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Abstract Recently, operational matrices were
adapted for solving several kinds of fractional differ-
ential equations (FDEs). The use of numerical tech-
niques in conjunction with operational matrices of
some orthogonal polynomials, for the solution of FDEs
on finite and infinite intervals, produced highly accu-
rate solutions for such equations. This article discusses
spectral techniques based on operational matrices of
fractional derivatives and integrals for solving several
kinds of linear and nonlinear FDEs. More precisely,
wepresent the operationalmatrices of fractional deriva-
tives and integrals, for several polynomials on bounded
domains, such as the Legendre, Chebyshev, Jacobi and
Bernstein polynomials, and we use them with differ-
ent spectral techniques for solving the aforementioned
equations on bounded domains. The operational matri-
ces of fractional derivatives and integrals are also pre-
sented for orthogonal Laguerre and modified general-
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ized Laguerre polynomials, and their use with numer-
ical techniques for solving FDEs on a semi-infinite
interval is discussed. Several examples are presented
to illustrate the numerical and theoretical properties of
various spectral techniques for solving FDEs on finite
and semi-infinite intervals.
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1 Introduction

Many phenomena in engineering, physics and other
sciences can be modeled successfully by using mathe-
matical tools inspired in the fractional calculus, that is,
the theory of derivatives and integrals of non-integer
order [1–19]. This allows one to describe physical phe-
nomena more accurately. In this line of thought, FDEs
have emerged as interdisciplinary area of research in the
recent years. The non-local nature of fractional deriva-
tives can be utilized to simulate accurately diversified
natural phenomena containing long memory [20–35].

In recent years, there has been considerable interest
in employing spectral methods for numerically solv-
ing many types of integral and differential equations,
due to their flexibility of implementation over finite
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and infinite intervals [36–47]. The speed of conver-
gence is one of the great advantages of spectral meth-
ods. Besides, spectral methods have exponential rates
of convergence and high level of accuracy. Spectral
methods can be classified into three types, namely the
collocation [48–52], tau [53–56] and Galerkin [57–59]
methods. As it is well known, one of the most accu-
rate methods of discretization for solving numerous
differential equations is spectral method. The spec-
tral method employs linear combinations of orthogonal
polynomials, as basis functions, and so often leads to
accurate approximate solutions [60,61]. The spectral
methods based on orthogonal systems, such as Bern-
stein polynomials, Jacobi polynomials and their spe-
cial cases, are only available for bounded domains for
approximation of FDEs [62,63]. On the other hand,
several problems in finance, plasma physics, porous
media, dynamical processes and engineering are set on
unbounded domains. The use of spectralmethods based
on orthogonal systems, such as the modified general-
ized Laguerre polynomials and their special cases, is
available for unbounded domains for approximation of
FDEs [64–67].

From the numerical point of view, several numerical
techniques were adapted for approximating the solu-
tion of FDEs in bounded domains. Saadatmandi and
Dehghan [68] presented a Legendre tau scheme, com-
bined with the fractional Caputo operational matrix
of Legendre polynomials, for the numerical solution
of multi-term FDEs. Doha et al. [69] formulated and
derived the Jacobi operational matrix of the Caputo
fractional derivative, which was applied in conjunction
with the spectral tau scheme by means of Jacobi poly-
nomials as a basis function, for solving linear multi-
term FDEs. The Chebyshev [53] and Legendre [68]
operational matrices can be obtained as special cases
from Jacobi operational matrix [69]. Recently, Kazem
et al. [70] defined new orthogonal functions, based on
Legendre polynomials, to obtain an efficient spectral
technique for multi-term FDEs. The authors of [71]
extended this definition and presented the operational
matrix of fractional derivative and integration for such
functions to construct a new tau technique for solv-
ing two-dimensional FDEs.Moreover, Ahmadian et al.
[72] adopted the operationalmatrix of fractional deriva-
tive for Legendre polynomials, which was applied with
the tau method, for solving a class of fuzzy FDEs.
Indeed, with a few noticeable exceptions, a limited
work was developed on the use of spectral methods

in unbounded domains to solve these important classes
of FDEs.

The operation matrices of fractional derivatives and
fractional integrals of generalized Laguerre polynomi-
als were investigated for solving multi-term FDEs on
a semi-infinite interval [66]. The generalized Laguerre
spectral tau and collocation techniques were studied
in [66] for solving linear and nonlinear FDEs on the
half line. These spectral techniques were developed
and generalized by means of the modified generalized
Laguerre polynomials in [67]. Indeed, the authors of
[73,74] presented a Caputo fractional extension of the
classical Laguerre polynomials and proposed new C-
Laguerre functions.

There are different techniques for solving FDEs,
fractional integro-differential equations and fractional
optimal control problems, such as the methods denoted
as variational iteration [75,76], Adomian decompo-
sition [77], operational matrix of B-spline functions
[78], operational matrix of Jacobi polynomials [69,79],
Jacobi collocation [80], operational matrix of Cheby-
shev polynomials [81], Legendre collocation [82,83],
pseudo-spectral [60], operational matrix of Laguerre
polynomials [84] and others [85–89].

The objective of this article is to present a broad
survey of recently proposed spectral methods for solv-
ing FDEs on bounded and unbounded domains. The
operational matrices of fractional derivatives and inte-
grals for some orthogonal polynomials on bounded and
unbounded domains are presented. These operational
matrices are employed in combination with spectral
tau and collocation schemes for solving several kinds
of linear and nonlinear FDEs. Moreover, we present
the construction of the shifted Legendre operational
matrix (SLOM), shifted Chebyshev operational matrix
(SCOM), shifted Jacobi operational matrix (SJOM),
Laguerre operational matrix (LOM), modified general-
ized Laguerre operational matrix (MGLOM) andBern-
stein operational matrix (BOM) of fractional deriv-
atives and integrals that are employed with the tau
method to provide efficient numerical schemes for solv-
ing linear FDEs. We also introduce a Bernstein opera-
tional matrix (BOM) of fractional derivatives with col-
location method for solving linear FDEs. Finally, we
present the shifted Jacobi collocation (SJC) and the
modified generalized Laguerre collocation (MGLC)
methods for solving fractional initial and boundary
value problem of fractional order ν > 0 with nonlin-
ear terms, in which the nonlinear FDE is collocated at
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the N zeros of the orthogonal functions. Several illus-
trative examples are implemented to confirm the high
accuracy and effectiveness of the use of operational
matrices combined with spectral techniques for solv-
ing FDEs on bounded and unbounded domains.

The remainder of this paper is organized as follows:
Sect. 2 introduces some relevant definitions of the frac-
tional calculus theory. Section 3 is devoted to orthogo-
nal polynomials and polynomial approximations. Sec-
tions 4 and 5 present the SLOM, SCOM, SJOM, LOM,
MGLOM and BOM of fractional derivatives in the
Caputo sense and the SLOM, SCOM, SJOM, LOM,
MGLOM and BOM of Riemann–Liouville fractional
integrals, respectively. Section 6 employs the spectral
methods, based on shifted Jacobi, modified generalized
Laguerre and Bernstein polynomials in combination
with the SJOM,MGLOM and BOM, for solving FDEs
including linear and nonlinear terms. Finally, Sect. 7
presents several examples to illustrate the main ideas
of this survey.

2 Preliminaries and notations

In this section, we recall some fundamental definitions
and properties of fractional calculus theory which are
used in the sequel.

Definition 1 The Riemann–Liouville fractional inte-
gral J ν f (x) of order ν is defined by

J ν f (x) = 1

Γ (ν)

∫ x

0
(x − t)ν−1 f (t)dt, x > 0,

J 0 f (x) = f (x). (2.1)

Definition 2 The Caputo fractional derivative of order
ν > 0 is defined by

Dν f (x) = Jm−νDm f (x)

= 1

Γ (m − ν)

∫ x

0
(x − t)m−ν−1

× dm

dtm
f (t)dt, x > 0, (2.2)

respectively, wherem−1 < ν ≤ m,m ∈ N+ and Γ (.)

denotes the Gamma function.

The fractional integral and derivative operator satis-
fies

J νxβ = Γ (β + 1)

Γ (β + 1 + ν)
xβ+ν, (2.3)

Dνxβ =

⎧⎪⎪⎨
⎪⎪⎩

0, for β ∈ N0 and β < �ν�,
Γ (β + 1)

Γ (β + 1 − ν)
xβ−ν, for β ∈ N0 and β ≥ �ν�

or β �∈ N and β > �ν	,
(2.4)

where �ν	 and �ν� are the floor and ceiling func-
tions respectively, while N = {1, 2, . . .} and N0 =
{0, 1, 2, . . .}.

The Caputo’s fractional differentiation is a linear
operation,

Dν(λ f (x) + μg(x)) = λDν f (x) + μDνg(x), (2.5)

where λ, μ ∈ R.

Lemma 1 If m − 1 < ν ≤ m, m ∈ N , then

Dν J ν f (x) = f (x),

J νDν f (x) = f (x) −
m−1∑
i=0

f (i)(0+)
xi

i ! , x>0. (2.6)

3 Orthogonal polynomials and polynomial
approximations

Orthogonal polynomials play themost important role in
spectral methods and, therefore, it is necessary to high-
light their relevant properties. This section is devoted to
the study of the properties of general orthogonal poly-
nomials. We briefly review the fundamental results on
the polynomial approximations [90,91].

3.1 Legendre polynomials

The Legendre polynomials Li (z) are defined on the
interval [−1, 1]. In order to use these polynomials on
the interval x ∈ [0, 1], we defined the so-called shifted
Legendre polynomials by introducing the change of
variable z = 2x − 1.

Let the shifted Legendre polynomials Li (2x − 1) be
denoted by Pi (x). Then, Pi (x) can be obtained with the
aid of the following recurrence formula:

(i + 1)Pi+1(x)=(2i + 1)(2x−1)Pi (x) − i Pi−1(x),

i = 1, 2, . . . , (3.1)

where P0(x) = 1 and P1(x) = 2x − 1.
The analytic form of the shifted Legendre polyno-

mials Pi (x) of degree i is given by
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Pi (x) =
i∑

k=0

(−1)i+k (i + k)!
(i − k)! (k!)2 xk, (3.2)

where Pi (0) = (−1)i and Pi (1) = 1.
The orthogonality condition is

∫ 1

0
Pj (x)Pk(x)w(x)dx =

⎧⎨
⎩

1

2k + 1
, k = j,

0, k �= j.
(3.3)

where w(x) = 1.
The special values

P(q)
i (0) = (−1)(i−q) (i + q)!

(i − q)! q! , (3.4)

will be of important use later.

3.2 Chebyshev polynomials

The Chebyshev polynomials are defined on the inter-
val [−1, 1] and can be determined with the aid of the
following recurrence formula:

Ti+1(t) = 2tTi (t) − Ti−1(t), i = 1, 2, . . . ,

where T0(t) = 1 and T1(t) = t . In order to use these
polynomials on the interval x ∈ [0, L], we defined the
so-called shifted Chebyshev polynomials by introduc-

ing the change of variable t = 2x

L
− 1.

Let the shifted Chebyshev polynomials Ti

(
2x

L
−1

)

be denoted by TL ,i (x). Then, TL ,i (x) can be obtained
as follows:

TL ,i+1(x) = 2

(
2x

L
− 1

)
TL ,i (x) − TL ,i−1(x),

i = 1, 2, . . . , (3.5)

where TL ,0(x) = 1 and TL ,1(x) = 2x

L
−1. The analytic

form of the shifted Chebyshev polynomials TL ,i (x) of
degree i is given by

TL ,i (x) = i
i∑

k=0

(−1)i−k (i + k − 1)! 22k
(i − k)! (2k)! Lk

xk, (3.6)

where TL ,i (0) = (−1)i and TL ,i (L) = 1.
The orthogonality condition is

∫ L

0
TL , j (x)TL ,k(x)wL(x)dx = h j , (3.7)

where wL(x) = 1√
Lx − x2

and h j

=
⎧⎨
⎩
b j

2
π, k = j,

0, k �= j,
b0 = 2, b j = 1, j ≥ 1.

The special values

T (q)
L ,i (0)=(−1)(i−q) i (i + q − 1)!

Γ (q+ 1
2 ) (i − q)! Lq

√
π, q≤ i,

(3.8)

will be of important use later.

3.3 Jacobi polynomials

The Jacobi polynomials are defined on the interval
[-1,1] and can be generatedwith the aid of the following
recurrence formula:

P(α,β)
i (t) = (α + β + 2i − 1){α2 − β2 + t (α + β + 2i)(α + β + 2i − 2)}

2i(α + β + i)(α + β + 2i − 2)
P(α,β)
i−1 (t)

− (α + i − 1)(β + i − 1)(α + β + 2i)

i(α + β + i)(α + β + 2i − 2)
P(α,β)
i−2 (t), i = 2, 3, . . . ,

where α, β > −1 and

P(α,β)
0 (t)=1 and P(α,β)

1 (t)= α + β + 2

2
t + α−β

2
.

In order to use these polynomials in the interval x ∈
[0, L], we define the so-called shifted Jacobi polynomi-

als by introducing the change of variable t = 2x

L
− 1.

Let the shifted Jacobi polynomials P(α,β)
i

(
2x

L
− 1

)

be denoted by P(α,β)
L ,i (x). Then, P(α,β)

L ,i (x) can be gen-
erated from:
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P(α,β)
L ,i (x) =

(α + β + 2i − 1)

{
α2 − β2 + (

2x

L
− 1)(α + β + 2i)(α + β + 2i − 2)

}

2i(α + β + i)(α + β + 2i − 2)

×P(α,β)
L ,i−1(x) − (α + i − 1)(β + i − 1)(α + β + 2i)

i(α + β + i)(α + β + 2i − 2)
P(α,β)
L ,i−2(x)

i = 2, 3, . . . , (3.9)

where

P(α,β)
L ,0 (x) = 1 and

P(α,β)
L ,1 (x) = α + β + 2

2

(
2x

L
− 1

)
+ α − β

2
.

The analytic form of the shifted Jacobi polynomials
P(α,β)
L ,i (x) of degree i is given by

P(α,β)
L ,i (x) =

i∑
k=0

(−1)i−k

× Γ (i + β + 1)Γ (i + k + α + β + 1)

Γ (k + β + 1)Γ (i + α + β + 1)(i − k)!k!Lk
xk,

(3.10)

where

P(α,β)
L ,i (0) = (−1)i

Γ (i + β + 1)

Γ (β + 1) i ! ,

P(α,β)
L ,i (L) = Γ (i + α + 1)

Γ (α + 1) i ! .

The orthogonality condition of shifted Jacobi poly-
nomials is∫ L

0
P(α,β)
L , j (x)P(α,β)

L ,k (x)w(α,β)
L (x)dx = hk, (3.11)

where w
(α,β)
L (x) = xβ(L − x)α and

hk =
⎧⎨
⎩

Lα+β+1Γ (k + α + 1)Γ (k + β + 1)

(2k + α + β + 1)k!Γ (k + α + β + 1)
, i = j,

0, i �= j.

3.4 Laguerre polynomials

Let Λ = (0,∞) and w(x) = e−x be the weight func-
tions, and let L	(x) be the Laguerre polynomial of
degree 	, defined by

L	(x) = 1

	!e
x∂	

x (x
	 e−x ), 	 = 0, 1, . . . . (3.12)

They satisfy the equations

∂x (x e
−x∂x L	(x)) + 	e−x L	(x) = 0 x ∈ Λ,

and

L	(x) = ∂x L	(x) − ∂x L	+1(x), 	 ≥ 0.

The set of Laguerre polynomials is the L2
w(Λ)-

orthogonal system:∫
Λ

L j (x)Lk(x)w(x)dx = δ jk, ∀i, j ≥ 0, (3.13)

where δ jk is the Kronecker delta function.
The special value

DqLi (0) = (−1)q
i−q∑
j=0

(i − j − 1)!
(q − 1)!(i − j − q)! , (3.14)

where q is positive integer, will be of important use
later.

3.5 Modified generalized Laguerre polynomials

Let Λ = (0,∞) and w(α,β)(x) = xαe−βx be a weight
function on Λ in the usual sense. Define

L2
w(α,β) (Λ)

= {v | v is measurable on Λ and ||v||w(α,β) < ∞},
equipped with the following inner product and norm

(u, v)w(α,β) =
∫

Λ

u(x) v(x) w(α,β)(x) dx,

||v||w(α,β) = (u, v)
1
2
w(α,β) .

Let L(α,β)
i (x) be the modified generalized Laguerre

polynomial of degree i for α > −1 and β > 0 is
defined by

L(α,β)
i (x) = 1

i
x−αeβx∂ ix (x

i+αe−βx ), i = 1, 2, . . . .

For α > −1 and β > 0, we have

∂x L
(α,β)
i (x) = −βL(α+1,β)

i−1 (x),

L(α,β)
i+1 (x) = 1

i + 1
[(2i + α + 1 − βx)L(α,β)

i (x)

− (i + α)L(α,β)
i−1 (x)], i = 1, 2, . . . ,
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where L(α,β)
0 (x) = 1 and L(α,β)

1 (x) = −βx + Γ (α+2)
Γ (α+1) .

The set of modified generalized Laguerre polyno-
mials is the L2

w(α,β) (Λ)-orthogonal system, namely∫ ∞

0
L(α,β)
j (x)L(α,β)

k (x)w(α,β)(x)dx = hkδ jk, (3.15)

where δ jk is the Kronecker delta function and hk =
Γ (k+α+1)

βα+1k! .
The modified generalized Laguerre polynomials of

degree i on the interval Λ, is given by

L(α,β)
i (x) =

i∑
k=0

(−1)k
Γ (i + α + 1)βk

Γ (k + α + 1) (i − k)! k! x
k,

i = 0, 1, . . . (3.16)

where L(α,β)
i (0) = Γ (i+α+1)

Γ (α+1)Γ (i+1) .
The special value

DqL(α,β)
i (0) = (−1)q βqΓ (i + α + 1)

(i − q)!Γ (q + α + 1)
, i ≥ q,

(3.17)

will be of important use later.

Corollary 1 In particular, the special case forLaguerre
polynomials may be obtained directly by taking α = 0
and β = 1 in the modified generalized Laguerre, which
are denoted by Li (x).

3.6 Bernstein polynomials

The Bernstein polynomials of the nth degree are
defined on the interval [0, 1] (see [62])
Bi,n(x) =

(
n

i

)
xi (1 − x)n−i , i = 0, . . . , n, (3.18)

These Bernstein polynomials form a complete basis on
over the interval [0, 1]. A recursive definition also can
be used to generate these polynomials

Bi,n(x) = (1 − x)Bi,n−1(x) + x Bi−1,n−1(x),

i = 0, . . . , n, (3.19)

where B−1,n−1(x) = 0 and Bn,n−1(x) = 0.
Since the power basis {1, x, x2, . . . , xn} forms a

basis for the space of polynomials of degree less than
or equal to n, any Bernstein polynomial of degree n
can be written in terms of the power basis. This can
be directly calculated using the binomial expansion of
(1 − x)n−i , one can show that

Bi,n(x) =
n∑
j=i

(−1) j−i
(
n

i

)(
n − i

j − i

)
x j ,

i = 0, . . . , n. (3.20)

The fact that they are not orthogonal turns out to
be their disadvantage when used in the least squares
approximation. As mentioned in [62], one approach
to direct least squares approximation by polynomi-
als in Bernstein form relies on construction of the
basis {D0,n(x), D1,n(x), D2,n(x), . . . , Dn,n(x)} that is
“dual” to the Bernstein basis of degree n on x ∈ [0, 1].
This dual basis is characterized by the property
∫ 1

0
Bi,n(x)Dj,n(x)dx =

{
1, i = j,

0, i �= j,
(3.21)

for i, j = 0, 1, 2, . . . , n.

Theorem 1 the qth derivative of Bernstein polynomi-
als

Dq Bi,n(x)

= n!
(n − q)!

min(i,q)∑
k=max(0,i+q−n)

(−1)k+q
(
q

k

)
Bi−k,n−q(x).

(3.22)

(For the proof, see [62]).

4 Operational matrices of Caputo fractional
derivatives

In this section, we introduce the operational matrices
of Caputo fractional derivatives for some orthogonal
polynomials on finite and infinite intervals.

4.1 SLOM of fractional derivatives

A function u(x), square integrable in [0, 1], may be
expressed in terms of shifted Legendre polynomials as

u(x) =
∞∑
j=0

c j Pj (x),

where the coefficients c j are given by

c j = 1

h j

∫ 1

0
u(x)Pj (x)w(x)dx, j = 0, 1, 2, . . . .

(4.1)

In practice, only the first (N + 1)-terms shifted Legen-
dre polynomials are considered. Hence, u(x) can be
expressed in the form

uN (x) 

N∑
j=0

c j Pj (x) = CTφ(x), (4.2)
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where the shifted Legendre coefficient vectorC and the
shifted Legendre vector φ(x) are given by

CT = [c0, c1, . . . , cN ],
φ(x) = [P0(x), P1(x), . . . , PN (x)]T. (4.3)

Lemma 2 Let Pi (x) be a shifted Legendre polynomial
then

Dν Pi (x) = 0, i = 0, 1, . . . , �ν� − 1, ν > 0. (4.4)

In the following theorem, we prove the operational
matrix of fractional derivative for the shifted Legendre
vector see [68].

Theorem 2 Letφ(x)be shiftedLegendre vector defined
in Eq. (4.3) and also suppose ν > 0 then

Dνφ(x) 
 D(ν)φ(x), (4.5)

whereD(ν) is the (N +1)×(N +1) operational matrix
of derivatives of order ν in the Caputo sense and is
defined as follows:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
.
.
.

.

.

.

.

.

. . . .

.

.

.

0 0 0 . . . 0
�ν�∑

k=�ν�
θ�ν�,0,k

�ν�∑
k=�ν�

θ�ν�,1,k
�ν�∑

k=�ν�
θ�ν�,2,k . . .

�ν�∑
k=�ν�

θ�ν�,N ,k

.

.

.

.

.

.

.

.

. . . .

.

.

.
i∑

k=�ν�
θi,0,k

i∑
k=�ν�

θi,1,k
i∑

k=�ν�
θi,2,k . . .

i∑
k=�ν�

θi,N ,k

.

.

.

.

.

.

.

.

. . . .

.

.

.
N∑

k=�ν�
θN ,0,k

N∑
k=�ν�

θN ,1,k
N∑

k=�ν�
θN ,2,k . . .

N∑
k=�ν�

θN ,N ,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.6)

where

θi, j,k

=
i∑

k=�ν�

j∑
	=0

(−1)i+ j+k+	 (2 j + 1) (i + k)! (	 + j)!
(i − k)! k! Γ (k−ν+1) ( j − 	)! (	!)2 (k+	−ν+1)

.

Note that in D(ν), the first �ν� rows are all zero.
(For the proof, see [68]).

4.2 SCOM for fractional derivatives

A function u(x), square integrable in [0, L], may be
expressed in terms of shifted Chebyshev polynomials
as

u(x) =
∞∑
j=0

c j TL , j (x),

where the coefficients c j are given by

c j = 1

h j

∫ L

0
u(x)TL , j (x)wL (x)dx, j =0, 1, 2, . . . .

(4.7)

In practice, only the first (N + 1)-terms shifted
Chebyshev polynomials are considered. Hence, we can
write

uN (x) 

N∑
j=0

c j TL , j (x) = CTϕ(x), (4.8)

where the shifted Chebyshev coefficients vector C and
the shifted Chebyshev vector ϕ(x) are given by:

CT = [c0, c1, . . . , cN ],
ϕ(x) = [TL ,0(x), TL ,1(x), . . . , TL ,N (x)]T. (4.9)

Lemma 3 Let TL ,i (x) be a shifted Chebyshev polyno-
mial. Then

DνTL ,i (x) = 0, i = 0, 1, . . . , �ν� − 1, ν > 0.

(4.10)

In the following theorem, we prove the operational
matrix of fractional derivative for the shifted Cheby-
shev vector (see [53]).

Theorem 3 Let ϕ(x) be shifted Chebyshev vector
defined in Eq. (4.3) and also suppose ν > 0. Then

Dνϕ(x) 
 D(ν)ϕ(x), (4.11)

whereD(ν) is the (N +1)×(N +1) operational matrix
of derivatives of order ν in the Caputo sense and is
defined as follows:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.

0 0 0 . . . 0
Sν(�ν�, 0) Sν(�ν�, 1) Sν(�ν�, 2) . . . Sν(�ν�, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

Sν(i, 0) Sν(i, 1) Sν(i, 2) . . . Sν(i, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

Sν(N , 0) Sν(N , 1) Sν(N , 2) . . . Sν(N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.12)

where

Sν(i, j)

=
i∑

k=�ν�

(−1)i−k 2i (i+k−1)! Γ (k−ν+ 1
2 )

c j Lν Γ (k+ 1
2 ) (i−k)! Γ (k−ν− j+1) Γ (k+ j−ν+1)

.

Note that in D(ν), the first �ν� rows are all zero.
(For the proof, see [53]).
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4.3 SJOM for fractional derivatives

Let u(x) be a polynomial of degree N . Then, it may be
expressed in terms of shifted Jacobi polynomials as

u(x) =
N∑
j=0

c j P
(α,β)
L , j (x) = CTΦ(x), (4.13)

where the coefficients c j are given by

c j = 1

h j

∫ L

0
w

(α,β)
L (x)u(x)P(α,β)

L , j (x) dx

j = 0, 1, . . . . (4.14)

If the shifted Jacobi coefficient vectorC and the shifted
Jacobi vector Φ(x) are written as

CT = [c0, c1, . . . , cN ],
Φ(x) =

[
P(α,β)
L ,0 (x), P(α,β)

L ,1 (x), . . . , P(α,β)
L ,N (x)

]T
,

(4.15)

respectively, then the first-order derivative of the vector
Φ(x) can be expressed by

dΦ(x)

dx
= D(1)Φ(x), (4.16)

where D(1) is the (N +1)× (N +1) operational matrix
of derivative given by

D(1) = (di j ) =
{
C1(i, j), i > j,

0 otherwise,

and

C1(i, j)

= Lα+β(i + α + β + 1)(i + α + β + 2) j ( j + α + 2)i− j−1

(i − j − 1)! Γ (2 j + α + β + 1)
×Γ ( j + α + β + 1) 3F2

×
⎛
⎝−i + 1 + j, i + j + α + β + 2, j + α + 1

; 1
j + α + 2, 2 j + α + β + 2

⎞
⎠ .

(For the proof, see [92,93], and for the general defini-
tion of a generalized hypergeometric series and special

3F2, see [94]).
For example, for even N we have

D(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
C1(1, 0) 0 0 . . . 0 0
C1(2, 0) C1(2, 1) 0 . . . 0 0
C1(3, 0) C1(3, 1) C1(3, 2) . . . 0 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.

C1(N , 0) C1(N , 1) C1(N , 2) . . . C1(N , N − 1) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Themain objective of this section is to generalize the
SJOM of derivatives for fractional calculus. By using
(4.16), it is clear that

dnΦ(x)

dxn
= (D(1))nΦ(x), (4.17)

wheren ∈ N and the superscript inD(1), denotesmatrix
powers. Thus

D(n) = (D(1))n, n = 1, 2, . . . . (4.18)

Corollary 2 In case of α = β = 0, it is clear that the
SJOM of derivatives for integer calculus is in complete
agreement with Legendre operational matrix of deriva-
tives for integer calculus obtained by Saadatmandi and
Dehghan (see [68] Eq. (11)).

Corollary 3 In case of α = β = − 1
2 , it is clear that

the SJOM of derivatives for integer calculus is in com-
plete agreement with Chebyshev operational matrix of
derivatives for integer calculus obtained by Doha et al.
(see [53] Eq. (3.2)).

Lemma 4 Let P(α,β)
L ,i (x) be a shifted Jacobi polyno-

mial. Then

Dν P(α,β)
L ,i (x) = 0 i = 0, 1, 2, . . . , �ν� − 1, ν > 0.

(4.19)

Theorem 4 Let Φ(x) be shifted Jacobi vector defined
in Eq. (4.9) and let also ν > 0. Then

DνΦ(x) 
 D(ν)Φ(x), (4.20)

whereD(ν) is the (N +1)×(N +1) operational matrix
of derivatives of order ν in the Caputo sense and is
defined by:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.

0 0 0 . . . 0
Δν(�ν�, 0) Δν(�ν�, 1) Δν(�ν�, 2) . . . Δν(�ν�, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

Δν(i, 0) Δν(i, 1) Δν(i, 2) . . . Δν(i, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

Δν(N , 0) Δν(N , 1) Δν(N , 2) . . . Δν(N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.21)

where

Δν(i, j) =
i∑

k=�ν�
δi jk,

and δi jk is given by
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δi jk = (−1)i−k Lα+β−ν+1Γ ( j + β + 1)Γ (i + β + 1) Γ (i + k + α + β + 1)

h j Γ ( j + α + β + 1)Γ (k + β + 1)Γ (i + α + β + 1)Γ (k − ν + 1)(i − k)!

×
j∑

l=0

(−1) j−lΓ ( j + l + α + β + 1)Γ (α + 1)Γ (l + k + β − ν + 1)

Γ (l + β + 1)Γ (l + k + α + β − ν + 2)( j − l)! l! . (4.22)

Note that in D(ν), the first �ν� rows, are all zeros.
Proof The analytic form of the shifted Jacobi polyno-
mials P(α,β)

L ,i (x) of degree i is given by (3.10). Using
Eqs. (2.4) and (2.5) in Eq. (3.10) we have

Dν P(α,β)
L ,i (x)

=
i∑

k=0

(−1)i−k Γ (i + β + 1)Γ (i + k + α + β + 1)

Γ (k + β + 1) Γ (i + α + β + 1) (i − k)! k! Lk
Dνxk

=
i∑

k=�ν�

(−1)i−kΓ (i + β + 1) Γ (i+k+α+β+1) xk−ν

Γ (k+β+1)Γ (i+α+β + 1)(i−k)!Γ (k−ν+1) Lk
,

i = �ν�, �ν� + 1, . . . . (4.23)

Now, approximating xk−ν by (N + 1) terms of shifted
Jacobi series, leads to

xk−ν 

N∑
j=0

bk, j P
(α,β)
L , j (x), (4.24)

where bkj is given from (4.14) with u(x) = xk−ν . This
gives

bk, j = Lα+β+k−ν+1Γ ( j + β + 1)

h j Γ ( j + α + β + 1)

×
j∑

l=0

(−1) j−lΓ ( j + l + α + β + 1)Γ (α + 1)Γ (l + k + β − ν + 1)

Γ (l + β + 1)( j − l)! l! Γ (l + k + α + β − ν + 2)
. (4.25)

Employing Eqs. (4.23)–(4.25), it yields

Dν P(α,β)
L ,i (x) =

N∑
j=0

Δν(i, j)P
(α,β)
L , j (x),

i = �ν�, �ν� + 1, . . . , N , (4.26)

where Δν(i, j) is given in Eq. (4.22).
Accordingly, rewriting Eq. (4.26) as a vector form

gives

Dν P(α,β)
L ,i (x)



[
Δν(i, 0),Δν(i, 1),Δν(i, 2), . . . , Δν(i, N )

]
Φ(x),

i = �ν�, �ν� + 1, . . . , N . (4.27)

Also, according to Lemma 4, one can write

Dν P(α,β)
L ,i (x) 


[
0, 0, 0, . . . , 0

]
Φ(x),

i = 0, 1, . . . , �ν� − 1. (4.28)
A combination of Eqs. (4.27) and (4.28) leads to the
desired result. ��
Corollary 4 If α = β = 0 and L = 1. Then δi jk is
given as follows:

δi jk = (−1)i−k Γ ( j + 1)Γ (i + 1) Γ (i + k + 1)

h j Γ ( j + 1)Γ (k + 1)Γ (i + 1)Γ (k − ν + 1)(i − k)!

×
j∑

l=0

(−1) j−lΓ ( j + l + 1)Γ (l + k − ν + 1)

Γ (l + k − ν + 2)( j − l)! l! .

With the aid of properties of shifted Jacobi polynomials,
and after some analytical manipulations, we have

δi jk = θi jk = (2 j + 1)
j∑

l=0

× (−1)i+ j+k+l (i + k)! ( j + l)!
(i − k)!(k)!Γ (i − ν + 1)( j − l)!(l!)2(k + l − ν + 1)

.

Then, one can show that

Δν(i, j) =
i∑

k=�ν�
θi jk,

where θi jk is given as in Theorem 2.

It is clear that the SJOM of derivatives for fractional
calculus, with α = β = 0, is in complete agree-
ment with Legendre operational matrix of derivatives
for fractional calculus obtained by Saadatmandi and
Dehghan (see [68] Eq. 14).

Corollary 5 If α = β = − 1
2 . Then δi jk is given as

follows:
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1032 A. H. Bhrawy et al.

δi jk = (−1)i−k L−νΓ ( j + 1
2 )Γ (i + 1

2 ) Γ (i + k)

h j Γ ( j)Γ (k + 1
2 )Γ (i)Γ (k − ν + 1)(i − k)!

×
j∑

l=0

(−1) j−lΓ ( j + l)Γ ( 12 )Γ (l + k − ν + 1
2 )

Γ (l + 1
2 )Γ (l + k − ν + 1)( j − l)! l! .

With the aid of properties of shifted Jacobi polynomials
and (3.5), and after some manipulations, we have

δi jk

= (−1)i−k 2i (i + k − 1)! Γ (k − ν + 1
2 )

ε j Lν Γ (k + 1
2 ) (i − k)! Γ (k − ν − j + 1) Γ (k + j − ν + 1)

,

j = 0, 1, . . . , N .

Then one can show that

Δν(i, j) = Sν(i, j),

where Sν(i, j) is given as in Theorem 3.

It is clear that the SJOM of derivatives for fractional
calculus with α = β = − 1

2 , is in complete agreement
with Chebyshev operational matrix of derivatives for
fractional calculus obtained by Doha et al. (see [53]).

4.4 LOM of fractional derivatives

Let u(x) ∈ L2
w(Λ), then u(x) may be expressed in

terms of Laguerre polynomials as

u(x) =
∞∑
j=0

a j L j (x),

a j =
∫ ∞

0
u(x)L j (x)w(x)dx, j = 0, 1, 2, . . . .

(4.29)

In practice, only the first (N +1)-terms Laguerre poly-
nomials are considered. Then, we have

uN (x) =
N∑
j=0

a j L j (x) = CT∅(x), (4.30)

where the Laguerre coefficient vector C and the
Laguerre vector ∅ are given by

CT = [c0, c1, . . . , cN ],
∅(x) = [L0(x), L1(x), . . . , LN (x)]T. (4.31)

Lemma 5 Let Li (x) be theLaguerre polynomial. Then

DνLi (x) = 0, i = 0, 1, . . . , �ν� − 1, ν > 0.

(4.32)

In the following theorem, we prove the operational
matrix of fractional derivative for the Laguerre vector
see [84].

Theorem 5 Let ∅(x) be the Laguerre vector defined in
Eq. (4.3) and also suppose ν > 0. Then

Dν∅(x) 
 D(ν)∅(x), (4.33)

whereD(ν) is the (N +1)×(N +1) operational matrix
of derivatives of order ν in the Caputo sense and is
defined as follows:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.

0 0 0 . . . 0
�ν (�ν�, 0) �ν (�ν�, 1) �ν (�ν�, 2) . . . �ν (�ν�, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

�ν (i, 0) �ν (i, 1) �ν(i, 2) . . . �ν(i, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

�ν(N , 0) �ν(N , 1) �ν (N , 2) . . . �ν (N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.34)

where

�ν(i, j) =
i∑

k=�ν�

(−1)k i ! Γ ( j − k + ν)

j ! (i − k)! k! Γ (−k + ν)
.

Note that in D(ν), the first �ν� rows are all zero.
(For the proof, see [84]).

4.5 Modified generalized Laguerre operational matrix
of fractional derivatives

If u(x) ∈ L2
w(α,β) (Λ). Then, u(x) may be expressed in

terms ofmodified generalized Laguerre polynomials as

u(x) =
∞∑
j=0

a j L
(α,β)
j (x),

a j = 1

hk

∫ ∞

0
u(x)L(α,β)

j (x)w(α,β)(x)dx,

j = 0, 1, 2, . . . . (4.35)

In practice, only the first (N + 1)-terms modified gen-
eralized Laguerre polynomials are considered. Then,
we have

uN (x) =
N∑
j=0

a j L
(α,β)
j (x) = CTψ(x). (4.36)
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where the modified generalized Laguerre coefficient
vector C and the modified generalized Laguerre vector
ψ(x) are given by

CT = [c0, c1, . . . , cN ],
ψ(x) = [L(α,β)

0 (x), L(α,β)
1 (x), . . . , L(α,β)

N (x)]T,

(4.37)

Lemma 6 Let L(α,β)
i (x) be a modified generalized

Laguerre polynomial. Then

DνL(α,β)
i (x) = 0, i = 0, 1, . . . , �ν� − 1, ν > 0.

(4.38)

Theorem 6 Letψ(x)bemodifiedgeneralizedLaguerre
vector defined in Eq. (4.37) and also suppose ν > 0.
Then

Dνψ(x) 
 D(ν)ψ(x), (4.39)

whereD(ν) is the (N +1)×(N +1) operational matrix
of fractional derivative of order ν in the Caputo sense
and is defined as follows:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.

0 0 0 . . . 0
Ων(�ν�, 0) Ων(�ν�, 1) Ων(�ν�, 2) . . . Ων(�ν�, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

Ων(i, 0) Ων(i, 1) Ων(i, 2) . . . Ων(i, N )

.

.

.
.
.
.

.

.

. . . .
.
.
.

Ων(N , 0) Ων(N , 1) Ων(N , 2) . . . Ων(N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.40)

where

Ων(i, j) =
i∑

k=�ν�

j∑
	=0

× (−1)k+	 βνj! Γ (i + α + 1) Γ (k − ν + α + 	 + 1)

(i − k)!( j − 	)! 	! Γ (k − ν + 1)Γ (k + α + 1)Γ (α + 	 + 1)
.

Note that in D(ν), the first �ν� rows are all zero.
Proof The analytic form of the modified generalized
Laguerre polynomials L(α,β)

i (x) of degree i is given by
(3.16). Using Eqs. (2.4), (2.5) and (3.16) we have

DνL(α,β)
i (x) =

i∑
k=0

(−1)k
βk Γ (i + α + 1)

(i − k)! k! Γ (k + α + 1)
Dν xk

=
i∑

k=�ν�
(−1)k

βk Γ (i + α + 1)

(i − k)! Γ (k − ν + 1) Γ (k + α + 1)
xk−ν,

i = �ν�, . . . , N . (4.41)

Now, approximating xk−ν by N + 1 terms of modified
generalized Laguerre series, we have

xk−ν =
N∑
j=0

b j L
(α,β)
j (x), (4.42)

where b j is given from (4.35) with u(x) = xk−ν , and

b j =
j∑

	=0

(−1)	
β−k+ν j ! Γ (k − ν + α + 	 + 1)

( j − 	)! (	)! Γ (	 + α + 1)
.

(4.43)

Employing Eqs. (4.41)–(4.43) yields

DνL(α,β)
i (x) =

N∑
j=0

Ων(i, j)L
(α,β)
j (x),

i = �ν�, . . . , N , (4.44)

where

Ωi jk =
i∑

k=�ν�

j∑
	=0

× (−1)k+	 βν j ! Γ (i + α + 1) Γ (k − ν + α + 	 + 1)

(i − k)! ( j − 	)! 	! Γ (k − ν + 1) Γ (k + α + 1) Γ (α + 	 + 1)
.

(4.45)

Accordingly, Eq. (4.45) can be written in a vector form
as follows:

DνL(α,β)
i (x)



[
Ων(i, 0),Ων(i, 1),Ων(i, 2), . . . , Ων(i, N )

]
ψ(x),

i = �ν�, . . . , N . (4.46)

Also, according to Lemma 6, we can write

DνL(α,β)
i (x) 


[
0, 0, 0, . . . , 0

]
ψ(x),

i = 0, 1, . . . , �ν� − 1. (4.47)

A combination of Eqs. (4.46) and (4.47) leads to the
desired result. ��

4.6 Bernstein operational matrix of fractional
derivatives

A function f (x), square integrable in [0, 1], may be
expressed in terms of the Bernstein basis [95]. In prac-
tice, only the first n+1 term Bernstein polynomials are
considered. Hence, if we write

f (x) 

n∑
j=0

c j B j,n(x) = CTB(x), (4.48)
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where the Bernstein coefficient vector C and the Bern-
stein vector B(x) are given by

CT = [c0, c1, . . . , cn],
B(x) = [B0,n(x), B1,n(x), . . . , Bn,n(x)]T, (4.49)

then

c j =
∫ 1

0
f (x) Dj,n(x)dx, j = 0, 1, 2, . . . , n.

(4.50)

Authors of [62] have derived explicit representations

Dj,n(x) =
n∑

k=0

λ j,k Bk,n(x), j = 0, 1, . . . , n, (4.51)

for the dual basis functions, defined by the coefficients

λ j,k = (−1) j+k(n
j

)(n
k

)
min( j,k)∑

i=0

(2i + 1)

×
(
n + i + 1

n − j

)(
n − i

n − j

)(
n + i + 1

n − k

)(
n − i

n − k

)
,

j, k = 0, 1, . . . , n. (4.52)

Theorem 7 Let B(x) be Bernstein vector defined in
Eq. (4.49) and also suppose that ν > 0. Then

DνB(x) 
 D(ν)B(x), (4.53)

where D(ν) is the (n + 1) × (n + 1) operational matrix
of fractional derivative of order ν in the Caputo sense
and is defined as follows:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=�ν�

ω0,0, j

n∑
j=�ν�

ω0,1, j . . .
n∑

j=�ν�
ω0,n, j

...
... . . .

...

0 0 . . . 0
n∑

j=�ν�
ωi,0, j

n∑
j=�ν�

ωi,1, j . . .
n∑

j=�ν�
ωi,n, j

...
... . . .

...
n∑

j=�ν�
ωn,0, j

n∑
j=�ν�

ωn,1, j . . .
n∑

j=�ν�
ωn,n, j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.54)

Here ωi,	, j is given by

ωi,	, j = (−1) j−i
(
n

i

)(
n − i

j − i

)
Γ ( j + 1)

Γ ( j + 1 − ν)

×
n∑

k=0

λ	,k μk, j , (4.55)

where λ	,k is given in Eq. (4.52) and

μk, j =
n∑

s=k

(−1)s−k
(
n

k

)(
n − k

s − k

)
1

j − ν + s + 1
.

Proof Using Eqs. (3.20) and (2.5) we have

DνBi,n(x) =
n∑
j=i

(−1) j−i
(
n

i

)(
n − i

j − i

)
Dνx j

=
n∑

j=�ν�
(−1) j−i

(
n

i

)(
n − i

j − i

)
Γ ( j + 1)

Γ ( j + 1 − ν)
x j−ν,

i = 0, . . . , n. (4.56)

Now, if we approximate x j−ν by Bernstein polynomi-
als. Then

x j−ν 

n∑

	=0

b	j B	,n(x), (4.57)

where

b	j =
∫ 1

0
x j−ν D	,n(x)dx =

n∑
k=0

λ	,k

∫ 1

0
x j−νBk,n(x)

=
n∑

k=0

λ	,k

n∑
s=k

(−1)s−k
(
n

k

)(
n − k

s − k

) ∫ 1

0
x j−ν+s

=
n∑

k=0

λ	,k

n∑
s=k

(−1)s−k
(
n

k

)(
n − k

s − k

)
1

( j − ν + s + 1)

=
n∑

k=0

λ	,kμk, j .

Employing Eqs. (4.56) and (4.57) we get

DνBi,n(x) =
n∑

j=�ν�
(−1) j−i

(
n

i

)(
n − i

j − i

)

× Γ ( j + 1)

Γ ( j + 1 − ν)
b	j B	,n(x)

=
n∑

	=0

( n∑
j=�ν�

ωi,	, j

)
Bi,n(x) (4.58)

whereωi,	, j is given in Eq. (4.55). Rewriting Eq. (4.58)
as a vector form results

Dν Bi,n(x)



[ n∑
j=�ν�

ωi,0, j ,

n∑
j=�ν�

ωi,1, j ,

n∑
j=�ν�

ωi,2, j , . . . ,

n∑
j=�ν�

ωi,n, j

]
B(x),

i = �ν�, . . . , n. (4.59)

This leads to the desired result. ��
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5 Operational matrices of Riemann–Liouville
fractional integrals

In this section, we present the operational matrices
of Riemann–Liouville fractional integrals for some
orthogonal polynomials on finite and infinite intervals.

5.1 SCOM to fractional integration

The main objective of this subsection is to derive an
operational matrix of fractional integration for shifted
Chebyshev vector ϕ(x).

Theorem 8 Let ϕ(x) be shifted Chebyshev vector
defined in Eq. (4.3) and suppose that ν > 0. Then

I νϕ(x) 
 P(ν)ϕ(x), (5.1)

where P(ν) is the (N+1)×(N+1) SCOMof order ν in
the Riemann–Liouville sense and is defined as follows:

I(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θν(0, 0) Θν(0, 1) · · · Θν(0, N )

Θν(1, 0) Θν(1, 1) · · · Θν(1, N )
...

... · · · ...

Θν(i, 0) Θν(i, 1) · · · Θν(i, N )
...

...
... · · · ...

Θν(N , 0) Θν(N , 1) · · · Θν(N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.2)

and

Θν(i, j)

=
i∑

k=0

(−1)i−k 2i Lν (i + k − 1)! Γ (k + ν + 1
2 )

b j Γ (k + 1
2 ) (i − k)! Γ (k + ν − j + 1) Γ (k + j + ν + 1)

.

(For the proof, see [81]).

5.2 LOM of fractional integration

The main objective of this section is to find the frac-
tional integration of Laguerre vector in the Riemann–
Liouville sense.

Theorem 9 Let ∅(x) be the Laguerre vector and ν >

0. Then

J ν∅(x) 
 P(ν)∅(x), (5.3)

where P(ν) is the (N +1)× (N +1) operational matrix
of fractional integration of order ν in the Riemann–

Liouville sense and is defined as follows:

P(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ν(0, 0) �ν(0, 1) · · · �ν(0, N )

�ν(1, 0) �ν(1, 1) · · · �ν(1, N )
...

... · · · ...

�ν(i, 0) �ν(i, 1) · · · �ν(i, N )
...

... · · · ...

�ν(N , 0) �ν(N , 1) · · · �ν(N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

where

�ν(i, j)=
i∑

k=0

j∑
r=0

(−1)k+r i ! r !Γ (k + ν + r + 1)

(i−k)! k!( j−r)! (r !)2Γ (k+ν+1)
.

5.3 SJOM of fractional integration

The main objective of this subsection is to present an
operational matrix of fractional integration for shifted
Jacobi vector Φ(x).

Theorem 10 LetΦ(x) be the shifted Jacobi vector and
ν > 0. Then

J νΦ(x) 
 P(ν)Φ(x), (5.5)

where P(ν) is the (N +1)× (N +1) operational matrix
of fractional integration of order ν in the Riemann–
Liouville sense and is defined as follows:

P(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Υν(0, 0, α, β) Υν(0, 1, α, β) · · · Υν(0, N , α, β)

Υν(1, 0, α, β) Υν(1, 1, α, β) · · · Υν(1, N , α, β)

.

.

.
.
.
. · · ·

.

.

.

Υν(i, 0, α, β) Υν(i, 1, α, β) · · · Υν(i, N , α, β)

.

.

.
.
.
. · · ·

.

.

.

Υν(N , 0, α, β) Υν(N , 1, α, β) · · · Υν(N , N , α, β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.6)

and

Υν(i, j, α, β)

=
i∑

k=0

(−1)i−k Γ (i + β + 1) Γ (i + k + α + β + 1)

Γ (k + β + 1) Γ (i + α + β + 1)(i − k)! Γ (k + ν + 1)

×
j∑

f =0

(−1) j− f Γ ( j + f + α + β + 1) Γ (α + 1)

Γ ( j + α + 1) Γ ( f + β + 1)( j − f )! f !

×Γ ( f + k + ν + β + 1) (2 j + α + β + 1) j ! Lν

Γ ( f + k + α + β + ν + 2)
.

(5.7)

Proof For the proof see [79]. ��
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Remark 1 It is worthwhile to mention here that the
operational matrices of fractional integrations, in the
Riemann–Liouville sense, for shifted Legendre and
shifted Chebyshev polynomials can be obtained as spe-
cial cases for the operational matrix of fractional inte-
gration for Shifted Jacobi polynomials.

5.4 MGLOM of fractional integration

The main objective of this section is to derive an opera-
tional matrix of fractional integration for modified gen-
eralized Laguerre vector.

Theorem 11 Let ψ(x) be the modified generalized
Laguerre vector and ν > 0. Then

J νψ(x) 
 P(ν)ψ(x), (5.8)

where P(ν) is the (N +1)× (N +1) operational matrix
of fractional integration of order ν in the Riemann–
Liouville sense and is defined as follows:

P(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψν(0, 0) Ψν(0, 1) · · · Ψν(0, N )

Ψν(1, 0) Ψν(1, 1) · · · Ψν(1, N )
...

... · · · ...

Ψν(i, 0) Ψν(i, 1) · · · Ψν(i, N )
...

... · · · ...

Ψν(N , 0) Ψν(N , 1) · · · Ψν(N , N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.9)

where

Ψν(i, j) =
i∑

k=0

j∑
r=0

× (−1)k+r β( j−ν−1) j ! Γ (i + α + 1) Γ (k+ν+α+r+1)

(i − k)! ( j − r)! r ! Γ (k + ν + 1) Γ (k+α+1)Γ (α + r + 1)
.

Proof Using the analytic form of the modified general-
ized Laguerre polynomials L(α,β)

i (x) of degree i (3.16)
and (2.3). Then

J νL(α,β)
i (x) =

i∑
k=0

(−1)k
βkΓ (i + α + 1)

(i − k)! k! Γ (k + α + 1)
J νxk

=
i∑

k=0

(−1)k
βkΓ (i + α + 1)

(i − k)! Γ (k + ν + 1) Γ (k + α + 1)
xk+ν,

i = 0, 1, . . . , N . (5.10)

Now, approximate xk+ν by N + 1 terms of modified
generalized Laguerre series, we have

xk+ν =
N∑
j=0

c j L
(α,β)
j (x), (5.11)

where c j is given from (4.35) with u(x) = xk+ν , that
is

c j =
j∑

r=0

(−1)r
β j−k−ν−1 j ! Γ (k + ν + α + r + 1)

( j − r)! r ! Γ (r + α + 1)
,

j = 1, 2, . . . , N . (5.12)

In virtue of (5.10) and (5.11), we get

J νL(α,β)
i (x)

=
N∑
j=0

Ψν(i, j)L
(α,β)
j (x), i=0, 1, . . . , N , (5.13)

where

Ψν(i, j) =
i∑

k=0

j∑
r=0

× (−1)k+r β( j−ν−1) j ! Γ (i + α + 1) Γ (k + ν + α + r + 1)

(i − k)! ( j − r)! r ! Γ (k + ν + 1) Γ (k + α + 1) Γ (α + r + 1)
,

j = 1, 2, . . . N . (5.14)

Accordingly, Eq. (5.13) can be written in a vector form
as follows:

J νL(α,β)
i (x)



[
Ψν(i, 0), Ψν(i, 1), Ψν(i, 2), . . . , Ψν(i, N )

]
ψ(x),

i = 0, 1, . . . , N . (5.15)

Equation (5.15) leads to the desired result. ��

6 Spectral methods for FDEs

In this section, we introduce different ways to approx-
imate linear FDEs using the tau method, based on the
presented operational matrices of fractional differenti-
ation and integration, such that it can be implemented
efficiently. Also, we present the collocation method,
based on the presented operationalmatrices, for solving
nonlinear FDEs on bounded and unbounded domains.

6.1 Applications of the operational matrix of
fractional derivatives

In this subsection, in order to show the fundamen-
tal importance of the operational matrices of frac-
tional derivatives, we apply spectral tau method based
on these operational matrices to solve the multi-term
FDEs.
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6.1.1 Shifted Jacobi tau operational matrix
formulation method

Consider the linear FDE

Dνu(x) =
k∑
j=1

γ j D
μ j u(x) + γk+1u(x) + g(x),

x ∈ I = [0, L], (6.1)

with initial conditions

u(i)(0) = di , i = 0, 1, . . . ,m − 1, (6.2)

where γ j ( j = 1, . . . , k + 1) are real constant coef-
ficients and m − 1 < ν ≤ m, 0 < μ1 < μ2 <

· · · < μk < ν. Moreover, Dνu(x) ≡ u(ν)(x) denotes
the Caputo fractional derivative of order ν for u(x), the
values of di (i = 0, . . . ,m−1) describe the initial state
of u(x), and g(x) is a given source function.

The existence anduniqueness and continuousdepen-
dence of the solution of the problem are discussed in
[96]. In order to solve the initial value problem (6.1)-
(6.2), we approximate u(x) and g(x) by means of the
shifted Jacobi polynomials as

uN (x) 

N∑
i=0

ci P
(α,β)
L ,i (x) = CTΦ(x), (6.3)

g(x) 

N∑
i=0

gi P
(α,β)
L ,i (x) = GTΦ(x), (6.4)

where the vector G = [g0, . . . , gN ]T is known and
C = [c0, . . . , cN ]T is an unknown vector.

Using Theorem 4 (relation (4.20)) and (6.3), yields

DνuN (x) 
 CTDνΦ(x) = CTD(ν)Φ(x), (6.5)

Dμ j uN (x) 
 CTDμ j Φ(x) = CTD(μ j )Φ(x),

j = 1, . . . , k. (6.6)

Employing Eqs. (6.3)–(6.6) the residual RN (x) for
Eq. (6.1) can be written as

RN (x)

=
⎛
⎝CTD(ν) − CT

k∑
j=1

γ jD
(μ j ) − γk+1C

T − GT

⎞
⎠ Φ(x).

(6.7)

As in a typical tau method (see[79]), we generate
N − m + 1 linear equations by applying

〈RN (x), P(α,β)
L , j (x)〉 =

∫ L

0
RN (x)P(α,β)

L , j (x)dx = 0

j = 0, 1, . . . , N − m. (6.8)

The substitution of Eqs. (4.17) and (6.3) into Eq (6.2)
yields

u( j)(0) = CTD( j)Φ(0) = d j , j = 0, 1, . . . ,m − 1.

(6.9)

Equations (6.8) and (6.9) generate N − m + 1 and m
set of linear equations, respectively. These equations
can be solved for unknown coefficients of the vectorC .
Consequently,uN (x)given inEq. (6.3) canbeobtained,
which is a solution of Eq. (6.1) with the initial condi-
tions (6.2).

Remark 2 To solve Eq. (6.1) subject to the following
boundary conditions (when m is even):

u(i)(0) = ai , u(i)(L) = bi , i = 0, 1, . . . ,
m

2
− 1.

(6.10)

We apply the same technique described above, but the
m set of linear equations resulting from (6.9) is changed
to

u(i)(0) = CTD(i)Φ(0) = ai ,

u(i)(L) = CTD(i)Φ(L) = bi ,

i = 0, 1, . . . ,
m

2
− 1. (6.11)

Equations (6.8) and (6.11) generate N+1 systemof lin-
ear equations. This system can be solved to determine
the unknown coefficients of the vector C .

6.1.2 Modified generalized Laguerre tau operational
matrix formulation method

Consider the linear FDE

Dνu(x) =
k∑
j=1

γ j D
ζ j u(x) + γk+1u(x) + g(x),

in Λ = (0,∞), (6.12)

with initial conditions

u(i)(0) = di , i = 0, . . . ,m − 1, (6.13)

where γ j ( j = 1, . . . , k + 1) are real constant coeffi-
cients andm−1 < ν ≤ m, 0 < ζ1 < ζ2 < · · · < ζk <

ν. Moreover, Dνu(x) ≡ u(ν)(x) denotes the Caputo
fractional derivative of order ν for u(x), and the values
of di (i = 0, . . . ,m − 1) describe the initial state of
u(x), and g(x) is a given source function.
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Let w(α,β)(x) = xαe−βx . Then, we denote by
L2

w(α,β) (Λ)(Λ := (0,∞)) the weighted L2 space with
inner product:

(u, v)w(α,β) =
∫

Λ

w(α,β)(x)u(x)v(x)dx,

and the associated norm ‖u‖w(α,β) = (u, u)
1
2
w(α,β) . It

is known that {L(α,β)
i (x) : i ≥ 0} forms a complete

orthogonal system in L2
w(α,β) (Λ).

To solve the fractional initial value problem, (6.12)-
(6.13), we approximate u(x) and g(x) bymodified gen-
eralized Laguerre polynomials as

u(x) 

N∑
i=0

ci L
(α,β)
i (x) = CTψ(x), (6.14)

g(x) 

N∑
i=0

gi L
(α,β)
i (x) = GTψ(x), (6.15)

where vector G = [g0, . . . , gN ]T is known and C =
[c0, . . . , cN ]T is an unknown vector.

By using Theorem6 (relation Eqs. (4.39) and (6.14))
we have

Dνu(x) 
 CTDνψ(x) = CTD(ν)ψ(x), (6.16)

Dζ j u(x) 
 CTDζ j ψ(x) = CTD(ζ j )ψ(x),

j = 1, . . . , k. (6.17)

After employing Eqs (6.14)-(6.17), the residual RN (x)
for Eq. (6.12) can be written as

RN (x)

=
⎛
⎝CTD(ν) − CT

k∑
j=1

γ jD(ζ j )−γk+1C
T−GT

⎞
⎠ ψ(x).

(6.18)

As in a typical tau method (see [67,69]), we generate
N − m + 1 linear equations by applying

〈RN (x), L(α,β)
j (x)〉=

∫
Λ

w(α,β)RN (x)L(α,β)
j (x) dx=0,

j = 0, 1, . . . , N − m. (6.19)

Also, by substituting Eq. (6.14) into Eq. (6.13), we get

u(i)(0) = CTD(i)ψ(0) = di , i = 0, 1, . . . ,m − 1,

(6.20)

Equations (6.19) and (6.20) generate N −m + 1 andm
set of linear equations, respectively. These linear equa-
tions can be solved for unknown coefficients of the
vectorC . Consequently, u(x) given in Eq. (6.14) can be
calculated, which give the solution of the initial value
problem in Eqs. (6.12) and (6.13).

6.2 Applications of the operational matrix of
fractional integration

The proposed multi-order FDE is integrated ν times,
in the Riemann–Liouville sense, where ν is the highest
fractional order and making use of the formula relat-
ing the expansion coefficients of fractional integration
appearing in this integrated form of the proposedmulti-
order FDE to the orthogonal polynomials themselves.
In this section, we present the tau method, based on the
SJOMandMGLOMof fractional integrations, for solv-
ing FDE in bounded and unbounded intervals, respec-
tively.

6.2.1 Tau method based on SJOM of fractional
integration

In order to show the fundamental importance of SJOM
of fractional integration, we apply it to solve the fol-
lowing multi-order FDE:

Dνu(x) =
k∑

i=1

γ j D
βi u(x) + γk+1u(x) + f (x),

in I = (0, L), (6.21)

with initial conditions

u(i)(0) = di , i = 0, . . . ,m − 1, (6.22)

where γi (i = 1, 2, . . . , k + 1) are real constant coef-
ficients and m − 1 < ν ≤ m, 0 < β1 < β2 < · · · <

βk < ν.
If we apply the Riemann–Liouville integral of order

ν on (6.21) and using (2.6), we obtain the integrated
form of (6.21):

u(x) −
m−1∑
j=0

u( j)(0+)
x j

j !

=
k∑

i=1

γi I
ν−βi

[
u(x) −

mi−1∑
j=0

u( j)(0+)
x j

j !
]

+ γk+1 I
νu(x)

+ I ν f (x), u(i)(0) = di , i = 0, . . . ,m − 1,

(6.23)

where mi − 1 < βi ≤ mi , mi ∈ N , this leads to

u(x) =
k∑

i=1

γi I
ν−βi u(x) + γk+1 I

νu(x) + g(x),

u(i)(0) = di , i = 0, . . . ,m − 1, (6.24)
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where

g(x) = I ν f (x) +
m−1∑
j=0

d j
x j

j !

+
k∑

i=1

γi I
ν−βi

⎛
⎝mi−1∑

j=0

d j
x j

j !

⎞
⎠ .

In order to use the taumethodwith SJOMfor solving
the fully integrated problem (6.24) with initial condi-
tions (6.22), we approximate u(x) and g(x) by means
of the shifted Jacobi polynomials:

uN (x) 

N∑
i=0

ci P
(α,β)
L ,i (x) = CTΦ(x), (6.25)

g(x) 

N∑
i=0

gi P
(α,β)
L ,i (x) = GTΦ(x), (6.26)

where the vector G = [g0, g1, . . . , gN ]T is given but
C = [c0, c1, . . . , cN ]T is an unknown vector.

Now, theRiemann–Liouville integral of orders ν and
ν−β j of the approximate solution (6.25), after making
use of Theorem 10 (relation (5.5)), can be written as

I νuN (x) 
 CT I νΦ(x) 
 CTP(ν)Φ(x), (6.27)

and

I ν−β j uN (x) 
 CT I ν−β j Φ(x) 
 CTP(ν−β j )Φ(x),

j = 1, . . . , k, (6.28)

respectively, where P(ν) is the (N +1)× (N +1) oper-
ational matrix of fractional integration of order ν.

After employing Eqs. (6.25)–(6.28), the residual
RN (x) of Eq. (6.24) can be written as

RN (x)

=
⎛
⎝CT − CT

k∑
j=1

γ jP
(ν−β j ) − γk+1C

TP(ν) − GT

⎞
⎠ Φ(x).

(6.29)

As in a typical tau method (see [67,69]), we generate
N − m + 1 linear algebraic equations by applying

〈RN (x), P(α,β)
L , j (x)〉 =

∫ L

0
RN (x)P(α,β)

L , j (x)dx = 0,

j = 0, 1, . . . , N − m. (6.30)

Also, substituting Eqs. (3.2) and (6.25) into Eq. (6.22)
yields

u(i)(0) =
N∑
i=0

ci D
(i)P(α,β)

L ,i (0) = di ,

i = 0, 1, . . . ,m − 1. (6.31)

Equations (6.30) and (6.31) generate N −m + 1 andm
set of linear equations, respectively. These linear equa-
tions can be solved for unknown coefficients of the
vector C . Consequently, uN (x) given in Eq. (6.25) can
be calculated, which is a solution of Eq. (6.21) with the
initial conditions (6.22).

6.2.2 Tau method based on MGLOM of fractional
integration

The modified generalized Laguerre tau method based
on operational matrix is proposed to solve numeri-
cally the FDEs. The basic idea of this technique is
as follows: (i) The FDE is converted to a fully inte-
grated form via fractional integration in the Riemann–
Liouville sense. (ii) Subsequently, the integrated form
equation are approximated by representing them as
linear combinations of modified generalized Laguerre
polynomials. (iii) Finally, the integrated form equation
is converted into an algebraic equation by introducing
the operational matrix of fractional integration of the
modified generalized Laguerre polynomials.

Consider the following multi-order FDE:

Dνu(x) =
k∑

i=1

γ j D
βi u(x) + γk+1u(x) + f (x),

in Λ = (0,∞), (6.32)

with initial conditions

u(i)(0) = di , i = 0, . . . ,m − 1. (6.33)

If we apply the Riemann–Liouville integral of order
ν on (6.32) and after making use of (2.6), we get the
integrated form of (6.32):

u(x) −
m−1∑
j=0

u( j)(0+)
x j

j !

=
k∑

i=1

γi J
ν−βi

⎡
⎣u(x)−

mi−1∑
j=0

u( j)(0+)
x j

j !

⎤
⎦+γk+1 J

νu(x)

+ Jν f (x), u(i)(0)=di , i=0, . . . ,m − 1, (6.34)

where mi − 1 < βi ≤ mi , mi ∈ N . This implies that

u(x) =
k∑

i=1

γi J
ν−βi u(x) + γk+1 J

νu(x) + g(x),

u(i)(0) = di , i = 0, . . . ,m − 1, (6.35)

123



1040 A. H. Bhrawy et al.

where

g(x) = J ν f (x)

+
m−1∑
j=0

d j
x j

j ! +
k∑

i=1

γi J
ν−βi

⎛
⎝mi−1∑

j=0

d j
x j

j !

⎞
⎠ .

Let us express the approximate solution u(x) and g(x)
in terms of the modified generalized Laguerre polyno-
mials

uN (x) 

N∑
i=0

ci L
(α,β)
i (x) = CTψ(x), (6.36)

g(x) 

N∑
i=0

gi L
(α,β)
i (x) = GTψ(x), (6.37)

where the vector G = [g0, . . . , gN ]T is given but C =
[c0, . . . , cN ]T is an unknown vector.

The Riemann–Liouville integral of orders ν and
ν−β j of the approximate solution (6.36), after employ-
ing Theorem 11 (relation (5.8)), can be written as

J νuN (x) 
 CT J νψ(x) 
 CTP(ν)ψ(x), (6.38)

and

J ν−β j uN (x)


 CT J ν−β j ψ(x) 
 CTP(ν−β j )ψ(x),

j = 1, . . . , k, (6.39)

respectively, where P(ν) is the (N + 1) × (N + 1)
operational matrix of fractional integration of order
ν. Employing Eqs. (6.36)–(6.39) the residual RN (x) of
Eq. (6.35) can be written as

RN (x)

=
⎛
⎝CT − CT

k∑
j=1

γ jP(ν−β j ) − γk+1C
TP(ν) − GT

⎞
⎠ψ(x).

(6.40)

As in a typical tau method, we generate N − m + 1
linear algebraic equations by applying

〈RN (x), L(α,β)
j (x)〉

=
∫

Λ

RN (x)w(α,β)(x)L(α,β)
j (x)dx = 0,

j = 0, 1, . . . , N − m. (6.41)

Also, by substitutingEqs. (4.35) and (6.36) inEq. (6.33),
we get

u(i)(0) = CTD(i)ψ(0) = di , i = 0, 1, . . . ,m − 1.

(6.42)

Equations (6.41) and (6.42) generate N −m + 1 andm
set of linear equations, respectively. These linear equa-
tions can be solved for unknown coefficients of the
vector C . Consequently, uN (x) given in Eq. (6.36) can
be calculated, which gives a solution of Eq. (6.32) with
the initial conditions (6.33).

6.3 Collocation method for nonlinear FDEs in finite
interval

Here, we apply the collocationmethod, based on SJOM
and BOM of fractional derivatives, for nonlinear FDEs
in finite interval subject to initial and boundary condi-
tions.

6.3.1 Collocation method based on SJOM

In order to present the implementation of the Jacobi
collocation method based on SJOM of fractional deriv-
ative, we consider the nonlinear FDE

Dνu(x) = F(x, u(x), Dμ1ν(x), . . . , Dμk u(x)),

(6.43)

with initial conditions (6.2), where F can be nonlinear
in general.
In order to use SJOM for this problem, we first approx-
imate u(x), Dνu(x) and Dμ j u(x) ( j = 1, . . . , k) as
Eqs. (6.3), (6.5) and (6.6), respectively. By substituting
these equations in Eq. (6.43), we get

CTD(ν)Φ(x) 
 F(x,CTΦ(x),CTD(μ1)Φ(x), . . . ,

CTD(μk )Φ(x)). (6.44)

Also, by substituting Eqs. (6.3) and (4.17) in Eq. (6.2),
we obtain

u(i)(0) = CTD(i)Φ(0) = di , i = 0, 1, . . . ,m − 1.

(6.45)

To find the approximate solution uN (x), we first col-
locate Eq. (6.44) at N − m + 1 points. We choose the
N −m+1 shifted Jacobi polynomial roots as the collo-
cation points. These equations together with Eq. (6.45)
generate N+1 nonlinear equationswhich can be solved
using Newton’s iterative method. Consequently, the
approximate solution uN (x) can be obtained.

Remark 3 For dealing with the nonlinear FDE (6.43)
with boundary conditions (6.10), we apply the same
technique described in this subsection, but Eq. (6.45)
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should be changed to (6.11). After using the collocation
method with the aid of SJOM for fractional derivatives
at the N − m + 1 nodes, we obtain a system of N + 1
nonlinear algebraic equations which may be solved by
Newton’s iterative method.

6.3.2 Collocation method based on BOM

In order to show the high importance of BOM of frac-
tional derivative, we apply it to solve multi-order frac-
tional differential equation

F
(
x, u(x), Dβ1u(x), . . . , Dβk u(x)

) = 0, (6.46)

with boundary or supplementary conditions

Hi
(
u(ξi ), u

′(ξi ), . . . , u p(ξi )
) = di , i = 0, . . . , p,

(6.47)

where 0 ≤ p < max{βi , i = 1, . . . , k} ≤ p + 1,
ξi ∈ [0, 1], i = 0, . . . , p and Hi are linear combina-
tions of u(ξi ), u′(ξi ), . . . , u p(ξi ) and u(x) ∈ L2[0, 1].
It should be noted that in general F can be nonlinear.

We approximate u(x) by Bernstein polynomials as

u(x) 

N∑
i=0

ci Bi,N (x) = CTB(x), (6.48)

where vector C = [c0, . . . , cN ]T is unknown vector.
Using Eqs. (4.53) and (6.48) we have

Dβ j u(x) 
 CTDβ j B(x) 
 CTD(β j )B(x),

j = 1, . . . , k. (6.49)

By substituting these equations in Eq. (6.46), we get

F
(
x,CTB(x),CTD(β1)B(x), . . . ,CTD(βk )B(x)

)
=0

(6.50)

Similarly, substituting Eq. (6.48) in Eq. (6.47) yields

Hi

(
CTB(ξi ),C

TD(1)B(ξi ), . . . ,C
TD(p)B(ξi )

)
= di ,

i = 0, . . . , p. (6.51)

To find the solution u(x), we first collocate Eq. (6.50)
at N − p points. For suitable collocation points, we use

xi = 1

2

(
cos

(
iπ

N

)
+ 1

)
, i = 1, . . . , N − p.

(6.52)

These equations togetherwithEq. (6.51) generate N+1
algebraic equations which can be solved to find ci , i =
0, . . . , N . Consequently, the unknown function u(x)
given in Eq. (6.48) can be calculated.

6.4 Collocation method for nonlinear FDEs in a
semi-infinite interval

In this section, in order to show the high importance
of MGLOM of fractional derivative, we apply it to
solve nonlinear multi-order FDE. Regarding the non-
linear multi-order fractional initial value problems on
the interval Λ we propose a spectral modified general-
ized Laguerre collocation method based on MGLOM
to find the solution uN (x).

Consider the nonlinear FDE

Dνu(x) = F(x, u(x), Dβ1u(x), . . . , Dβk u(x)),

in Λ = (0,∞), (6.53)

with initial conditions (6.13), where F can be nonlinear
in general.

In order to use modified generalized Laguerre poly-
nomials for this problem, we first approximate u(x),
Dνu(x) and Dβ j u(x), for j = 1, . . . , k as Eqs. (6.14),
(6.16) and (6.17), respectively. Therefore, Eq. (6.53)
can be written as

CTD(ν)ψ(x) 
 F
(
x,CTψ(x),

CTD(β1)ψ(x), . . . ,CTD(βk )ψ(x)
)

. (6.54)

The numerical treatment of the initial conditions as
given in Eq. (6.13) yields

u(i)(0) = CTD(i)ψ(0) = di , i = 0, 1, . . . ,m − 1,

(6.55)

To find the solution u(x), we first collocate Eq. (6.54) at
N − m points. For suitable collocation points, we use
the N − m + 1 modified generalized Laguerre roots
of L(α,β)

i (x). These equations together with Eq. (6.55)
generate N+1 nonlinear equationswhich can be solved
using Newton’s iterative method. Consequently, the
approximate solution u(x) can be obtained.

Corollary 6 In particular, the special case for gener-
alized Laguerre polynomials may be obtained directly
by taking β = 1 in the modified generalized Laguerre,
which are denoted by L(α)

i (x) (see [66]).

7 Fractional generalized Laguerre functions for
systems of FDEs

The fractional-order generalized Laguerre functions
(FGLFs) can be defined by introducing the change of
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variable t = xλ, β = 1 and λ > 0 onmodified general-
izedLaguerre polynomials.Where theFGLFs L(α)

i (xλ)

be denoted by L(α,λ)
i (x).

We use the fractional-order generalized Laguerre
collocation (FGLC) method (see, [97]) to numerically
solve the general form of systems of nonlinear FDE,
namely

Dνi ui (x) = fi
(
x, u1(x), u2(x), . . . , un(x)

)
, x ∈ Λ,

i = 1, . . . , n, (7.1)

with initial conditions

ui (0) = ui0, i = 1, . . . , n, (7.2)

where 0 < νi ≤ 1.
Let

uiN (x) =
N∑
j=0

ai j L
(α,λ)
j (x), (7.3)

The fractional derivatives Dνi u(x), canbe expressed
in terms of the expansion coefficients ai j using (4.39)
where β = 1. The implementation of fractional-
order generalized Laguerre collocationmethod to solve
(7.1)–(7.2) is to find uiN (x) ∈ SN (Λ) such that

Dνi ui N (x) = Fi
(
x, u1N (x), u2N (x), ..., unN (x)

)
,

x ∈ Λ, (7.4)

is satisfied exactly at the collocation points x (α,λ)
i,N ,k, k =

0, 1, . . . , N − 1, i = 1, . . . , n, which immediately
yields

N∑
j=0

ai j D
νi L(α,λ)

j (x (α,λ)
i,N ,k)

= Pi
(
x (α,λ)
i,N ,k,

N∑
j=0

a1 j L
(α,λ)
j (x (α,λ)

1,N ,k),

N∑
j=0

a2 j L
(α,λ)
j (x (α,λ)

2,N ,k), . . . ,

N∑
j=0

anj L
(α,λ)
j (x (α,λ)

n,N ,k)
)
,

(7.5)

with (7.2) written in the form

N∑
j=0

ai j L
(α,λ)
j (0) = ui0, i = 1, . . . , n. (7.6)

This means the system (7.1) with its initial conditions
has been reduced to a system of n(N + 1) nonlinear
algebraic equations (7.5)–(7.6), which may be solved
by using any standard iteration technique.

8 Applications and numerical results

This section presents some numerical results obtained
by using the algorithms presented in the previous sec-
tions. Comparisons of the spectral methods with those
obtained by other methods reveal that spectral methods
are very effective and convenient.

Example 1 Consider the inhomogeneous Bagley-
Torvik equation, see [68]

D2u(x) + D
3
2 u(x) + u(x) = g(x),

u(0) = 1, u′(0) = 1, x ∈ [0, L]. (8.1)

where g(x) = 1 + x .
The exact solution of this problem is u(x) = 1+ x .

By applying the technique described in (Sect. 6.1.1)
with N = 2, we may write the approximate solution
and the right-hand side in the forms

u(x) =
2∑

i=0

ci P
(α,β)
L ,i (x) = CTΦ(x),

g(x) 

2∑

i=0

gi P
(α,β)
L ,i (x) = GTΦ(x).

Here, the operational matrices corresponding to
Eq. (8.1) can be written as follows

D(2) =
⎛
⎝ 0 0 0

0 0 0
Δ2(2, 0) Δ2(2, 1) Δ2(2, 2)

⎞
⎠ ,

D

(
3
2

)
=

⎛
⎝

0 0 0
0 0 0

Δ 3
2
(2, 0) Δ 3

2
(2, 1) Δ 3

2
(2, 2)

⎞
⎠ ,

G =
⎛
⎝ g0
g1
g2

⎞
⎠ ,

where g j and Δν(i, j) are computed from Eqs. (4.14)
and (4.21), respectively.

Firstly, applying the tau method for (8.1) (see,
Eq. (6.8)) gives

c0 +
(
Δ2(2, 0) + Δ 3

2
(2, 0)

)
c2 − g0 = 0. (8.2)

Secondly, the use of Eq. (6.9) in the initial conditions
yields

c0 − (β + 1)c1 + (β + 1)(β + 2)

2
c2 − 1 = 0, (8.3)

(α + β + 2)c1 − (β + 2)(α + β + 3)c2 − L = 0.

(8.4)
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Finally, if we solve the linear algebraic equations,
(8.2)–(8.4). Then, the approximate solution canbewrit-
ten as

u(x) = (
c0 c1 c2

)
⎛
⎜⎜⎜⎝

P(α,β)
L ,0 (x)

P(α,β)
L ,1 (x)

P(α,β)
L ,2 (x)

⎞
⎟⎟⎟⎠ = x + 1,

which is the exact solution of the problem.
Table 1 exhibits the 3 unknown coefficients c0, c1

andc2 with various choices of α and β. We observed
that in each case of the Jacobi parameters α and β, we
can achieve the exact solution.

Remark 4 In case of α = β = 0 and L = 1,
the previous result is in complete agreement with the
result obtained by Saadatmandi andDehghan, (see [68]
Example 1).

Example 2 Consider the FDE (see [68])

u(ν)(x) + u(x) = 0, 0 < ν < 2, u(0) = 1,

u′(0) = 0 x ∈ (0, 1), (8.5)

the second initial solution is for ν > 1 only.
The exact solution is (see [24])

u(x) = Eν,1(−xν), (8.6)

where

Eδ,ε(x) =
∞∑
r=0

xr

Γ (δr + ε)
, (8.7)

is the generalized Mittag-Leffler function.

The solution of this problem is obtained by applying
the technique described in (Sect. 6.1.1). The maximum
absolute error for ν = 0.85 and various choices of
N , α and β are shown in Table 2. From Table 2, we

Table 1 c0, c1 and c2 for different values of α and β, in Exam-
ple 1

α β c0 c1 c2

0 0 L
2 + 1 L

2 0

1 1 L
2 + 1 L

4 0

0.5 0.5 L
2 + 1 L

3 0

−0.5 0.5 3L
4 + 1 L

2 0

0.5 −0.5 L
4 + 1 L

2 0

−0.5 −0.5 L
2 + 1 L 0

Table 2 Maximum absolute errors at ν = 0.85 for different
values of α, β and N , in Example 2

N α β Error α β Error

8 1.8 × 10−3 8.7 × 10−3

16 0 0 4.5 × 10−4 0.5 −0.5 2.8 × 10−3

24 1.9 × 10−4 1.5 × 10−3

32 8.1 × 10−5 9.6 × 10−4

8 2.9 × 10−3 3.2 × 10−3

16 0.5 0.5 5.8 × 10−4 −0.5 0.5 6.6 × 10−4

24 2.4 × 10−4 2.6 × 10−4

32 1.2 × 10−4 1.4 × 10−4

8 3.8 × 10−3 6.2 × 10−3

16 1 1 1.1 × 10−3 −0.5 −0.5 1.8 × 10−3

24 3.8 × 10−4 9.0 × 10−4

32 2.3 × 10−4 5.2 × 10−4

can achieve a good approximation to the exact solu-
tion by using a few terms of shifted Jacobi polyno-
mials. Also maximum absolute error for N = 10
and different values of ν, α, and β are shown in
Table 3.

Remark 5 In case of α = β = 0 and L = 1, this result
is in complete agreement with the result obtained by
Saadatmandi and Dehghan (see [68]).

Example 3 Consider the equation

D2u(x) − 2D
5
3 u(x) + D

2
3 u(x) + u(x)

= x3 + 6x + 16

5
√

π
x2.5,

u(0) = 0, u′(0) = 0, x ∈ Λ, (8.8)

whose exact solution is given by u(x) = x3.

By applying the technique described in Sect. 6.1.2
with N = 3 and x ∈ Λ, we approximate the solution
as

u(x) =
3∑

i=0

ci L
(α,β)
i (x) = CTψ(x).

Here, we have

D(2) = β2

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
2 1 0 0

⎞
⎟⎟⎠ ,
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Table 3 Maximum
absolute error for different
values of ν, α and β at
N = 10, in Example 2

ν α β Error α β Error α β Error α β Error

0.2 0.1684 0.1907 0.1824 0.2544

0.4 0.0363 0.0617 0.0489 0.1002

0.6 0.0100 0.0202 0.0158 0.0314

0.8 0.0018 0.0045 0.0034 0.0069

1 0 0 1.0 × 10−14 1 1 2.9 × 10−14 1
2

1
2 1.4 × 10−14 −1

2
−1
2 1.6 × 10−14

1.2 0.0046 0.0061 0.0046 0.0222

1.4 0.0014 0.0041 0.0026 0.0085

1.6 3.8 × 10−4 0.0029 0.0016 0.0031

1.8 7.3 × 10−5 0.0016 9.0 × 10−4 0.0012

2 1.9 × 10−14 5.7 × 10−13 2.0 × 10−13 6.6 × 10−14

D

(
5
3

)
=

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

Ω 5
3
(2, 0) Ω 5

3
(2, 1) Ω 5

3
(2, 2) Ω 5

3
(2, 3)

Ω 5
3
(3, 0) Ω 5

3
(3, 1) Ω 5

3
(3, 2) Ω 5

3
(3, 3)

⎞
⎟⎟⎟⎠ ,

D

(
2
3

)
=

⎛
⎜⎜⎜⎝

0 0 0 0
Ω 2

3
(1, 0) Ω 2

3
(1, 1) Ω 2

3
(1, 2) Ω 2

3
(1, 3)

Ω 2
3
(2, 0) Ω 2

3
(2, 1) Ω 2

3
(2, 2) Ω 2

3
(2, 3)

Ω 2
3
(3, 0) Ω 2

3
(3, 1) Ω 2

3
(3, 2) Ω 2

3
(3, 3)

⎞
⎟⎟⎟⎠ ,

G =

⎛
⎜⎜⎝
g0
g1
g2
g3

⎞
⎟⎟⎠ ,

where g j and Ων(i, j) are computed from Eqs. (4.35)
and (4.40), respectively.

Therefore, using Eq. (6.19), we obtain

c0 + [1+Ω 2
3
(1, 0)]c1 + [1−2Ω 5

3
(2, 0)+Ω 2

3
(2, 0)]c2

+[2 − 2Ω 5
3
(3, 0)]c3 − g0 = 0, (8.9)

[1 + Ω 2
3
(1, 1)]c1 + [Ω 2

3
(2, 1) − 2Ω 5

3
(2, 1)]c2

+[1 − 2Ω 5
3
(3, 1) + Ω 2

3
(3, 1)]c3 − g1 = 0. (8.10)

Now, by applying Eq. (6.20) we have

CTφ(0) = c0 + (α + 1)c1 + (α + 1)(α + 2)

2
c2

+ (α + 1)(α + 2)(α + 3)

6
c3 = 0,

CTD(1)φ(0) = −βc1 − β(α + 2)c2

− β(α + 3)(α + 2)

2
c3 = 0. (8.11)

Finally, by solving Eqs. (8.9)–(8.11) we have the 4
unknown coefficients with various choices of α and

Table 4 c0, c1, c2 and c3 for different values of α and β in
Example 3

α β c0 c1 c2 c3 α β c0 c1 c2 c3

0 6 −18 18 −6 0 3
4 − 9

4
9
4 − 3

4

1 24 −36 24 −6 1 3 − 9
2 3 − 3

4

2 1 60 −60 30 −6 2 2 15
2 − 15

2
15
4 − 3

4

3 120 −90 36 −6 3 15 − 45
4

9
2 − 3

4

4 210 −126 42 −6 4 105
4 − 63

4
21
4 − 3

4

0 2
9 − 2

3
2
3 − 2

9 0 3
32 − 9

32
9
32 − 3

32

1 8
9 − 4

3
8
9 − 2

9 1 3
8 − 9

16
3
8 − 3

32

2 3 20
9 − 20

9
10
9 − 2

9 2 4 15
16 − 15

16
15
32 − 3

32

3 40
9 − 30

9
4
3 − 2

9 3 15
8 − 45

32
9
16 − 3

32

4 70
9 − 14

3
14
9 − 2

9 4 105
32 − 63

32
21
32 − 3

32

β which are given in Table 4. Then, we get

c0 = α3 + 6α2 + 11α + 6

β3 , c1=−3α2 − 15α − 18

β3 ,

c2 = 6α + 18

β3 , c3 = −6

β3 .

Thus, we can write

u(x) = (
c0, c1, c2, c3

)

⎛
⎜⎜⎜⎜⎜⎜⎝

L(α,β)
0 (x)

L(α,β)
1 (x)

L(α,β)
2 (x)

L(α,β)
3 (x)

⎞
⎟⎟⎟⎟⎟⎟⎠

= x3.

Example 4 Consider the following linear boundary
value problem
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4(x + 1)D
5
2 u(x) + 4D

3
2 u(x) + 1√

x + 1
u(x)

= √
x + √

π,

u(0) = √
π, u′(0) =

√
π

2
, u(1) = √

2π. (8.12)

The exact solution of this problem is u(x) =√
π(x + 1).

Now, we apply the collocation technique based on
BOM, which is described in Sect. 6.3.2, for solving
Eq. (8.12). The L∞ and L2 errors are presented in
Table 5 for different values of n. Also, inTable 5, a com-
parison is made between the presented method and the
method based on linear B-spline functions (see [78]).
The method of [78] requires the solution of a rather
large systems of algebraic equations to obtain accuracy
of comparable order. Indeed, in the BOM method, we
obtain N + 1 algebraic equations while the method of

[78] requires 2N+1 algebraic equationswhich increase
the computational time.

Table 5 Maximum absolute error for different values of N in
Example 4

N L∞ Error L2 Error

Method of [78]

5 2.5 × 10−3 1.2 × 10−3

7 2.5 × 10−4 1.2 × 10−4

8 7.8 × 10−5 4.2 × 10−5

BOM method

3 1.5 × 10−3 6.5 × 10−4

6 1.6 × 10−5 6.1 × 10−6

12 1.4 × 10−6 9.7 × 10−7

15 6.7 × 10−7 4.6 × 10−7

Example 5 Consider the following initial value prob-
lem

D
3
2 u(x) + 3u(x) = 3x3 + 8

Γ (0.5)
x1.5,

u(0) = 0, u′(0) = 0, x ∈ [0, L], (8.13)

whose exact solution is given by u(x) = x3.

By applying the technique described in (Sect. 6.2.1)
using SJOM of fractional integration with N = 3, we
may write the approximate solution and the right-hand
side in the form

u(x) =
3∑

i=0

ci P
(α,β)
L ,i (x) = CTΦ(x), and

g(x) 

3∑

i=0

gi P
(α,β)
L ,i (x) = GTΦ(x).

From Eq. (5.6) one can write

P

(
3
2

)
=

⎛
⎜⎜⎜⎜⎝

Υ 3
2
(0, 0, α, β) Υ 3

2
(0, 1, α, β) Υ 3

2
(0, 2, α, β) Υ 3

2
(0, 3, α, β)

Υ 3
2
(1, 0, α, β) Υ 3

2
(1, 1, α, β) Υ 3

2
(1, 2, α, β) Υ 3

2
(1, 3, α, β)

Υ 3
2
(2, 0, α, β) Υ 3

2
(2, 1, α, β) Υ 3

2
(2, 2, α, β) Υ 3

2
(2, 3, α, β)

Υ 3
2
(3, 0, α, β) Υ 3

2
(3, 1, α, β) Υ 3

2
(3, 2, α, β) Υ 3

2
(3, 3, α, β)

⎞
⎟⎟⎟⎟⎠ ,

G =

⎛
⎜⎜⎝
g0
g1
g2
g3

⎞
⎟⎟⎠,

where Υ 3
2
(i, j, α, β) is given in Eq. (5.7) and

g j = (2 j + α + β + 1) j !
Lα+β+1Γ ( j + α + 1)

×
j∑

f =0

(−1) j− f Γ ( f + j + α + β + 1)

L f f ! ( j − f )! Γ ( f + β + 1)

×
∫ L

0

(
64x9/2

105
√

π
+ x3

)
xβ+ f (L − x)αdx .

Making use of (6.28) and (6.30) yields

3Υ 3
2
(0, 2, α, β)c0 + 3Υ 3

2
(1, 2, α, β)c1 + 3Υ 3

2

(2, 2, α, β)c2 + 3Υ 3
2
(3, 2, α, β)c3 + c2 − g2 = 0,

(8.14)

3Υ 3
2
(0, 3, α, β)c0 + 3Υ 3

2
(1, 3, α, β)c1 + 3Υ 3

2

(2, 3, α, β)c2 + 3Υ 3
2
(3, 3, α, β)c3 + c3 − g3 = 0.

(8.15)
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Applying Eq. (6.31) for the initial conditions gives

CcTφ(0) = c0 − (β + 1)c1 + (β + 1)(β + 2)

2
c2

− (β + 1)(β + 2)(β + 3)

6
c3 = 0,

CTD(1)φ(0) = (α+β+2)

L
c1 − (β + 2)(α+β+3)

L
c2

+ (β + 2)(β + 3)(α + β + 4)

2L
c3 = 0.

(8.16)

Finally, by solving Eqs. (8.14)–(8.16), we get the
approximate solution. In particular, the special cases
for ultraspherical basis (α = β and each is replaced by
α− 1

2 ) and forChebyshev basis of the first, second, third
and fourth kinds may be obtained directly by taking
α = β = ∓ 1

2 , α = −β = ± 1
2 , respectively, and for

the shifted Legendre basis by taking α = β = 0., we
offer some of these special cases.
Case 1. If α = β = 0, then

c0 = L3

4
, c1 = 9L3

20
, c2 = L3

4
, c3 = L3

20
.

and the approximate solution is given by

uN (x) =
3∑

i=0

ci P
(0,0)
L ,i (x) = x3,

which is the exact solution.
Case 2. If we choose α = − 1

2 , β = 1
2 , then

c0 = 35L3

64
, c1 = 21L3

32
, c2 = 7L3

24
, c3 = L3

20
,

and

uN (x) =
3∑

i=0

ci P

(
− 1

2 , 12

)
L ,i (x) = x3,

which is the exact solution.
Case 3. In the case of α = 1

2 , β = − 1
2 , we have

c0 = 5L3

64
, c1 = 9L3

32
, c2 = 5L3

24
, c3 = L3

20
,

and

uN (x) =
3∑

i=0

ci P

(
1
2 ,− 1

2

)
L ,i (x) = x3,

which is the exact solution.

Example 6 Consider the equation

D2u(x) − 2Du(x) + D
1
2 u(x) + u(x)

= x3 − 6x2 + 6x + 16

5
√

π
x2.5,

u(0) = 0, u′(0) = 0, x ∈ [0, L], (8.17)

whose exact solution is given by u(x) = x3.

Now, we can apply the technique described in
(Sect. 6.2.1) using SJOM of fractional integration with
N = 3. The approximate solution obtained by using the
proposedmethod for some special cases of α and β are
listed in the following cases
Case 1. If α = β = 0, then

c0 = L3

4
, c1 = 9L3

20
, c2 = L3

4
, c3 = L3

20
,

and

uN (x) =
3∑

i=0

ci P
(0,0)
L ,i (x) = x3,

which is the exact solution.
Case 2. If α = − 1

2 , β = 1
2 , then

c0 = 35L3

64
, c1 = 21L3

32
, c2 = 7L3

24
, c3 = L3

20
,

and

uN (x) =
3∑

i=0

ci P

(
− 1

2 , 12

)
L ,i (x) = x3,

which is the exact solution.
Case 3. If α = 1

2 , β = − 1
2 , then

c0 = 5L3

64
, c1 = 9L3

32
, c2 = 5L3

24
, c3 = L3

20
,

and

uN (x) =
3∑

i=0

ci P

(
1
2 ,− 1

2

)
L ,i (x) = x3,

which is the exact solution.
Case 4. If α = β = − 1

2 , then

c0 = 5L3

16
, c1 = 15L3

32
, c2 = 3L3

16
, c3 = L3

32
,

and

uN (x) =
3∑

i=0

ci P

(
− 1

2 ,− 1
2

)
L ,i (x) = x3,

which is the exact solution.

Example 7 Consider the following fractional initial
value problem

D
3
2 u(x) + 3u(x) = γ

3
2 eγ x + 3eγ x ,

u(0) = 1, u′(0) = γ, x ∈ (0, 20), (8.18)

whose exact solution is given by u(x) = eγ x .
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Table 6 Maximum
absolute errors for γ = 0.01
and different values of α, β
and N in Example 7

N α β Error α β Error

10 3.50 × 10−3 9.88 × 10−2

20 3.67 × 10−4 5.84 × 10−2

30 0 1 0 1 2 1.4 × 10−2

40 0 1.8 × 10−3

50 0 0

10 7.95 × 10−2 4.96 × 10−2

20 9.36 × 10−3 3.27 × 10−3

30 3 2 3.17 × 10−4 4 2 0

40 1.53 × 10−4 −4.13 × 10−16

50 −1.54 × 10−14 −6.11 × 10−16

Table 7 Maximum absolute errors for N = 10 and different values of γ , α and β in Example 7

γ α β Error α β Error α β Error α β Error

0.1 9.73 × 10−2 5.13 × 10−5 1.48 × 10−2 3.84 × 10−2

0.2 2.52 × 10−1 1.12 × 10−1 3.65 × 10−2 9.65 × 10−2

0.01 0 1 3.51 × 10−3 1

2

1

2
0 2 1 5.28 × 10−4 1 1 1.42 × 10−3

0.02 9.70 × 10−3 0 1.48 × 10−3 3.92 × 10−3

0.05 3.56 × 10−2 0 5.60 × 10−3 1.46 × 10−2

The solution of this problem is obtained by applying
the technique described in Sect. 6.2.2 using MGLOM
of fractional integration. Themaximum absolute errors
for γ = 0.01 and various choices of N , α and β are
shown in Table 6. From Table 6, we can achieve a
good approximation to the exact solution by using a
few terms of modified generalized Laguerre polyno-
mials. Also maximum absolute errors for N = 10 and
different values of γ , α and β are displayed in Table 7.

Example 8 Consider the following initial value prob-
lem of multi-term nonlinear FDE

Dζu(x) + Dηu(x).Dθu(x) + u2(x) = x6

+ 6x3−ζ

Γ (4 − ζ )
+ 36x6−η−θ

Γ (4 − η)Γ (4 − θ)
,

ζ ∈ (2, 3), η ∈ (1, 2), θ ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0.

The exact solution of this problem is u(x) = x3.

In Table 8, we introduce the maximum absolute
errors, using the collocation technique based on SJOM
in (Sect. 6.3.1), at ζ = 2.5, η = 1.5, θ = 0.9 with

various choices of α, β and N . Also, the maximum
absolute errors for four different choices of N , ζ, η, θ

and α = β = 1.5 are shown in Table 9. From Table 9,
we see that as ζ, η, θ approach their integer values, the
solution of the FDEapproaches that of the integer-order
differential equations and, accordingly, the approxi-
mate solutions will become accurate.

Example 9 Consider the following nonlinear initial
value problem

D2u(x) + Dνu(x) + u2(x) = g(x),

u(0) = 1, u′(0) = 0, x ∈ (0, 20), (8.19)

where

g(x) = cos2(γ x) − γ 2 cos(γ x)

+ 1

Γ (−ν)

∫ x

0
(x − t)−ν−1u(t)dt

and the exact solution is given by u(x) = cos(γ x).

The solution of this problem is obtained by applying
the technique described in (Sect. 6.2.2) in Eq. (8.14)
with α = 0 and β = 1 using LOM. The maximum
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Table 8 Maximum
absolute errors for
ζ = 2.5, η = 1.5, θ = 0.9
and different choices of
α, β and N , in Example 8

N α β Error α β Error

4 3.91 × 10−3 1.84 × 10−3

8 0 0 1.42 × 10−3 1 1 5.40 × 10−4

16 1.24 × 10−4 1.03 × 10−4

24 3.37 × 10−5 3.39 × 10−5

4 2.73 × 10−3 1.27 × 10−3

8 0.5 0.5 8.66 × 10−4 1.5 1.5 3.47 × 10−4

16 1.17 × 10−4 8.98 × 10−5

24 3.50 × 10−5 3.15 × 10−5

Table 9 Maximum absolute errors for α = β = 1.5 and different choices of ζ, η, θ and N , in Example 8

N ζ η θ Error ζ η θ Error

4 1.47 × 10−9 2.02 × 10−3

8 2.000001 1.000001 0.000001 2.43 × 10−10 2.75 1.75 0.75 5.93 × 10−4

16 2.62 × 10−11 2.40 × 10−4

24 6.29 × 10−12 1.06 × 10−4

4 1.85 × 10−4 1.91 × 10−6

8 2.99 1.99 0.99 5.32 × 10−5 2.9999 1.9999 0.9999 5.46 × 10−7

16 3.50 × 10−5 3.67 × 10−7

24 1.95 × 10−5 2.06 × 10−7

Table 10 Maximum absolute errors for γ = 1
30 and different

values of ν and N in Example 9

N ν Error ν Error

20 1.93 × 10−1 2.67 × 10−1

30
1

2
5.90 × 10−2 9

10
4.72 × 10−2

40 6.44 × 10−2 2.85 × 10−2

absolute error for γ = 1
30 and γ = 1

100 with various
choices of N and ν are shown in Tables 10 and 11,
respectively.

Example 10 Finally, we consider the following nonlin-
ear boundary value problem

D2u(x) + Γ

(
4

5

)
5
√
x6 D

6
5 u(x)

+ 11

9
Γ

(
6

5

)
6
√
xD

1
6 u(x) + (u′(x))2 = 2 + 1

10
x2,

u(0) = 1, u(1) = 2. (8.20)

The exact solution of this problem is u(x) = x2 + 1.

We apply the method presented in Sect. 6.3.2 in
which we use the collocation method based on BOM
of fractional derivative. In Table 12, we compare the
L∞(0, 1) and L2(0, 1) errors of the BOM algorithm
with the method proposed in [78].

Example 11 Consider the FDE

D2u(x) + D
3
2 u(x) + u(x) = x2 + 2 + Γ (3)

Γ

(
3

2

) x
1
2 ,

u(0) = 0, u′(0) = 0, (8.21)

the exact solution is given by u(x) = x2.

Weconvert Eq. (8.21) into a systemofFDEbychanging
variable u1(x) = u(x) and get

D
1
2 u1(x) = u2(x)

D
1
2 u2(x) = u3(x)

D
1
2 u3(x) = u4(x) (8.22)

D
1
2 u4(x) = −u4(x) − u1(x) + x2 + 2 + Γ (3)

Γ (1.5)
x

1
2 ,
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Table 11 Maximum absolute errors for γ = 1
100 and different values of ν and N in Example 9

N ν Error ν Error ν Error

20 6.20 × 10−1 2.12 × 10−1 3.14 × 10−1

30 2
10 2.16 × 10−1 1

2 4.32 × 10−2 9
10 6.60 × 10−2

40 8.51 × 10−2 3.19 × 10−2 1.21 × 10−1

Table 12 Maximum absolute errors for different values of N ,
in Example 10

N L∞error L2error

Method of [78]

5 5.1 × 10−3 1.9 × 10−3

7 3.3 × 10−4 1.2 × 10−4

8 2.1 × 10−5 7.6 × 10−5

BOM method

3 3.4 × 10−5 2.0 × 10−5

6 1.5 × 10−6 7.6 × 10−7

12 5.5 × 10−8 2.3 × 10−8

15 1.9 × 10−8 7.9 × 10−9

Table 13 Maximum absolute error using FGLC method with
various choices of α at N = 4 for Example 11

α E

− 1
2 3.76 × 10−14

0 2.84 × 10−14

1
2 2.88 × 10−14

1 5.39 × 10−13

2 6.63 × 10−14

3 6.73 × 10−14

with initial conditions

u1(0) = u(0), u2(0) = 0, u3(0) = u′(0),
u4(0) = 0. (8.23)

The maximum absolute error for y(x) = y1(x)
using FGLC method at N = 4 and various choices
of α are shown in Table 13. It is clear that the approxi-
mate solutions are in complete agreementwith the exact
solutions.

9 Conclusion

In this article, we have presented a broad discussion
of spectral techniques based on operational matrices of
fractional derivatives and integrals for some orthogonal
polynomials, such as the Legendre, Chebyshev, Jacobi,
Bernstein, Laguerre, generalized Laguerre and modi-
fied generalized Laguerre polynomials, and their use
with numerical techniques for solving fractional dif-
ferential equations on finite and semi-finite intervals.

Efficient numerical integration processes for FDEs
were investigated based on spectral methods in combi-
nationwith operationalmatrices.Comparisons between
the obtained approximate solutions, using spectral
methods, of the problems with their exact solutions and
with the approximate solutions achieved by othermeth-
odswere introduced to confirm the validity and applica-
bility of spectral techniques based on operationalmatri-
ces over other methods. The proposed methods can be
extended to solve the time-dependent FDES.

Acknowledgments The authors are very grateful to the review-
ers for carefully reading this article review and for their com-
ments and suggestions which have improved the article.
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