x3

+
(
b5 − a5N − 3a6N

3
)
x2y

− 3a6MN2xy2 − a6M
2Ny3 + · · ·

Rewrite (9) in the following polar coordinates form
⎧
⎪⎨

⎪⎩

dr

dt
= β(λ)r + a(λ)r3 + · · · ,

dθ

dt
= w(λ) + c(λ)r2 + · · · ,

(11)

then the Taylor expansion of (11) at λ = λ0 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr

dt
= β ′(λ0)(λ − λ0)r + a(λ0)r

3

+ o
(
(λ − λ0)

2r, (λ − λ0)r
3, r5

)
,

dθ

dt
= w(λ0) + w′(λ0)(λ − λ0) + c(λ0)r

2

+ o
(
(λ − λ0)

2, (λ − λ0)r
2, r4

)
.

(12)

In order to determine the stability of the periodic solu-
tion, we need to calculate the sign of the coefficient
a(λ0), which is give by

a(λ0) := 1

16

(
f̃x xx+ f̃xyy+ g̃xxy+ g̃yyy

)
(0, 0, λ0)

+ 1

16w(λ0)

(
f̃xy

(
f̃x x + f̃ yy

)

− g̃xy
(
g̃xx+ g̃yy

)− f̃x x g̃xx+ f̃ yy g̃yy
)

(0, 0, λ0),

(13)
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where

f̃x xx (0, 0, λ0) = 6
(
a4 + a5 + a6N

3
0

)
,

fxyy(0, 0, λ0) = 6a6M
2
0 N0,

g̃xxy(0, 0, λ0) = 2
(
b5 − a5N0 − 3a6N

3
0

)
,

gyyy(0, 0, λ0) = −6a6M
2
0 N0,

f̃x x (0, 0, λ0) = 2
(
a1 + a2N0 + a3N

2
0

)
,

fxy(0, 0, λ0) = a2M0 + 2a3M0N0,

f̃ yy(0, 0, λ0) = 2a3M
2
0 ,

gxx (0, 0, λ0) = 2

×
(
b1 + (b2 − a1)N0 + (b3 − a2)N 2

0 − a3N 3
0

M0

)

,

g̃xy(0, 0, λ0) = b2 + (2b3 − a2)N0 − 2a3N
2
0 ,

gyy = 2(b3M0 − a3M0N0).

Now from Poincaré-Andronov-Hopf Bifurcation
Theorem, β ′(λ0) = − 1

2 < 0 and the above calcula-
tion of a(λ0), we summarize our results as follows.

Theorem 2 Suppose m+1
2 < α < 1 and let a(λ0) be

defined as in (13). Then system (4) undergoes a Hopf
bifurcation at (1−α, 1−α)whenλ = λ0. Furthermore,

1. if a(λ0) < 0, then the direct of the Hopf bifurcation
is subcritical and the bifurcating periodic solutions
are orbitally asymptotically stable;

2. if a(λ0) > 0, then the direct of the Hopf bifurcation
is supercritical and the bifurcating periodic solu-
tions are unstable.

2.3 Numerical simulations

To illustrate Theorem 2, we give some numerical sim-
ulations for the following particular case of system (4)
with fixed parameters α = 0.6,m = 0.05.

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= u(1 − u) − 0.6(0.05 + 1)u2v

u2 + 0.05v2
, t > 0,

dv

dt
= λv

(
1 − v

u

)
, t > 0.

(14)

It is easy to see 1.05 = m + 1 < 1.2 = 2α, and sys-
tem (14) has a unique positive equilibrium (0.4, 0.4).
Noticing that λ0 ≈ 0.1429 and a(λ0) ≈ −0.2907,
it follows from Theorem1 that (0.4, 0.4) is locally
asymptotically stable when λ > λ0 ≈ 0.1429 and
unstable when λ < λ0 ≈ 0.1429. Moreover, when λ

passuses throughλ0 from the right side ofλ0, (0.4, 0.4)
will lose its stability and Hopf bifurcation occurs,
that is, a family of periodic solutions bifurcate from
(0.4, 0.4). Since a(λ0) ≈ −0.2907 < 0, it follows
from Theorem 2 that the Hopf bifurcation is subcriti-
cal and the bifurcating periodic solutions are orbitally
asymptotically stable. Numerical simulations are pre-
sented in Fig. 1. The left of Fig. 1 shows the stable

−0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

u

v

−0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

u

v

Fig. 1 When λ = 0.156 > λ0 ≈ 0.1429, the solution tra-
jectories spiral toward the positive equilibrium (0.4, 0.4) (see
left-hand side of the above figure). When λ = 0.14 < λ0 ≈

0.1429, there is a limit cycle surrounding the positive equilib-
rium (0.4, 0.4) (see right-hand side of the above figure)
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1540 J. Zhou

behavior of the prey and predator when λ > λ0. The
right of Fig. 1 is the phase portrait of the problem (14),
which depicts the limit cycle arising out of Hopf bifur-
cation around (0.4, 0.4).

3 Analysis of the PDE model (1)

In this section, we consider the stability of the constant
equilibrium (1− α, 1− α) with respect to problem (1)
and study the existence of periodic solutions of prob-
lem (1) by analyzing the Hopf bifurcations from the
constant equilibrium (1 − α, 1 − α).

3.1 Stability analysis

The stability of (1−α, 1−α)with respect to (1) is deter-
mined by the following eigenvalue problem, which is
got by linearizing the system (2) about the constant
equilibrium (1 − α, 1 − α)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1Δφ +
(

2α

m + 1
− 1

)

φ + (m − 1)α

m + 1
ψ = μφ, x ∈ Ω,

d2Δψ + λφ − λψ = μψ, x ∈ Ω,

∂φ

∂ν
= ∂ψ

∂ν
= 0, x ∈ ∂Ω.

(15)

Denote

L(λ) =
(
d1Δ + 2α

m+1 − 1 (m−1)α
m+1

λ d2Δ − λ

)

. (16)

For each n ∈ N0, we define a 2 × 2 matrix

Ln(λ) =
(−d1μn + 2α

m+1 − 1 (m−1)α
m+1

λ −d2μn − λ

)

. (17)

The following statements hold true by using Fourier
decomposition:

1. If μ is an eigenvalue of (15), then there exists n ∈
N0 such that μ is an eigenvalue of Ln(λ).

2. The constant equilibrium (1 − α, 1 − α) is locally
asymptotically stable with respect to (1) if and only
if for every n ∈ N0, all eigenvalues of Ln(λ) have
negative real part.

3. The constant equilibrium (1−α, 1−α) is unstable
with respect to (1) if there exists an n ∈ N0 such
that Ln(λ) has at least one eigenvalue with positive
real part.

The characteristic equation of Ln(λ) is

μ2 − Tn(λ)μ + Dn(λ) = 0, (18)

where

Tn(λ) = −(d1 + d2)μn + 2α

m + 1
− 1 − λ,

Dn(λ) = d1d2μ
2
n +

(

d1λ + d2 − 2α

m + 1
d2

)

μn

+ λ(1 − α).

Then (1 − α, 1 − α) is locally asymptotically stable
if Tn(λ) < 0 and Dn(λ) > 0 for all n ∈ N0, and
(1 − α, 1 − α) is unstable if there exists n ∈ N0 such
that Tn(λ) > 0 or Dn(λ) < 0.

Obviously, if 2α ≤ m + 1, then Tn(λ) < 0 and
Dn(λ) > 0 for all n ∈ N0. We get (1 − α, 1 − α) is
locally asymptotically stable.

Next, we consider the case α > (m + 1)/2, which
implies m < 1 since α < 1.

We define

T (λ, μ) = −λ − (d1 + d2)μ + 2α

m + 1
− 1, (19)

D(λ, μ) = (1 − α)λ + d1μλ + d1d2μ
2

+ d2

(

1 − 2α

m + 1

)

μ,

and

H = {(λ, μ) ∈ (0,∞) × [0,∞) : T (λ, μ) = 0} ,

S = {(λ, μ) ∈ (0,∞) × [0,∞) : D(λ, μ) = 0} .

Then H is the Hopf bifurcation curve, and S is the
steady-state bifurcation curve. Furthermore, the sets H
and S are graphs of functions defined as follows

λH (μ) = −(d1 + d2)μ + λ0, (20)

λS(μ) = λ0d2μ − d1d2μ2

d1μ − α + 1
, (21)

where λ0 is defined as in (7), which is positive since
α > (m + 1)/2.

The following properties of the functionsλH (μ) and
λS(μ) can be derived by direct calculations.
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Bifurcation analysis of a diffusive predator–prey model 1541

Lemma 1 Suppose 1 > α > (m + 1)/2. Let λ0 be
defined as in (7), and let λH (μ) and λS(μ) be the func-
tions defined as in (20) and (21), respectively. Define

μ∗
1 :=

√
(1 − α)2 + (1 − α)λ0 + α − 1

d1
∈
(

0,
λ0

d1

)

, (22)

μ∗
2 := λ0

d1 + d2
, (23)

μ∗
3 := λ0

d1
, (24)

μH :=
−ζ +

√

ζ 2 + 4λ0(1 − α)d21

2d21
,

ζ := (d1 + d2)(1 − α) + (d2 − d1)λ0, (25)

μl :=
(d2−d1)λ0−

√

(d2−d1)2λ20−4d1d2(1−α)λ0

2d1d2
, (26)

μr :=
(d2−d1)λ0+

√

(d2−d1)2λ20−4d1d2(1−α)λ0

2d1d2
, (27)

D∗
1 :=

√
λ0

1 − α
+ 1, (28)

D∗
2 := 1

λ0

(
λ0 + 2(1−α) + 2

√
(1−α)2 + (1−α)λ0

)
, (29)

α∗ := (m + 1)(1 + √
2)

2(m + √
2)

∈
(
m + 1

2
, 1

)

, (30)

λ∗
S := λS(μ

∗
1)

=
d2

(
λ0 + 1−α−√

(1−α)2 + (1−α)λ0

)2

d1(λ0 + 1−α)
> 0, (31)

λ∗
H := λH (μ∗

1)

= λ0−
(

1+ d2
d1

)(√
(1−α)2+(1−α)λ0−(1−α)

)
. (32)

1. The function λH (μ) is strictly decreasing for μ ∈
(0,∞) such that

λH (0)=λ0, λH
(
μ∗
2

)=0, λH (μ) < 0 for

μ > μ∗
2, lim

μ→+∞ λH (μ) = −∞.

2. μ = μ∗
1 is the unique critical value of λS(μ),

the function λS(μ) is strictly increasing for μ ∈
(0, μ∗

1), and λS(μ) is strictly decreasing for μ ∈
(μ∗

1,+∞). Furthermore,

λS(0) = λS
(
μ∗
3

) = 0, max
μ∈[0,+∞)

λS(μ) = λ∗
S,

lim
μ→+∞ λS(μ) = −∞.

3. λH (μ) and λ
μ
S cross at the point

(
μH , λH

(
μH

))

and λH (μ) > λS(μ) for 0 ≤ μ < μH , λH (μ) <

λS(μ) for μH < μ ≤ μ∗
3.

4. λ∗
H > λ∗

S if d2
d1

< 1, λ∗
H = λ∗

S if d2
d1

= 1, and

λ∗
H < λ∗

S if
d2
d1

> 1.

5. μ∗
1 > μ∗

2 if d2
d1

> D∗
1 , μ

∗
1 = μ∗

2 if d2
d1

= D∗
1 , and

μ∗
1 < μ∗

2 if
d2
d1

< D∗
1 .

6. λ∗
S > λ0 if d2

d1
> D∗

2 , λ
∗
S = λ0 if d2

d1
= D∗

2 , and

λ∗
S < λ0 if

d2
d1

< D∗
2 . Moreover, if d2

d1
> D∗

2 , then

(a) 0 < μl < μ∗
1 < μr and λS

(
μl
) = λS (μr ) =

0;
(b) λS(μ) > λ0 for μ ∈ (

μl , μr
)
and 0 <

λS(μ) < λ0 for μ ∈ (
0, μl

) ∪ (
μr , μ∗

3

)
.

7. Let us view D∗
1 and D∗

2 as functions of α ∈
((m + 1)/2, 1). Then D∗

1 is strictly increasing, and
D∗
2 is strictly decreasing. Furthermore,

lim
α→m+1

2
+ D∗

1 = 1, lim
α→1− D∗

1 = +∞,

lim
α→m+1

2
+ D∗

2 = +∞, lim
α→1− D∗

1 = 1,

D∗
1(α

∗) = D∗
2(α

∗) =
√

2
√
2 + 3.

Moreover, D∗
1 < D∗

2 if m+1
2 < α < α∗ and D∗

1 >

D∗
2 if α∗ < α < 1.

Nowwe can give a stability result regarding the con-
stant equilibrium (1−α, 1−α) by above analysis. We
define

λ := max
n∈N λS(μn) ≤ λ∗

S . (33)

Theorem 3 Let λ0, λ
∗
S, λ, and D∗

2 be the constants
defined as (7), (31), (33), and (29), respectively. The
constant equilibrium (1 − α, 1 − α) is locally asymp-
totically stable with respect to (1) if 2α ≤ m + 1; or
2α > m + 1 and

λ > max{λ0, λ}. (34)

In particular, (34) holds if

λ > max{λ0, λ∗
S} =

{
λ∗
S, if

d2
d1

> D∗
2;

λ0, otherwise.

The constant equilibrium (1−α, 1−α) is unstable with
respect to (1) if λ < max{λ0, λ}.
Remark 1 In [39], the authors also studied the locally
asymptotic stability of (1 − α, 1 − α) for N = 1, i.e.,
Ω = (0, �) for some constant � > 0, and they got
(1 − α, 1 − α) is locally asymptotically sable if 2α ≤
m+1. In view of above theorem,we extend their results
about two aspects:
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– The condition 2α ≤ m + 1 also ensures the locally
asymptotic stability of (1 − α, 1 − α) for general
dimensional N ≥ 1.

– The are also some stability results when 2α >

m + 1, which includes the effects of the diffusion
coefficients d1 and d2.

For global stability results of the constant equilibrium
(1 − α, 1 − α), we refer [39, Theorem2.7].

Next, we derive conditions for the Turing instability
with respect to constant equilibrium (1 − α, 1 − α),
which means (1 − α, 1 − α) is locally asymptotically
stable with respect to (4), and it is unstable with respect
to (1). In view of Theorem 1, Lemma 1 and Theorem 3,
we have

Theorem 4 Let fix m ∈ (0, 1) and α ∈ (m+1
2 , 1

)
. Then

Turing instability happens if

(i)
d2
d1

> D∗
2 ,

(ii) there exists k ∈ N such that μk ∈ (
μl , μr

)
, and

λ0 < λ < λS(μk),

whereλ0, λS(μ), μl , μr , D∗
2 , andλ∗

S are defined as (7),
(21), (26), (27), (29), and (31), respectively.

3.2 Hopf bifurcations

In this part, we study the existence of periodic solu-
tions of (1) by analyzing the Hopf bifurcations from
the positive constant equilibrium (1 − α, 1 − α) for
2α > m+1 since (1−α, 1−α) is locally asymptotic sta-
blewhen 2α ≤ m+1, andwewill show the existence of

spatially homogeneous and spatially nonhomogeneous
periodic orbits. In this part and Sect. 4.1, we assume
that all eigenvalues μi are simple and denote the corre-
sponding eigenfunction by φi (x), where i ∈ N0. Note
that this assumption always holds when N = 1 for
Ω = (0, �π), as for i ∈ N0, μi = i2/�2 and φi (x) =
cos(i x/�), where � is a positive constant, and it also
holds for generic class of domain in higher dimensions.
We use λ as the main bifurcation parameter. To identify
possible Hopf bifurcation value λH , we recall the fol-
lowingnecessary and sufficient condition from [13,54].

(AH ) There exists i ∈ N0 such that

Ti (λ
H ) = 0, Di (λ

H ) > 0 and Tj (λ
H ) �= 0,

Dj (λ
H ) �= 0 for j ∈ N0 \ {i}, (35)

where Ti (λ) and Di (λ) are defined as (18),
and for the unique pair of complex eigenvalues
α(λ) ± iω(λ) near the imaginary axis,

α′(λH ) �= 0 and ω(λH ) > 0. (36)

For i ∈ N0, we define

λH
i = λH (μi ), (37)

where the function λH (μ) is defined as (20). Then
Ti (λH

i ) = 0 and Tj (λ
H
i ) �= 0 for j �= i .

By (35), we need Di (λ
H
i ) > 0 to make λH

i as a
possible bifurcation value, which means μi < μH by
part 3 of Lemma 1, where μH is defined as in (25).
Let n0 ∈ N0 such that μn0 < μH ≤ μn0+1, then
we can see (35) holds with λH = λH

i for 0 ≤ i ≤ n0
(see Fig. 2). Finally, we consider the conditions in (36).

Fig. 2 The line is the graph of λH (μ). The curves are the graphs
of λS(μ). Left is for d2

d1
< D∗

1 , in which (1) is the case of
d2
d1

< 1,

(2) is the case of d2
d1

= 1, (3) is the case of d2
d1

> 1 and d2
d1

< D∗
2 ,

(4) is the case of d2
d1

> 1 and d2
d1

= D∗
2 , and (5) is the case of

d2
d1

> 1 and d2
d1

> D∗
2 . Middle is for d2

d1
= D∗

1 , in which (1) is

the case of d2
d1

< D∗
2 , (2) is the case of

d2
d1

= D∗
2 , and (3) is the

case of d2
d1

> D∗
2 . Right is for

d2
d1

> D∗
1 , in which (1) is the case

of d2
d1

< D∗
2 , (2) is the case of

d2
d1

= D∗
2 , and (3) is the case of

d2
d1

> D∗
2
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Let the eigenvalues close to the pure imaginary one at
λ = λH

i , 0 ≤ i ≤ n0 be α(λ) ± iω(λ). Then

α′(λH
i ) = T ′

i (λ
H
i )

2
= −1

2
< 0,

ω(λH
i ) =

√

Di (λ
H
i ) > 0.

Then all conditions in (AH ) are satisfied if 0 ≤ i ≤ n0.
Now, by using the Hopf bifurcation theorem in [54],
we have

Theorem 5 Suppose that α,m, d1, d2 are fixed such
that (m + 1)/2 < α < 1. Let λ0, L(λ), Di (λ), μH

be defined as in (7), (16), (19), and (25), respectively.
Let Ω be a smooth domain so that all eigenvalues
μi , i ∈ N0 are simple. Then there exists n0 ∈ N0 such
thatμn0 < μH ≤ μn0+1, and λH

i is a Hopf bifurcation
value for i ∈ {0, . . . , n0}. At each λH

i , the system (1)
undergoes a Hopf bifurcation, and the bifurcation peri-
odic orbits near (λ, u, v) = (

λH
i , 1 − α, 1 − α

)
can be

parameterized as (λ(s), u(s), v(s)), so that λ(s) ∈ C∞
in the form of λ(s) = λH

i +o(s) for s ∈ (0, δ) for some
small constant δ > 0, and

u(s)(x, t) = 1 − α + sai cos
(
ω
(
λH
i

)
t
)

φi (x) + o(s),

v(s)(x, t) = 1 − α + sbi cos
(
ω
(
λH
i

)
t
)

φi (x) + o(s),

where ω
(
λH
i

) =
√

Di
(
λH
i

)
is the corresponding time

frequency, φi (x) is the corresponding spatial eigen-
function, and (ai , bi ) is the corresponding eigenvector,
i.e.,

(
L
(
λH
i

)
− iω

(
λH
i

)
I
)(aiφi (x)

biφi (x)

)

=
(
0
0

)

.

Moreover,

1. The bifurcation periodic orbits from λ = λH
0 = λ0

are spatially homogeneous, which coincidewith the
periodic orbits of the corresponding local system
(4);

2. The bifurcation periodic orbits from λH
i , 1 ≤ i ≤

n0, are spatially nonhomogeneous.

Next, we consider the bifurcation direction (λ′(0) >

0 or λ′(0) < 0) and stability of the bifurcating periodic
solutions bifurcating from λ = λ0, and we have the
following theorem.

Theorem 6 Suppose the assumptions in Theorem 5
hold, and let

ρ(α,m) :=−(α+2)(1−α)m3−
(
6α2+21α−14

)
m2

+
(
9α2 + 19α + 10

)
m − 15α − 6. (38)

Then,

1. if ρ(α,m) < 0, the Hopf bifurcation at λ = λ0 is
subcritical and the bifurcating periodic solutions
are orbitally asymptotical stable;

2. if ρ(α,m) > 0, the Hopf bifurcation at λ = λ0 is
supercritical and the bifurcating periodic solutions
are unstable.

Proof Weuse the normal formmethod and centerman-
ifold theorem in [13] to prove this theorem. Let L∗(λ)

be the conjugate operator of L(λ) defined as (16):

L∗(λ)

(
u
v

)

=
(
d1Δ + 2α

m+1 − 1 λ
(m−1)α
m+1 d2Δ − λ

)(
u
v

)

(39)

with domain DL∗ = DL = XC := X ⊕ i X = {x1 +
i x2 : x1, x2 ∈ X}, where

X :=
{

(u, v) ∈ H2(Ω) × H2(Ω) : ∂u

∂ν

= ∂v

∂ν
= 0, x ∈ ∂Ω

}

.

Let

q :=
(

1
1

1+λ0−α

(
λ0 − √

λ0(1 − α)i
)

)

,

q∗ :=
⎛

⎝
1

2|Ω|
(
1 +

√
λ0
1−α

i
)

− 1+λ0−α

2|Ω|√λ0(1−α)
i

⎞

⎠ .

It is easy to see that

1. 〈L∗(λ)ξ, η〉 = 〈ξ, L(λ)η〉 for any ξ ∈ DL∗ and
η ∈ DL ,

2. L∗(λ)q∗ =−i
√

λ0(1−α)q∗, L(λ)q= i
√

λ0(1−α)q,
3. 〈q∗, q〉=1, 〈q∗, q〉 = 0.

Here 〈ξ, η〉 := ∫

Ω
ξ
T
ηdx denotes the inner product in

L2(Ω) × L2(Ω).
According to [13], we decompose X = XC ⊕

XS with XC := {zq + zq : z ∈ C} and XS :=
{ω ∈ X : 〈q∗, ω〉 = 0}. For any (u, v) ∈ X , there exits
z ∈ C and ω = (ω1, ω2) such that

(u, v)T = zq + zq + (ω1, ω2)
T , z =

〈
q∗, (u, v)T

〉
.
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Thus,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u = z + z + ω1,

v = z

1 + λ0 − α

(
λ0 − √

λ0(1 − α)i
)

+ z

1 + λ0 − α

(
λ0 + √

λ0(1 − α)i
)

+ ω2.

Our system in (z, ω) coordinates becomes

⎧
⎪⎨

⎪⎩

dz

dt
= i

√
λ0(1 − α)z + 〈

q∗, ϕ
〉
,

dω

dt
= L(λ)ω + (

ϕ − 〈
q∗, ϕ

〉
q − 〈

q∗, ϕ
〉
q
)
,

(40)

with ϕ = ( f, g)T , where f and g are defined as (9).
Straightforward calculations show that

〈
q∗, ϕ

〉 = 1

2

(

f − i

(√
λ0

1 − α
f − 1 + λ0 − α√

λ0(1 − α)
g

))

,

〈
q∗, ϕ

〉 = 1

2

(

f + i

(√
λ0

1 − α
f − 1 + λ0 − α√

λ0(1 − α)
g

))

,

〈
q∗, ϕ

〉
q = 1

2

⎛

⎝
f − i

(√
λ0
1−α

f − 1+λ0−α√
λ0(1−α)

g
)

g + i
(√

λ0
1−α

g − 1
1+λ0−α

(√
λ0(1 − α) + λ0

√
λ0
1−α

)
f
)

⎞

⎠,

〈
q∗, ϕ

〉
q = 1

2

⎛

⎝
f + i

(√
λ0
1−α

f − 1+λ0−α√
λ0(1−α)

g
)

g − i
(√

λ0
1−α

g − 1
1+λ0−α

(√
λ0(1 − α) + λ0

√
λ0
1−α

)
f
)

⎞

⎠,

〈
q∗, ϕ

〉
q + 〈

q∗, ϕ
〉
q =

(
f
g

)

,

H(z, z, ω) := ϕ − 〈
q∗, ϕ

〉
q − 〈

q∗, ϕ
〉
q =

(
0
0

)

.

Let H = 1
2H20z2 + H11zz + 1

2H02z2 + o
(|z|2). It fol-

lows [13, Appendix A] that the system (40) possesses
a center manifold, and then we can write ω in the form
ω = 1

2ω20z2 + ω11zz + 1
2ω02z2 + o

(|z|2). Thus, we
have

ω02 = ω20 =
(
2i
√

λ0(1 − α)I − L
)−1

H20 = 0,

ω11 = (−L)−1H11 = 0.

Thus, the equation on the center manifold in z, z coor-
dinate now is
dz

dt
= i

√
λ0(1 − α)z + 1

2
g20z

2 + g11zz + 1

2
g02z

2

+ 1

2
g21z

2z + o
(
|z|3

)
,

where

g20 = 1

2
( fuu(0, 0) + 2 fuv(0, 0)q2) = a1 + a2q2

= αm(3 − m)

(m + 1)2(1 + λ0 − α)
− 1

+ αm(3 − m)

(m + 1)2(1 − α)

√
λ0(1 − α)

1 + λ0 − α
i,

g11 = 1

2

(
fuu(0, 0) + fuv(0, 0)(q2 + q2)

)

= a1 + a2
λ0

1 + λ0 − α

= αm(3 − m)

(m + 1)2(1 + λ0 − α)
− 1

g02 = 1

2

(
fuu(0, 0) + 2 fuv(0, 0)q2

)

= a1 + a2q2 = g20

= αm(3 − m)

(m + 1)2(1 + λ0 − α)
− 1

− αm(3 − m)

(m + 1)2(1 − α)

√
λ0(1 − α)

1 + λ0 − α
i,

g21 = 1

2

(
fuuu(0, 0) + fuuv(0, 0)q2 + 2 fuuv(0, 0)q2

)

= 3a4 + a5q2 + 2a5q2

= 12αm(m − 1)

(m + 1)3(1 − α)2

+ αmλ0(m2 − 14m + 9)

(m + 1)3(1 − α)2(1 + λ0 − α)

−αm(m2 − 14m + 9)
√

λ0(1 − α)

3(m + 1)3(1 − α)2(1 + λ0 − α)
i.
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According to [13],

c1(λ0) = i

2
√

λ0(1 − α)

(
g20g11 − 2|g11|2

−1

3
|g02|2

)

+ g21
2

.

Then,

Re c1(λ0) = Re

{
i

2
√

λ0(1 − α)
g20g11 + g21

2

}

= αm(3 − m)

2(m + 1)2(1 − α)(1 + λ0 − α)

+ αmλ0(m2 − 14m + 9)

2(m + 1)3(1 − α)2(1 + λ0 − α)

− 6αm(1 − m)

(m + 1)3(1 − α)2

− α2m2(3 − m)2

2(m + 1)4(1 − α)(1 + λ0 − α)2
.

Since λ0 = 2α
m+1 − 1, we get

Re c1(λ0) = mρ(α,m)

2(1 − α)2(1 − m)(m + 1)3
,

where ρ(α,m) is defined as (38). ��

3.3 Numerical simulations

We give some numerical simulations in this part to
illustrate the results got in Theorems 3, 4, and 5. We
consider the following particular case of system (1) in

one-dimensional interval Ω =
(
0,

√
2.5π

)
with fixed

parameters α = 0.6 and m = 0.05:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
− d1

∂u

∂x2
= u(1 − u) − 0.6(0.05 + 1)u2v

u2 + 0.05v2
, x ∈

(
0,

√
2.5π

)
, t > 0,

dv

dt
− d2

∂v

∂x2
= λv

(
1 − v

u

)
, x ∈

(
0,

√
2.5π

)
, t > 0,

∂u

∂x
= ∂v

∂x
= 0, x = 0,

√
2.5π, t > 0,

u(x, 0) = 0.4 + 0.02 cos(2x/
√
2.5), x ∈

(
0,

√
2.5π

)
,

v(x, 0) = 0.4 + 0.05 cos(2x/
√
2.5), x ∈

(
0,

√
2.5π

)
.

(41)

Then μn = n2
2.5 , λ0 ≈ 0.1429, D∗

2 ≈ 13.1204, and
ρ = −13.77. It is easy to see 1.05 = m + 1 < 1.2 =
2α, and system (41) has a unique positive equilibrium
(0.4, 0.4).

1. Firstly, we choose d1 = 0.05 and d2 = 20
so that d2

d1
> D∗

2 . Then μl ≈ 0.02, μr ≈
2.8307, λS(μ1) = λS(0.4) ≈ 2.341, and λ∗

S ≈
4.3566 it follows from Theorem 3, (0.4,0.4) is
locally asymptotic stable if λ > λ∗

S (see Fig. 3),
it follows from Theorem 4 that Turing instability
happens if λ0 < λ < λS(μ1) (see Fig. 4), and it
follows from Theorems 5 and 6 that Hopf bifurca-
tion occurs at λ = λ0, and the bifurcation periodic
solutions exist when λ < λ0, and they are orbitally
asymptotically stable since ρ < 0 (see Fig. 5).

2. Secondly, we choose d1 = d2 = 1 so that d2d1 < D∗
2 .

Then it follows from Theorem 4 that no Turing
instability happens, it follows from Theorem 3,
(0.4,0.4) is locally asymptotic stable if λ > λ0 (see
Fig. 6), and it follows from Theorems 5 and 6 that
Hopf bifurcation occurs at λ = λ0, and the bifurca-
tion periodic solutions exist when λ < λ0, and they
are orbitally asymptotically stable since ρ < 0 (see
Fig. 7).

4 Analysis of the steady-state model (2)

In this section,we analyze the steady-statemodel (2) by
studying the existence and nonexistence of nonconstant
solutions.

4.1 Existence of nonconstant solutions

In this part, we consider the existence of nonconstant
solutions for problem (2) by bifurcation theory. The

following a priori estimate can be easily established
via maximum principle.

Lemma 2 Suppose m > 0 and 0 < α < 1 are fixed
such that
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Fig. 3 Numerical simulations of the system (41) with d1 = 0.05, d2 = 20 such that d2
d1

> D∗
2 ≈ 13.1204 and λ = 5 > λ∗

S ≈ 4.3566,
the solution converges to the unique positive equilibrium (0.4, 0.4)

Fig. 4 Numerical simulations of Turing instability of the system (41) with d1 = 0.05, d2 = 20 such that d2
d1

> D∗
2 ≈ 13.1204 and

λ = 0.2 such that λ0 ≈ 0.1429 < 0.2 = λ < λS(μ1) = λS(0.4) ≈ 2.341

α <
2
√
m

m + 1
. (42)

Then for any λ > 0, the positive solution (u, v) of
problem (2) satisfies

1 − α(m + 1)

2
√
m

≤ u(x), v(x) ≤ 1, x ∈ Ω. (43)

Proof It follows from the first equation of (2) that
−d1Δu ≤ u(1 − u). Then we get u ≤ 1 by maxi-
mum principle. Similarly, by the second equation of
(2), we obtain v ≤ 1. So the upper bounds follows.

Next, we derive the lower bounds. By the first equa-
tion of (2), we have

−d1Δu = u

(

1 − u − α(m + 1)uv

u2 + mv2

)

≥ u

(

1 − u − α(m + 1)uv

2
√
muv

)

.

Then we get u ≥ 1 − α(m+1)
2
√
m

. The inequality com-
bining with the second equation of (2) implies v ≥
1 − α(m+1)

2
√
m

. ��

As in the previous section, we use λ as the bifur-
cation parameter to consider the bifurcation solutions.
We identify steady- state bifurcation value λS of (2),
which satisfies the following steady-state bifurcation
conditions [54]:

123



Bifurcation analysis of a diffusive predator–prey model 1547

Fig. 5 Numerical simulations of the stable periodic solutions for the system (41)with d1 = 0.05, d2 = 20 such that d2d1 > D∗
2 ≈ 13.1204

and λ = 0.12 such that λ = 0.12 < λ0 ≈ 0.1429

Fig. 6 Numerical simulations of the system (41) with d1 = d2 = 1 such that d2
d1

< D∗
2 ≈ 13.1204 and λ = 0.16 > λ0 ≈ 0.1429, the

solution converges to the unique positive equilibrium (0.4, 0.4)

(AS) There exists i ∈ N0 such that

Di (λ
S) = 0, Ti (λ

S) �= 0, Dj (λ
S) �= 0 and

Tj (λ
S) �= 0, for j ∈ N0 \ {i}, (44)

and

D′
i (λ

S) �= 0, (45)

where Ti (λ) and Di (λ) are defined as (18).

Apparently, D0(λ) �= 0; hence, we only consider
the case i ∈ N. If the following we fix α and m to
satisfy (m + 1)/2 < α < 1, to determine λ values
satisfying (AS), we notice that Di (λ) = 0 is equivalent
to λ = λS(μi ), where λS(μ) is defined as (21). Then

we make the following assumption on the spectral set
{μn}n∈N0 according to Lemma 1:

(SP) there exist p, q ∈ N such that μp−1 < μH <

μp ≤ μq < μ∗
3 ≤ μq+1, where μ∗

3 and μH are
as (24) and (25), respectively.

In the following, we denote

〈p, q〉 :=
{ [p, q] ∩ N, if p < q;
p, if p = q,

(46)

λS
i := λS(μi ), for i ∈ 〈p, q〉. (47)

Points λS
i are potential steady-state bifurcation points.

It follows from Lemma 1 that for each i ∈ 〈p, q〉, there
exists only one point λS

i such that Di (λ
S
i ) = 0 and
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Fig. 7 Numerical simulations of the stable periodic solutions for the system (41) with d1 = d2 = 1 such that d2
d1

< D∗
2 ≈ 13.1204 and

λ = 0.13 < λ0 ≈ 0.1429

Ti (λS
i ) �= 0. On the other hand, it is possible that for

some λ̃ ∈ (0, λ∗
S) with λ∗

S defined as (31) such that

(SS) λS
i = λS

j = λ̃ for some i, j ∈ 〈p, q〉 and i �= j ,

i.e., Di (λ̃) = Dj (λ̃). Then for λ = λ̃, (AS) is not
satisfied, and we shall not consider bifurcations at such
a point. On the other hand, it is also possible such that

(HS) λS
i = λH

j , for some i, j ∈ 〈p, q〉 and i �= j ,

where λH
j is a Hopf bifurcation point defined as

(37).

However, from an argument in [54], for N = 1 and
Ω = (0, �π), there are only countably many �, such
that (SS) or (HS) occurs for some i �= j . For general
bounded domains in RN , one can also show (SS) or
(HS) does not occur for generic domains [44].

According to above analysis, to satisfy the bifurca-
tion condition (AS), we only need to verify D′

i (λ
S
i ) �=

0. In fact, since α < 1, we obtain

D′
i (λ

S
i ) = d1μi + 1 − α ≥ 1 − α > 0.

Summarizing the above discussion and using a gen-
eral bifurcation theorem [54], we obtain themain result
of this part on bifurcation of steady-state solutions:

Theorem 7 Suppose that α,m, d1, d2 are fixed such
that (m + 1)/2 < α < 1. Let (SP) holds and let Ω

be a smooth domain so that all eigenvalues μi , i ∈ N0

are simple. Then for any i ∈ 〈p, q〉, which is defined as
(46), there exists unique λS

i ∈ (0, λ∗
S] with λ∗

S defined
as (31) and λS

i defined as (47) such that Di (λ
S
i ) = 0

and Ti (λS
i ) �= 0, where Di (λ) and Di (λ) are defined

as (18). If in addition, we assume (SS) and (HS) hold.
The following conclusions are valid.

1. There is a smooth curve Γi of positive solutions of
(2) bifurcating from (λ, u, v) = (λS

i , 1 − α, 1 −
α). Near (λ, u, v) = (λS

i , 1 − α, 1 − α), Γi =
{(λi (s), ui (s), vi (s)) : s ∈ (−ε, ε)}, where
{
ui (s) = 1 − α + sliφi (x) + sψ1,i (s),
vi (s) = 1 − α + smiφi (x) + sψ2,i (s),

for some C∞ functions λi , ψ1,i , ψ2,i such that
λi (0) = λS

i and ψ1,i (0) = ψ2,i (0) = 0. Here
(li ,mi ) satisfies

L(λS
i )[(li ,mi )

Tφi (x)] = (0, 0)T ,

where L(λ) is defined as (16).
2. In addition, if we assume (42) holds, then Γi con-

tained in a global branch Σi of positive nontrivial
solutions of the problem (2), and either Σi con-

tains another
(
λS
j , 1 − α, 1 − α

)
or the projection

of Σi onto λ-axis contains the interval
(
0, λS

i

)
, or

the projection of Σi onto λ-axis contains the inter-
val

(
λS
i ,∞

)
.

Proof The condition (AS) has been proved in the pre-
vious paragraphs, and the bifurcation of solutions to
(2) occurs at λ = λS

i . Note that we assume (SS) and
(HS) hold, so λ = λS

i is always a bifurcation from sim-
ple eigenvalue point. By (43), we know that (u, v) has
positive upper and lower bounds, which are uniformly
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Fig. 8 Numerical simulations of the system (41) with d1 = 0.05, d2 = 10 and λ = 3.5. The solution converges to a spatially
nonhomogeneous steady-state solution

in λ. From the global bifurcation theorem in [40], Γi

contained in a global branch Σi of positive solutions,

and either Σi contains another
(
λS
j , 1 − α, 1 − α

)
or

Σi is not compact. Furthermore, if Σi is not compact,
then Σi contains a boundary point (λ̃, ũ, ṽ), and since
(ũ, ṽ) satisfies (43), it follows that λ̃must satisfy λ̃ = 0
or λ̃ = ∞ and the conclusion follows. ��

4.2 Numerical simulations

We give some numerical simulations in this part to
illustrate the results got in Theorem 7. We consider
problem (41) with d1 = 0.05 and d2 = 20 again.
Then μn = n2

2.5 , λ0 ≈ 0.1429, μH ≈ 0.053, μ∗
3 ≈

2.8571, λ∗
S ≈ 4.3566. It is easy to see 1.05 = m + 1 <

1.2 = 2α, and system (41) has a unique positive equi-
librium (0.4, 0.4). We can find that

0=μ0 < μH < μ1=0.4<μ2=1.6<μ∗
3 < μ3=3.6.

This gives possible steady-state bifurcation points
λS
1 = λS(μ1) ≈ 2.3401 and λS

2 = λS(μ2) ≈ 4.1905,
while the largest Hopf bifurcation point λH

0 = λ0 ≈
0.1429 is much smaller. Hence, for this parameter
set (d1, d2) = (0.05, 20), when λ decreases, the first
bifurcation point encountered is λS

2 ≈ 4.1905, and a
steady-state bifurcation (Turing bifurcation) occurs. A
numerical simulation for λ = 3.5 is shown in Fig. 8,
where a nonhomogeneous steady-state solution can be
observed for large t .

4.3 Nonexistence of nonconstant solutions

We consider the nonexistence of nonconstant solutions
in this part by energy methods, and the main result is
the following theorem.

Theorem 8 Suppose m > 0 and 0 < α < 1 are fixed
such that (42) holds. Let μ1 be large enough such that

μ1 > Ψ := λ

d2

(
α(m + 1)√

m
− 1

)

(48)

and

μ1 > Φ := α(m + 1)√
m

(

1 −
√
m

α(m + 1)

+ 4λm2(4
√
m − α(m + 1))

(2
√
m − α(m + 1))3(d2

√
mμ1+λ(

√
m−α(m + 1))

)

,

(49)

then (2) has no positive nonconstant solution.

Remark 2 It is clear that Theorem 8 holds ifμ1 is large
enough. Note that large μ1 is reflected by small “size”
of the domainΩ (here, the “size” should be understood
under a rescaling without changing the geometry ofΩ .
For precise explanation of this, one may refer to [31]).
Therefore, the prey u and the predator v will be spa-
tially homogeneous distributed when the “size” ofΩ is
sufficiently small. On the other hand, we observe that
limα→0 Ψ = −λ/d and limα→0 Φ = −1. So Theo-
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rem 8 holds for any “size” of the domain Ω if α is
small enough.

Proof of Theorem 8 In the proof, we denote
|Ω|−1

∫

Ω
f dx by f for f ∈ L1(Ω). Let (u, v) be

a positive solution of (2), then it is obvious that∫

Ω
(u − u)dx = ∫

Ω
(v − v)dx = 0. Multiplying the

first equation of (2) by u − u, we obtain

d1

∫

Ω
|∇(u − u)|2dx

=
∫

Ω

(

u − u2 − α(m + 1)u2v

u2 + mv2

)

(u − u)dx

=
∫

Ω

(
u − u −

(
u2 − u2

)
− α(m + 1)

(
u2v

u2 + mv2
− u2v

u2 + mv2

))

(u − u)dx

=
∫

Ω

(

1−(u + u) − αm(m + 1)(u + u)v2v

(u2 + mv2)(u2 + mv2)

)

(u−u)2dx

+
∫

Ω

α(m + 1)(u2u2 − mu2vv)

(u2 + mv2)(u2 + mv2)
(u − u)(v − v)dx .

By (43), we get

d1

∫

Ω

|∇(u − u)|2dx

≤
(

α(m + 1)√
m

− 1

)∫

Ω

(u − u)2dx

+ α(m + 1)

(

1 + 2
√
m

2
√
m − α(m + 1)

)

×
∫

Ω

|u − u||v − v|dx .

(50)

Similarly, we obtain the following inequality by the
second equation of (2) and (43)

d2

∫

Ω

|∇(v−v)|2dx ≤ λ

(
α(m+1)√

m
−1

)∫

Ω

(v−v)2dx

+ 4λm
(
2
√
m − α(m + 1)

)2

∫

Ω

|u − u||v − v|dx .

(51)

Thus, thanks to the well-known Poincaré’s inequal-
ity

μ1

∫

Ω

( f − f )dx ≤
∫

Ω

|∇( f − f )|2dx, ∀ f ∈ H1(Ω),

we find
(

d2μ1 + λ

(

1 − α(m + 1)√
m

))∫

Ω

(v − v)2dx

≤ 4λm
(
2
√
m − α(m + 1)

)2

∫

Ω

|u − u||v − v|dx

≤ 4λm
(
2
√
m − α(m + 1)

)2

(∫

Ω

(u − u)2dx

) 1
2

(∫

Ω

(v − v)2dx

) 1
2

. (52)

If v ≡ v onΩ , the second equation of (2) shows u ≡
v. We assume that v �≡ v. Thus, the above inequality
direct leads to
(

d2μ1 + λ

(

1 − α(m + 1)√
m

))(∫

Ω

(v − v)2dx

) 1
2

≤ 4λm
(
2
√
m − α(m + 1)

)2

(∫

Ω

(u − u)2dx

) 1
2

,

which, together with (52), infers
∫

Ω

|u − u||v − v|dx

≤ 4λm
(
2
√
m − α(m + 1)

)2
(
d2μ1 + λ

(
1 − α(m+1)√

m

))

∫

Ω

(u − u)2dx (53)

By virtue of (50), (53), and Poincaré’s inequality
again, we obtain

μ1

∫

Ω

(u − u)2dx ≤ Φ

∫

Ω

(u − u)2dx, (54)

where Φ is defined as (49). Under our hypothesis, (54)
deduces u ≡ u, which in turn indicates v ≡ v. ��
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