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Abstract The local fractional Burgers’ equation
(LFBE) is investigated from the point of view of
local fractional conservation laws envisaging a non-
linear local fractional transport equation with a lin-
ear non-differentiable diffusion term. The local frac-
tional derivative transformations and the LFBE conver-
sion to a linear local fractional diffusion equation are
analyzed.
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1 Introduction

The Burgers’ equation (BE) [1-3] is the simplest non-
linear diffusion equation arising in the fluid mechanics.
The BE can be transformed into the diffusion equation
by means of the Hopf—Cole transformation as shown
in [4,5]. On the other hand, the conservation laws for
BE were discussed in [6]. The BE was analyzed in a
broad perspective, namely with singular data [7], for
a non-commutative form [8], in lattice gas problems
[9], and by means of a stochastic approach [10]. The
BE has been successfully applied to turbulence prob-
lems [11], traffic flow [12] and plane waves [13]. The
numerical solution of the BE was developed by finite
element method [14], generalized boundary element
method [15], tanh-coth method [16] and other methods
(see also cited references therein).

In view of the fractional calculus theory [17-21],
applicable to nonlinear problems on science and engi-
neering, the adoption of fractional BEs was suggested
[22] and several solutions were developed [23,24] and
analyzed [25,26]. The solution strategies employed
homotopy analysis [27] and Adomian decomposition
methods [28] to solve the space- and time-fractional
versions of the fractional BE. In this context, the clas-
sic finite difference method was proposed to solve the
generalized FBE [29]. Furthermore, the variational iter-
ation method (VIM) was successfully applied for tak-
ing the Burgers’ flows with fractional derivatives [30].
The coupled BEs within time- and space-fractional
derivatives were solved by the Adomian decomposition
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method in [31]. We can mention also the generalized
differential transformation and homotopy perturbation
methods that were adopted to solve the time-fractional
BEs [32].

Recently, the local fractional calculus was success-
fully applied to non-differentiable problems arising in
the areas of solid mechanics [33], heat transfer and
wave propagation [34], diffusion [35], hydrodynamics
[36], vehicular traffic flow [37] and other topics [38—
42] (see also references therein).

The present manuscript focuses on the LFBE aris-
ing from the nonlinear local fractional transport equa-
tion involving a linear non-differentiable diffusion term
with the local fractional conservation laws. This arti-
cle is structured as it follows. In Sect. 2, the nonlinear
local fractional transport equation from the local frac-
tional conservation laws is introduced. In Sect. 3, the
LFBE arising in fractal flow is discussed. In Sect. 4, the
local fractional derivative transformation is suggested.
In Sect. 5, the results are discussed. Finally, Sect. 6
outlines the main conclusions.

2 The nonlinear local fractional transport
equation via local fractional conservation laws

Let us consider a nonlinear local fractional transport
equation from the local fractional conservation laws
point of view. In this context, the local fractional partial
derivative of the non-differentiable function f(x, y)
with respect to x = x0 (0 < o < 1) is defined as
[33,35]:

aaf(-xo’ y) — lim A* (f ()C, y) - f(x()a )’)) (1)
dIx T x—xo (x — x0)* ’
where
A% (f (x,y) = f (x0,¥)
=Srd+a)lf (xy) — f(xo, ] 2

If O (x, t) denotes a fractal flow and its conserved den-
sity is ¢ (x, t), then we have [37]

1 2% (x,1) -,
0=+t / S (@0, 3)

B 1 2320 (x, 1)
QW= I (1+a) /xl dx«

The local fractional integral operator of f (x) of order
« in the interval [a, b] is defined as [33,35]

(dx)*. “4)
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— i ti) (At; * s
(1 +a) Ao = £ (1) (A1)

(%)
with the partitions of the interval [a, b] , (tj, tj+1) , ] =
0,...N—1,tp=aandty = b, for At; =tj41 —t;
and Ar = max {Ato, Ar, Atj, }

Employing expressions (3) and (4), we have [37]:

1 299 () 9400 o
I (+a) /x1 { o T axe | (@70
(6)

Hence, the local fractional conservation law reads as

[37]

3% (x, 1) n %0 (x,1) _
or% ox¥

where the functions ¢ (x, t) and Q (x, t) are the con-

served density and fractal flow, respectively.
If the fractal flow can be represented as

2
0= % ®)

0, (N

then the nonlinear transport equation in the local frac-
tional conservation law becomes

aa¢ ¢ ¢2 _
oo T oxe (7) =0 ©)

Therefore, the nonlinear local fractional transport equa-
tion (also known as the local fractional inviscid BE)
takes the form
% %

=0. 10
ar¥ o ax¥ (10)
The linear form of the local fractional transport equa-
tion was discussed in [37].

3 Local fractional Burgers’ equation

If the fractal flow is expressed as

2 9
0= 22

2 ax“
then, using (7), we arrive to the nonlinear local
fractional transport equation with a linear non-
differentiable diffusion term

(1)
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9 9 2 PLs .
_¢ n ¢_ o ¢ —0. (12) Let us define the function
ar®  9x% \ 2 ax“ 00 N o )

(L) A
where « is a diffusion coefficient and ¢ (x, ¢) is a non- Vi) = Z ( 2K) (l+ia) (20)
differentiable function. =0

Equation (12) can be expressed as This allows developing the following equations
3% 3% 82a¢ 0%y (x, 1)

o T oxe =K (13 or®

o 0 i i
Equation (13) is the LFBE, and the diffusion coefficient = (— L) 8<p—(;c,t) Z (— l) M
k denotes the fluid kinematic viscosity. 2 ot i=0 2/ I +ia)

If the quadratic term in (13) is neglected, then we 1 0% (x,1) ’1
obtain the local fractional diffusion equation (i.e. the T T o v x.0, @D
LFBE) [35]: and
pLs 32(1 o

¢ _ 070 _ (14) 9%y (x,1)

ot 0x 2 9x2
From (13), the local fractional forced BE, involving an _( 1\3¥ekx.0 i 1 Lyl
external force g; (x, t), can be obtained in the form - 2k oxv — 2] I'(1+iw)

i=
aot¢ aa¢ 82a¢ Z_LBQ([)(X,[) ; 2
W—Hﬁaxa =Km+g1. (15) 2 9x V. @2)

Using (15), the nonlinear local fractional transport
equation with a source term g» (x, t) is

0%¢p 0%¢p
Z 7 = 05. 16
a7 +¢8x“ 82 (16)

In (16), the function g; (x, t) is a non-differentiable
source term.

4 Local fractional derivative transformations

The local fractional derivative transformation can be
used to convert the LFBE into a linear local fractional
diffusion equation. The main idea and the transforma-
tion approach are explained in the sequel.

Let us define

0%

= 17
0=y (17)
and
PLs oY 2

v_ e o (18)
ot ox% 2
Then, from expressions (17) and (18), we obtain
9 g 1 (3%’

2 (22) . (19)
ot dx2e 2 \ oxv

In view of (21) and (22), we obtain the local fractional
derivative transformation, which is given as follows:

90y (x.1)
o ,t 5
p=L100D _ _y —ar (23)
Py V(e D)
3y (x,1)
¢ t —a
(p(xv ) — —2/( X ; (24)
ax* ¥ (x,t)
« 2
g (TR 2 9o
dx2e ¥ (x, 1) ¥(x, 1)  ox2
(25)

From Eqgs. (23), (24) and (25), we convert eq. (19) into
Y (x,1)
917

v (x, 1)

™ 2

yen 2 3y (x, 1)
=« | 2« —

¥(x,1) V(x, 1) 9x

3P (x,) \ 2
—ut ) (26)
Y(x, 1)

Finally, the linear local fractional diffusion equation
reads as

0%y (1) _ 9y (x.1)
ar* =" ox2e

—2K

27
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More details about linear local fractional diffusion
equation are available in [35].

5 Discussion

If the fractal dimension varies from « to 1, then the
conserved density changes into a differentiable con-
served density. In this context, we transform (13) into
the classical BE [2,3]:
dp ¢ 99
m + ¢£ = K@, (28)
where ¢ (x, t) is a differentiable function.

For « = 1, we have

9 o 1 (dp\*
ol (). (29)
ot ax2 2 \ox
With the Cole—Hopf transformation [3-5], we have
Y (x,
p= 200D _ ol (30)
ot ¥ (x, 1)’
oY (x,1)
0 1 —
e P G
dx v(x,t)
2
o), (5 2% 3%y (1)
—_— = LK — .
dx2 ¥ (x, 1) ¥(x,1)  3x2
(32)

In (20), we suggested a transformation function that in
view the case at issue can be written as

Y(x, 1) =§(—l)lm (33)
P 2¢) ' (1+i)

This transformation function was developed in [5] as

¥ (x, 1) = e 20D, (34)

which leads to

o (x,t) = =2kIny (x,1). (35)
Hence, from (33) and (34), we obtain

i e 1\ ¢ (x,1)
—2cpt) — —_——) 36
¢ g{;( 2K) ra+i (50

In fact, expression (36) is the Taylor expansion of
o 2w P

Moreover, using (20), we may develop the local frac-
tional series expansion of E, (—¢ (x,t)/2«) with a
non-differentiable function ¢ (x, r), namely
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6 Conclusions

The communication discussed the LFBE which can be
developed on the basis of the nonlinear local fractional
transport equation with a linear non-differentiable dif-
fusion term. Consequently, the local fractional deriva-
tive transformation conceived by the presented analysis
allowed transforming the LFBE into the local fractional
diffusion equation. The classical BE emerges as a rea-
sonable consequence from the LFBE when the fractal
dimension o becomes equal to 1.
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