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Abstract A recursive terminal sliding mode con-
troller (RTSMC) based on sliding mode disturbance
observer (SMDOB) is proposed for the longitudi-
nal dynamics of a generic hypersonic flight vehicles
(HFVs) in the presence of parametric uncertainties,
measurement noises and external disturbances. First, a
sliding mode tracking controller is presented by intro-
ducing recursive terminal sliding mode manifolds, in
which each manifold will reach zero subsequently in
finite time as well as the usual singularity problem
will not occur. The RTSMC embraces advantages of
both nonsingular terminal sliding mode control and
high-order sliding mode control. Next, for the sake of
enhancing the robustness of controller for uncertainties,
a SMDOB is proposed to estimate and compensate the
disturbances. Then, a composite controller that is com-
posed of RTSMC and SMDOB is designed, and its sta-
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bility is analyzed utilizing Lyapunov function method.
Finally, numerical simulation is conducted for cruise
flight condition of HFV. Simulation results show the
expected control performance.

Keywords Recursive terminal sliding mode control ·
Sliding mode disturbance observer · Hypersonic flight
vehicle · Finite time · Nonsingular terminal sliding
mode

1 Introduction

As a cost-effective and reliable space aircraft, HFVs
have attracted more and more interests from civil
and military due to its high-speed and prompt global
responses. HFV is a class of aircrafts that flying in the
near space which is 30–70km from the ground. The
atmospheric environment of near space is unstable, and
the flight condition is complex. In addition, there are
strong interactions in HFV between the engine dynam-
ics and airframe. It is sensitive to any tiny uncertainty
change due to the peculiar aerodynamic structure of
HFV.Hence, it is a significant challenging task formod-
eling and control of HFV. The research of HFV started
about 1960s, so fruitful results had been achieved up
to date. In 2004, the flight tests of X43-A HFV were
held successfully, which motivate the further research
for modern control and application of HFV dynamic
system. In the last decade, a variety of modern meth-
ods and techniques have been applied to the area of
flight control design of HFV, and considerable research
achievements have sprung up.
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Aeropropulsive and aeroelastic of HFV were ana-
lyzed in detail in reference [1], which laid the foun-
dation for establishing HFV model. Bolender and
Doman [2,3] built a nonlinear model for the longi-
tudinal dynamics of air-breathing HFV, which cap-
tured the complex interactions between the aerodynam-
ics, propulsion system and structural dynamics, and its
motion equations were derived using Lagrange’s equa-
tions. In terms of nonlinear model, robust flight control
systems were synthesized [4] that stability and per-
formance robustness was estimated by Monte Carlo
evaluation. And stochastic robust nonlinear dynamic
inversion (NDI) control law was proposed for longitu-
dinal motion of HFV containing 28 uncertain parame-
ters [5]. For the sake of utilizing linear control method,
feedback linearization model and control-oriented lin-
earized model were derived in [6,7]. Xu [8] designed
an adaptive sliding mode controller for longitudinal
dynamics of input–output linearization model of HFV,
where the input–output linearizationmodel is proved to
be an effective and extensively used model hereafter.
Obaid proposed mini–max linear quadratic regulator
(LQR) optimal controller and mini–max optimal lin-
ear quadratic Gaussian (LQG) controller by the virtue
of mini–max linear quadratic theory for feedback lin-
earization model of HFV, in which the optimal con-
trol minimizes the maximum value of the quadratic
cost function and gives an optimal solution for the
selected cost function [9–11]. The optimal controller
can achieve good performance. However, the construc-
tion of Riccati equation parameter matrix in LQR is
a difficulty work. Because of the peculiarity of many
uncertainties for HFV model, sliding mode control is
frequently adopted, which is not only robust to uncer-
tainty but also easily designed.

The basic of sliding mode control is the design-
ing of sliding mode surface. Different sliding surfaces
can lead to various convergence performances. Inte-
gral sliding surface can eliminate the static error when
the system is stable. Terminal sliding surface results in
finite-time convergence for system states. Global slid-
ing surface has global robustness due to its initial states
on the sliding manifold. In reference [12], an integral-
type sliding manifold is designed and then a nonfragile
H∞ controller based on that is investigated for a flexible
air-breathingHFV.Taking into account adaptive sliding
control, Burak putted forward a varying sliding surface
with varying slopes and offsets, whose parameterswere
updated by solving state-dependent Riccati equations

[13]. A robust sliding manifold-based adaptive sliding
mode controller is presented in [14] for air-breathing
HFV, where the system error dynamics can be driven
onto the predefined sliding surface in finite time. Nev-
ertheless, the system states do not always convergence
to the equilibrium point in finite time once the system
states are driven onto the sliding manifold. But the ter-
minal sliding mode control can realize it.

For terminal sliding mode control, system states
arrive at the sliding manifold from their initial con-
ditions in finite time; then, the states slide along the
sliding manifold to the equilibrium point in finite time.
Therefore, the terminal sliding mode control is a kind
of finite-time convergence control. So far, there are
numerous research results about terminal sliding mode
control, such as fast terminal sliding mode control
design [15], continuous terminal sliding mode control
[16], et al. Terminal sliding mode control usually has
singularity problem which limits its application. For
this, Yong Feng proposed nonsingular terminal slid-
ing mode control and applied it to the rigid manipula-
tors successfully [17]. Combining the above methods,
Li [18] proposed an adaptive nonsingular fast termi-
nal sliding mode control scheme for electromechanical
actuator.

It is worth noting that HFV is a high-order nonlinear
system. Hence, the low-order sliding mode controller
forHFVhas chattering phenomenon and slowconverge
speed. Albeit references [19,20] have presented high-
order sliding mode control for HFV, their first sliding
surfaces remain linear form, namely asymptotic con-
vergence. Therefore, above both controllers do not con-
verge in finite time. Aiming at the finite-time conver-
gence problem, a recursive high-order terminal sliding
mode control is proposed for HFV in this paper. The
proposed scheme has robustness to uncertainty para-
meters.

In addition to the parameters uncertainty, there are
external disturbance during the HFV flight. A small
number of references consider external disturbance
[19]. In this paper, a novel sliding mode disturbance
observer (SMDOB) is presented, which can estimate
the disturbance and further compensate it in the con-
troller. As a result, the composite control in this paper is
RTSMC+SMDOB, where RTSMC achieves command
tracking control meanwhile eliminate chattering, and
SMDOB estimates external disturbance and compen-
sates it. The major contributions of this paper are as
follows
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(I) A novel recursive terminal sliding mode con-
troller is proposed for hypersonic flight vehicles,
which is the first time that themethod is applied in
hypersonic aircraft. The hypersonic flight vehicle
is highly nonlinear, and the recursive slidingmode
controller can meet its control requirements. The
recursive terminal sliding mode controller is non-
linear controller, which is the superior than linear
controller for nonlinear systems.

(II) The novel sliding mode control has merits of
both nonsingular terminal sliding mode control
(NTSMC) and high-order sliding mode control
(HOSMC).The system states under this controller
are finite-time convergent and have no singular-
ity problem, and at the same time, the chattering
problem existed in common sliding mode control
is attenuated.

(III) A SMDOB is introduced for the external distur-
bance of HFV. The SMDOB is simple and not
relay on the plant and has shorter estimated time
than other methods. This disturbance observer
cannot affect the controller designing and applica-
tion, which is relatively independent in the whole
system. The disturbance observer is as compensa-
tion part for the controller, by which the external
disturbance is eliminated.

(IV) The engineering application of NTSMC and
SMDOB is considered. In the process of design-
ing, the methods are considered for implementa-
tion by hardware, not only inmathematical deduc-
tion. So these methods have a certain value of
engineering application.

The remainder of the paper is organized as follows.
Section 2 formulates the HFVmodel and control prob-
lem. Section 3 shows the design process of RTSMC
and SMDOB in detail. The composite controller is pre-
sented in Sect. 4, and the stability analysis for controller
is given at the same time. Numerical simulations are
conducted in Sect. 5. Finally, Sect. 6 gives the conclu-
sions.

2 Model and problem formulation

2.1 Hypersonic flight vehicle model

The model of longitudinal dynamics for a generic
HFV is developed by NASA Langley Research Cen-
ter, which consists of differential equations described

by velocity, altitude, angle of attack, flight path angle
and pitch rate [8,21]. The motion equations are as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V̇ = T cosα−D
m − μ sin γ

r2

ḣ = V sin γ

γ̇ = L+T sin α
mV −

(
μ−V 2r

)
cos γ

Vr2

α̇ = q − γ̇

q̇ = Myy
Iyy

(1)

where V, h, γ, α, q are velocity, altitude, flight path
angle, angle of attack and pitch rate of HFV, respec-
tively; m is mass and Iyy is moment of inertia of the
aircraft; L , D, T, Myy are lift, drag, thrust, pitching
moment, respectively, that acting on the aircraft and
r is radial distance from Earth’s center. The expression
details of L , D, T, Myy, r are, respectively, as follows

L = 1

2
ρV 2SCL (2)

D = 1

2
ρV 2SCD (3)

T = 1

2
ρV 2SCT (4)

Myy = 1

2
ρV 2Sc̄ [CM (α) + CM (α, δe) + CM (α, q)]

(5)

r = h + RE (6)

where ρ, S, c̄, RE denote density of air, reference
area, mean aerodynamic chord and radius of the
Earth, respectively; δe is the elevator deflection angle;
CL ,CD,CT ,CM (α),CM (α, δe),CM (α, q) are relev-
ant aerodynamic coefficient parameters, respectively,
as

CL = 0.6203α (7)

CD = 0.6450α2 + 0.0043378α + 0.003772 (8)

CT =
{
0.02576β, β < 1
0.0224 + 0.00336β, β > 1

(9)

CM (α) = −0.035α2 + 0.036617(1 + �CMα)α

+ 5.3261 × 10−6 (10)

CM (α, q) = c̄q

2V

(
−6.796α2 + 0.3015α − 0.2289

)

(11)

CM (α, δe) = ce (δe + d2(t) − α) (12)

where d2(t) means the external disturbance reflected
on the elevator.
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A second-order system is used to represent the
engine dynamics as

β̈ = −2ζωnβ̇ − ω2
nβ + ω2

n (βc + d1(t)) (13)

where β and βc are throttle setting and throttle setting
command, respectively; ξ is damping ratio and ωn is
natural frequency; d1(t) is the external disturbance on
behalf of torques and generalized elastic forces.

In order to certify the robustness and immunity of
the proposed controller, some certain parameter uncer-
tainties are added in the HFV model that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = m0 (1 + �m)

Iyy = I0 (1 + �I )
S = S0 (1 + �S)

c̄ = c̄0 (1 + �c̄)
ρ = ρ0 (1 + �ρ)

ce = ce0(1 + �ce)
CMα = CMα0(1 + �CMα)

(14)

where (•0) represents the nominal value of the parame-
ter (•) and (�•) denotes the parameter uncertainties.

Assumption 1 The external disturbance di (t) and its
first time derivative are assumed to be upper bounded
[21,22], i.e., |di (t)| ≤ gi ,

∣
∣ḋi (t)

∣
∣ ≤ ḡi , here gi and ḡi

are known positive constants for i = 1, 2.

Assumption 2 The parameter uncertainties in Eq. (14)
are assumed to be bounded. And they satisfy the fol-
lowing conditions:

|�m|≤�m∗, |�I |≤�I ∗, |�S|≤�S∗, |�c̄|≤�c̄∗,
|�ρ| ≤ �ρ∗, |�ce| ≤ �c∗

e , |�CMα| ≤ �C∗
Mα

where �m∗,�I ∗,�S∗,�c̄∗,�ρ∗,�c∗
e ,�C∗

Mα are
all positive real constants.

Remark 1 According to model (1), velocity V and alti-
tude h are regarded as output variables, while the input
variables are selected as engine throttle setting com-
mand βc and elevator deflection δe. The control objec-
tive is designing a suitable controller such that the
velocity V and altitude h track the command Vd and
hd in finite time in the presence of uncertainty, noises
and disturbance, respectively.

2.2 Input–output linearization

The model of HFV in Eq. (1) is highly nonlinear
and strong coupling. For the sake of designing con-

trol law expediently, input–output linearizationmethod
needs to be applied to linearize the model. In terms of
Remark 1, the linearization target is that the linearized
results can apparently express the relationship between
output variables (V, h) and input variables (βc, δe).

In line with the nonlinear system theory and taking
advantage of tools for Lie derivative, it is concluded
that input variables (βc, δe) can appear in the motion
equations by differentiating V three times and h four
times [8], respectively. So the relative degree of the
HFV nonlinear system is r = 3 + 4 = 7. Due to the
order of system in Eq. (1) is five, a second-order engine
dynamics system is introduced. Therefore, the order of
whole system is seven, i.e., n = 5+ 2 = 7. In terms of
r = n, the closed-loop system has no zero dynamics
[23] and the nonlinear longitudinal model can be lin-
earized completely [5]. The linearization process is as
follows
⎧
⎨

⎩

V̇ = fV (x)

V̈ = �1ẋ/m...
V = (�1ẍ + ẋT�2ẋ)/m

(15)

⎧
⎪⎪⎨

⎪⎪⎩

ḧ = V̇ sin γ + V γ̇ cos γ...
h = V̈ sin γ + 2V̇ γ̇ cos γ − V γ̇ 2 sin γ + V γ̈ cos γ

h(4) = ...
V sin γ + 3V̈ γ̇ cos γ −3V̇ γ̇ 2 sin γ + 3V̇ γ̈ cos γ

− 3V γ̇ γ̈ sin γ − V γ̇ 3 cos γ + V
...
γ cos γ

(16)

γ̇ = fh(x), γ̈ = �1ẋ,
...
γ = �1ẍ + ẋT�2ẋ (17)

where x = [V γ α β h ]T is the state vector, Ω1,Ω2,

Π1,Π2 are the system equations’ first-order and
second-order partial derivatives regarding to state vari-
ables, respectively, whose detailed expressions are
shown in “Appendix 1.”

The expressions of α̈ and β̈ can be written two parts
as

α̈ = α̈0 + ρV 2Sc̄ce
2Iyy

(δe + d2(t))

β̈ = β̈0 + ω2
n (βc + d1(t)) (18)

where

α̈0 = 1

2Iyy
ρV 2Sc̄ [CM (α) + CM (α, q) − ceα)] − γ̈

β̈0 = −2ξωnβ̇ − ω2
nβ

Given ẍ0 = [ V̈ γ̈ α̈0 β̈0 ḧ ]T, then
{ ...
V = FV + b11 (βc + d1(t)) + b12 (δe + d2(t))
h(4) = Fh + b21 (βc + d1(t)) + b22 (δe + d2(t))

(19)
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where

FV =
(
Ω1 ẍ0 + ẋTΩ2 ẋ

)

m
Fh = 3V̈ γ̇ cos γ − 3V̇ γ̇ 2 sin γ + 3V̇ γ̈ cos γ

− 3V γ̇ γ̈ sin γ − V γ̇ 3 cos γ + FV sin γ

+ V cos γ
(
Π1 ẍ0 + ẋTΠ2 ẋ

)

b11 =
(

ρV 2Scβω2
n

2m

)

cosα

b12 = −
(
ceρV 2Sc̄

2mIyy

)

(T sin α + Dα)

b21 =
(

ρV 2Scβω2
n

2m

)

sin(α + γ )

b22 =
(
ceρV 2Sc̄

2mIyy

)
[
T cos(α + γ )

+ Lα cos γ − Dα sin γ
]

cβ = ∂CT

∂β
, Dα = ∂D

∂α
, Lα = ∂L

∂α

Then, Eq. (19) can be rewritten as

[ ...
V
h(4)

]

=
[
FV
Fh

]

+ B
[

βc

δe

]

+ B
[
d1(t)
d2(t)

]

(20)

where B =
[
b11 b12
b21 b22

]

.

Assumption 3 The matrix B is assumed to be invert-
ible.

Remark 2 For the input–output combination, thematrix
B is nonsingular for the entire flight envelope except
on a vertical flight path [5]. Hence, the Assumption 3
is reasonable to be assumed. When the flight condition
is near the singularity, the measures taken are shown in
“Appendix 2.”

Remark 3 The nonlinear system in Eq. (1) can be
expressed as affine nonlinear system of form

ẋ(t) = f (x) +
m∑

k=1
gk(x)uk

yi = hi (x), i = 1, 2, . . . ,m

where f , g,h are smooth functions in Rn . In terms of
above contents, relative degree of the system, r = n, the
order of the system, there is no zero dynamics. There-

fore, the control input u = [
βc δe

]T
in linearized sys-

tem (20) is affine control input.

Remark 4 Given x1 = v, x2 = v̇, x3 = v̈, the velocity
subsystem is changed to the form of state space without
considering the external disturbance as
⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
0 1 0
0 0 1
a11 a12 a13

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+
⎡

⎣
0 0
0 0
b11 b12

⎤

⎦

[
βc

δe

]

y = [
1 0 0

]

⎡

⎣
x1
x2
x3

⎤

⎦+ [
0 0

]
[

βc

δe

]

where a1i is related to FV and a1i �= 0, i = 1, 2, 3. The
system matrixes are, respectively,

A =
⎡

⎣
0 1 0
0 0 1
a11 a12 a13

⎤

⎦ , B =
⎡

⎣
0 0
0 0
b11 b12

⎤

⎦ ,

C = [
1 0 0

]
, D = [

0 0
]
.

According to theoutput controllability criterion [24],
the output V is controllable.

Similarly, the output variable h is also controllable.
In one word, the input–output linearized model is

controllable, and the system can be stable if the con-
troller is appropriate.

3 Controller and observer design

In this section, a recursive terminal sliding mode con-
troller is firstly designed to track the reference com-
mand, and then, a sliding mode disturbance observer is
presented for compensating the external disturbance.

3.1 Tracking controller design

Terminal slidingmode control usually has the singular-
ity problem. An approximately terminal sliding mode
control can be introduced according to the slidingmode
twisting algorithm, which can avoid the singularity
problem.

Lemma 1 [25,26] Define a derivative–integral termi-
nal sliding function for a second-order system as

s = ė + βe + αeI (21)

where α, β > 0, ėI (t)+TseI (t) = sign (e(t))with the
system tracking error e(t).
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When the initial condition is chosen as eI (0) =
−(ė(0) + βe(0))/α, then the system tracking error e
will converge to zero in finite time, i.e., the conver-
gence time treach has an upper bound.

Proof Substituting the initial condition into Eq. (21)
yields s = 0. In other words, the system tracking error
trajectory is on the sliding mode manifold that

s = ė + βe + αeI = 0 (22)

Define

z = −αeI (23)

Then

ė = z − βe (24)

According to [25], an arbitrary absolutely continuous
function V (e, z) can be found satisfying

ė · ∂V

∂e
− α · ∂V

∂z
= k · V 1/2 (25)

Choose s(e, z) and m(e, z), respectively, as

s(e, z)=2α |e|−βez + z2 > 0 for e2 + z2 �= 0 (26)

m(e, z) = 1√
g − 1

arc tan
βge − 2z

2
√
g − 1z

(27)

where g = 8α/β2.
Then, the Lyapunov function candidate V (e, z) can

be written as

V (e, z) = k2

4

(
−eI + k0e

m(e,z)
√
s(e, z)

)2
(28)

where k0 > −z · (αem(e,z)√s(e, z)
)−1

.
In accordance with Theorem 1 in [25], the reaching

time has an upper bound, i.e.,

treach ≤ 2k−1
min max

{√
V (e(0), z(0))

}
(29)

where

kmin = β√
8

min
g∈{g−,g+}

{

gk̄ − √
ge

arctan
( −1√

g−1

)
/
√
g−1
}

,

k̄ > 0.

Therefore, the system tracking error e will converge to
zero in finite time treach. The proof is completed. �	
Remark 5 The above Lemma is generated in terms of
sliding mode twisting algorithm. In other words, the
tracking error e and its integration state eI converge
to zero along sliding mode twisting trajectory in finite
time. The merit is that fewer nonlinear operations are
employed.

Theorem 1 Consider the HFV model (1) and its lin-
earization form (20) based on Assumption 3 and
Remark 3, the system output variables V and h can
track the reference command Vd and hd in finite time,
respectively, if the affine controller is chosen as

u = B−1

[
−�1 − FV + ...

V d − k1 |s1|γ1 sgn(s1)
−�2 − Fh + h(4)

d − k2 |s2|γ2 sgn(s2)

]

(30)

where k1 > 0, k2 > 0, 0 < γ1 < 1, 0 < γ2 < 1. The
recursive sliding mode manifolds, respectively, as

e11 = ė01 + β11e01 + α11eI11 (31a)

e21 = ė11 + β21e11 + α21eI21 (31b)

s1 = e21 (31c)

e02 = ė2 + λ2e2 (32a)

e12 = ė02 + β12e02 + α12eI12 (32b)

e22 = ė12 + β22e12 + α22eI22 (32c)

s2 = e22 (32d)

where e01 = V − Vd , e2 = h − hd are tracking
errors, λ2 is strictly positive constant, ėI1i + TseI1i =
sat (e0i/μ1i ) , ėI2i + TseI2i = sat (e1i/μ2i ) , Ts >

0, μ1i , μ2i > 0 for i = 1, 2.

Proof Taking time derivative for Eq. (31) yields

ė11 = ...
e 01 + β11ė01 + α11ėI11

ë11 = e01 + β11ë01 + α11ëI11

ė21 = ë11 + β21ė11 + α21ėI21 (33)

ṡ1 = ė21= ...
e 01 + β11ë01 + α11ëI11 + β21ė11 + α21ėI21

(34)

where

ëI11 = Ms1 − TsėI11

Ms1 =
{
ė01/μ11, |e01/μ11| ≤ 1
0, otherwise

.

Due to
...
e 01 = ...

V − ...
V d , Eq. (34) is changed as

ṡ1 = ...
V − ...

V d + �1 (35)

where

�1 = β11ë01 + α11ëI11 + β21ė11 + α21ėI21
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Similarly, taking first time derivative for Eq. (32) yields

ė02 = ë2 + λ2ė2

ë02 = ...
e 2 + λ2ë2

...
e 02 = e(4)

2 + λ2
...
e 2 (36)

ė12 = ë02 + β12ė02 + α12ėI12

ë12 = e(4)
2 + λ2

...
e 2 + β12ë02 + α12ëI12

ė22 = ë12 + β22ė12 + α22ėI22 (37)

where

ëI12 = Ms2 − TsėI12

Ms2 =
{
ė02/μ12, |e02/μ12| ≤ 1
0, otherwise

.

ṡ2 = ė22=e(4)
2 + λ2

...
e 2 + β12 (

...
e 2 + λ2ë2)

+α12ëI12 + β22ė12 + α22ėI22 (38)

Substituting e(4)
2 = h(4) − h(4)

d into Eq. (38), yields

ṡ2 = h(4) − h(4)
d + �2 (39)

where

�2 = λ2
...
e 2 + β12 (

...
e 2 + λ2ë2) + α12ëI12

+β22ė12 + α22ėI22

Then, Eq. (35) and Eq. (39) are expressed together as
[
ṡ1
ṡ2

]

=
[ ...
V
h(4)

]

−
[ ...
V d

h(4)
d

]

+
[

�1

�2

]

(40)

Substituting Eq. (20) in the absence of external distur-
bance into Eq. (40) acquires
[
ṡ1
ṡ2

]

=
[
FV
Fh

]

−
[ ...
V d

h(4)
d

]

+
[

�1

�2

]

+ B · u (41)

Choose a Lyapunov function candidate as

Ly = 1

2
sTs (42)

where s = [
s1 s2

]T
.

The derivative of Ly satisfies

L̇ y =sT ṡ=sT
([

FV
Fh

]

−
[ ...
V d

h(4)
d

]

+
[

�1

�2

]

+B · u
)

(43)

Substituting Eq. (30) into Eq. (43) acquires

L̇ y = sT
[−k1 |s1|γ1 sgn(s1)

−k2 |s2|γ2 sgn(s2)
]

= −k1 |s1|γ1+1 − k2 |s2|γ2+1 ≤ 0 (44)

Hence, the system states arrive at sliding manifolds s1
and s2 in finite time, i.e., the reaching time is tsi =
|si (0)|1−γi /(ki (1 − γi )) for i = 1, 2. When system
states slides along the sliding manifolds, then it has
si = e2i = 0 for i = 1, 2. In terms of Eqs. (31b) and
(32c), the results are acquired

e2i = 0 = ė1i + β2i e1i + α2i eI2i , i = 1, 2 (45)

According to Lemma 1, e1i will converge to zero in
finite time, namely the convergence time te1ireach has an
upper bound. Then, substituting e1i = 0 into Eqs. (31a)
and (32b) yields

ė0i + β1i e0i + α1i eI1i = 0, i = 1, 2 (46)

Similarly, e0i will also converge to zero in finite time,
and the convergence time te0ireach has an upper bound.
Then consider Eq. (32a) in accordance with e02 = 0
that

ė2 + λ2e2 = 0 (47)

It is worth noting that Eq. (47) is asymptotic conver-
gence. Define an arbitrary small neighborhood for e2,
i.e., Ze2 ∈ [−δ,+δ] , δ > 0. Once the altitude track-
ing error converging to the neighborhood, it is regarded
that the altitude h had tracked the command hd . Then,
the convergence time is

te2 = 1

λ2
(ln (e2(0)) − ln δ) (48)

Therefore, the convergence time of the velocity track-
ing error e01 is

t1 = ts1 + te11reach + te01reach (49)

For the altitude subsystem, the arriving time to the
neighborhood Ze2 is

t2 = ts2 + te12reach + te02reach + te2 (50)

In brief, the system output variables V and h can track
the reference command Vd and hd , respectively, in
finite time. This completes the proof. �	
Remark 6 For the velocity subsystem, there are three
layers for sliding mode manifolds and four layers for
the altitude subsystem. In each subsystem, these sliding
manifolds are recursive. The last-layer slidingmanifold
is first arrived, and at this time, the finite-time arriving
condition for the second layer is met. After a period of
time, the second-layer sliding manifold is also arrived.
In this order, each sliding manifold is arrived succes-
sively. Finally, the system tracking error can converge
to zero in limited time.
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Remark 7 Due to no singular terms appearing on The-
orem 1 and all derivative terms arewell defined, there is
no singularity problem that usually arising in terminal
sliding mode control.

3.2 Sliding mode disturbance observer design

The above proposed controller has robust for parameter
uncertainties. However, for external disturbances, an
additional disturbance observer is needed to compen-
sate its influence to controller. In this section, a sliding
modedisturbance observer is presented for the bounded
external disturbance. Before designing, the equation in
the presence of external disturbance is displayed. Sub-
stituting Eq. (20) into Eq. (40) acquires

ṡ = � + �

U + �

D (51)

where

ṡ =
[
ṡ1
ṡ2

]

,� =
[
FV − ...

V d + �1

Fh − h(4)
d + �2

]

,

�

U = B · u,
�

D = B ·
[
d1(t)
d2(t)

]

.

Lemma 2 [27] Assume an perturbed nonlinear differ-
ential equation

ẋ + ω1 |x |1/2 sgn(x) + ω2P(x) = ξ(t) (52)

where Ṗ(x) + Ts P(x) = sgn(x),
∣
∣ξ̇ (t)

∣
∣ ≤ D, D is an

positive constant.
If ω1 = 1.5

√
D, ω2 = 1.1D, then the solution x(t)

of above equation and its first time derivative ẋ(t) con-
verge to zero in finite time, i.e.,

Tr ≤ 7.6x(0)

ω2 − D
(53)

where Tr is the convergence time and x(0) is the initial
value of x(t) at t = 0.

Theorem 2 Consider the linearization system (20)
with bounded external disturbance di (t), which satisfy
Assumption 1. Then, the external disturbance di (t) can
be exactly estimated in finite time, namely

Tri ≤ 7.6σi (0)

ω2i − g̃i
(54)

If the auxiliary sliding mode control variables are cho-
sen as

vi = ω1i |σi |1/2 sgn(σi ) + ω2i P(σi ) (55)

where Ṗ(σi )+Ts P(σi ) = sgn(σi ), ω1i = 1.5
√
g̃i , ω2i

= 1.1g̃i for i = 1, 2.

Proof Choose an auxiliary sliding mode variable as

σi = si + zi (56)

żi = −�i − �

Ui − vi (57)

where i = 1, 2.
According to Eqs. (56) and (57), Eq. (51) can be

rewritten as

ṡi = �i + �

Ui + �

Di , i = 1, 2 (58)

The σi dynamics is derived in terms of Eq. (58) as

σ̇i = ṡi + żi = �i + �

Ui + �

Di

+ (−�i − �

Ui − vi
) = �

Di − vi (59)

SubstitutingEq. (55) intoEq. (59), then theσi dynamics
is changed as

σ̇i = �

Di − ω1i |σi |1/2 sgn(σi ) − ω2i P(σi ) (60)

By means of transposing, Eq. (60) changes for

σ̇i + ω1i |σi |1/2 sgn(σi ) + ω2i P(σi ) = �

Di (61)

where Ṗ(σi ) + Ts P(σi ) = sgn(σi ),
∣
∣
∣ ˙�Di

∣
∣
∣ ≤ g̃i .

In accordance with Lemma 2, σi and σ̇i will con-
verge to zero in finite time, which satisfy Tri ≤
7.6σi (0)/(ω2i − g̃i ). It means that

σi = σ̇i = 0 ∀t > Tri (62)

Substituting Eq. (62) into Eq. (59), it is obtained that
�

Di = vi (63)

Hence, the disturbance is estimated as

[
d̂1(t)
d̂2(t)

]

= B−1
[ �

D1
�

D2

]

= B−1
[

v1
v2

]

(64)

Therefore, the external disturbance can be exactly esti-
mated in finite time. The theorem is proven completely.

�	
Remark 8 The parameters ω1i and ω2i have a relation-
ship with the disturbance boundary and its derivative
boundary g̃i . So the proposed SMDOB estimates only
the bounded disturbance.

Remark 9 The auxiliary sliding mode control variable
vi is continuous due to the discontinuous term sgn (σi )

is integrated as well as in the presence of the fractional
power term |σi |1/2.
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On the basis of Theorem2, the terminal slidingmode
controller with SMDOB is designed as

u=
[
βc

δe

]

=B−1

[
−�1−FV + ...

V d−k1 |s1|γ1 sgn(s1)
−�2−Fh + h(4)

d −k2 |s2|γ2 sgn(s2)

]

−
[
d̂1(t)
d̂2(t)

]

(65)

Remark 10 The controller of Eq. (65) is improvedwith
respect to the tracking controller of Eq. (30). The for-
mer has the rejection for external disturbance.

Remark 11 The chattering phenomenon usually in
sliding mode control is significantly reduced, implying
the features of recursive terminal sliding mode con-
troller with proposed disturbance observer in Eq. (65).
The reason is the sign function item is continuous.

4 Composite controller and stability analysis

In this section, the stability and robustness of the com-
posite controller are analyzed. The composite con-
troller is given in Eq. (65), which consists of RTSMC
tracking controller and SMDOB.

Theorem 3 For the longitudinal dynamics of HFV
model (1), the system is stable and robust for the ref-
erence command in the presence of parameter uncer-
tainties and external disturbances, if the controller is
chosen to Eq. (65).

Proof Choosing the Lyapunov function candidate La

= 1
2 s

Ts and taking its time derivative along the sliding
mode manifold dynamics in Eq. (51) yields

L̇a = sT ṡ = sT
([

FV − ...
V d + �1

Fh − h(4)
d + �2

]

+ B · u + B ·
[
d1(t)
d2(t)

])

(66)

Substituting Eq. (65) into Eq. (66), the function La

dynamics is changed as

L̇a = sT
([−k1 |s1|γ1 sgn(s1)

−k2 |s2|γ2 sgn(s2)
]

+ B ·
[
d̃1(t)
d̃2(t)

])

(67)

where d̃i (t) = di (t) − d̂i (t), i = 1, 2 is the error
between the actual and estimated disturbance.

In accordance with Theorem 2, the external distur-
bance can be exactly estimated in finite time. The dis-
turbance error d̃i (t)will converge to zero in finite time,
i.e., d̃i (t) → 0,∀t > Tri . So when t > Tri , Eq. (67) is
changed as

L̇a = sT
[−k1 |s1|γ1 sgn(s1)

−k2 |s2|γ2 sgn(s2)
]

= −k1 |s1|γ1+1 − k2 |s2|γ2+1 ≤ 0 (68)

Hence, the sliding mode manifolds si (i = 1, 2) equal
to zero in finite time, and then, the each layer sliding
surface will converge to zero recursively by means of
proof process of Theorem 1. Finally, the system can
track the reference command. Therefore, the system
is stable and robust for uncertainty and disturbance in
finite time. This completes the proof. �	
Remark 12 In Theorem 3, the finite time is on the basis
of ti (i = 1, 2) in Theorem 1, which also consists of the
estimated time for disturbance, namely

t f i = ti + Tri , i = 1, 2 (69)

where t f i is the overall time in Theorem 3.

Remark 13 Theorem 3 gives the stability proof from
the theory point of view. In the practical engineering,
the sampling time may affect the system stability. In
order to verify the effect of the sampling time on the
convergence of the composed controller (65), simula-
tions with different sampling time are conducted. The
results are displayed in Table1.

It is obviously seen from Table1 that the sampling
time affects the convergence of the system. The shorter
the sampling time, the more stable the system. When
the sampling time is larger than some value, the system
becomes unstable. Therefore, in this paper, the sam-
pling time is selected for 0.001s.

The structure diagram of composite control scheme
for HFV in this paper is shown in Fig. 1.

Table 1 The effect of sampling time on the system

Sampling time (s) 0.0005 0.001 0.002 0.004 0.005 0.007 0.01

Convergence or not (C or N) C C C C C N N
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Fig. 1 Structure diagram of
composite control scheme

SMDOB

External
Disturbance

d̂
RTSMC Actuators

Nonlinear
Dynamic

System Model

u y+cmd

Parameter
uncertainties

+
Controller

5 Numerical simulations

The numerical simulation of composite controller that
comprises RTSMC and SMDOB proposed in previ-
ous section is conducted in this section. The simula-
tion is built in the trimmed cruise flight condition of
HFV. In the cruiseflight condition, the initial simulation
parameters are altitude 110,000 ft, velocity 15,060 ft/s,
Mach 15, angle of attack 0 rad and pitch rate 0 rad/s,
respectively. The damping ratio and natural frequency
of the engine dynamics model are taken 0.7 and 5 rad/s,
respectively. In the simulation, the reference command
for velocity subsystem is step signal 100 ft/s and a step
command of 500 ft for altitude subsystem. The nomi-
nal dynamic parameters [8] for HFV are presented in
Table2.

The external disturbances in the simulation are
selected as

d1(t) = 0.1 sin (0.5t) + 0.15 cos(0.3t) + 0.2 sin(0.6t)

(70)

d2(t) = 0.2 sin (0.5t) + 0.1 sin(0.3t) + 0.2 cos(0.6t)

(71)

The disturbances above are added to the system at 70 s
in simulation.

Table 2 Nominal dynamic parameters of HFV

Parameter Value Unit

m0 9375 slug

I0 7 × 106 slug · ft3
S0 3603 ft2

c̄0 80 ft

ce0 0.0292 dimensionless

ρ0 2.4325 × 10−5 slug/ft3

The simulation results of nominal HFV model in
the presence of parameter uncertainties controlled by
RTSMC tracking controller are shown in Figs. 2 and
3. The results of velocity subsystem are displayed in
Figs. 2 and 3 for altitude subsystem.

Figure 2a displays the velocity tracking perfor-
mance. It is seen from the figure that the aircraft veloc-
ity tracks the reference command in about 25 s, and
the tracking speed holds constant. Due to the con-
stant speed, the system is influenced when the com-
mand is tracked, which can be seen in Fig. 2b–e. The
influence of throttle setting βc is greater in Fig. 2e.
But the effects vanish immediately, and the system
becomes stable in no time. The other variables also
converge to constant value after a limited time in
Fig. 2b–e.

The altitude tracking performance is displayed in
Fig. 3b. The tracking time to altitude reference com-
mand is about 45 s. The tracking speed is not constant in
this subsystem. Because the fourth-layer sliding mode
manifold is asymptotic convergence, whose speed is
not constant. In about 32.5 s, there is a switch from the
finite-time convergence sliding surface to the asymp-
totic convergence sliding surface. So the system is influ-
enced at this time which is obviously seen in Fig. 3a,
c–e. Likewise, the effects are small and vanish imme-
diately.

From the Fig. 2d, e and Fig. 3d, e, there is no chatter-
ing in the actuators, which verify the stable and robust
performances of proposed RTSMC in the presence of
parameter uncertainties. The finite-time convergence
performance for Theorem 1 is demonstrated in Figs. 2
and 3. The trajectories of sliding variables are shown
in Fig. 4.

In Fig. 4a, b are the last-layer sliding manifolds,
which are first arrived. Figure4c, d are the time deriv-
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Fig. 2 The velocity subsystem response for nominal model. a Velocity, b altitude, c flight path angle, d elevator deflection angle,
e throttle setting
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Fig. 4 Trajectories of sliding variables. a Variable s1, b variable s2, c variable ṡ1, d variable ṡ2, e variable e11, f variable e02

atives of variables s1 and s2, respectively. Fig. 4e, f
are the first-layer sliding mode manifolds, which are
related to the system tracking error.

For further demonstrating the validity of the pro-
posed method RTSMC, this method and the traditional
SMC in reference [8] which has linear sliding mode
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Fig. 5 Comparing results
between RTSMC and SMC.
a Velocity subsystem
comparison, b altitude
subsystem comparison
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surfaces are compared for simulation. The simulation
results are displayed in Fig. 5.

By the mean of comparison, the convergence time
of RTSMC is smaller than that of SMC and the robust
of RTSMC is stronger than SMC. The altitude variable
in Fig. 5a and velocity variable in Fig. 5b of SMC have
larger variation than that of RTSMC. In addition, the

actuators for SMC are chattering during the simulation,
while the RTSMC are not.

When the external disturbances in Eqs. (70) and
(71) are considered, the simulation results controlled
by RTSMC are shown in Figs. 6 and 7.

FromFigs. 6 to 7, the system responses are impacted
by external disturbances after 70 s. Comparing Fig. 2
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Fig. 6 The velocity subsystem response for disturbance. a Velocity, b altitude, c flight path angle, d elevator deflection angle, e throttle
setting
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Fig. 7 The altitude subsystem response for disturbance. a Velocity, b altitude, c flight path angle, d elevator deflection angle, e throttle
setting
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Fig. 8 The velocity subsystem response with SMDOB. a Velocity, b altitude, c flight path angle, d elevator deflection angle, e throttle
setting
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Fig. 9 The altitude subsystem response with SMDOB. a Velocity, b altitude, c flight path angle, d elevator deflection angle, e throttle
setting
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Fig. 10 The external disturbance and its estimation by SMDOB

and6, Fig. 3 and7, the stable and trackingperformances
of the system are not affected before adding into the
external disturbances.

When the proposed SMDOB is implied to estimate
the disturbance and compensate the controller, the sys-
tem responses are shown in Figs. 8 and 9.

Comparing Figs. 6a–c and 8a–c, Fig. 7a–c and 9a–
c, respectively, it is obviously seen that perfect per-
formance is obtained for SMDOB. The disturbance in
velocity V , altitude h, flight path angle γ is eliminated
by SMDOB, which is reflected in Figs. 8a–c and 9a–
c. The external disturbance is estimated by SMDOB,
and then, it is compensated in the controller, which is
revealed in Figs. 8d, e and 9d, e. The estimation for
external disturbance is shown in Fig. 10.

The external disturbance is well estimated by SMD-
OB from Fig. 10. This implies that the method of
SMDOB is valid and available.

In order to verify the influence of measurement
noises on the composed controller (65), some random
noises are added in the system. Then, the simulation
results with random noises are shown in Fig. 11.

In Fig. 11, the system output variables are conver-
gent in spite of having small deviation. So the mea-
surement noises do not affect the convergence of the
composed controller, which demonstrates the strong
robustness of the proposed controller.

In terms of above simulation, the perfect tracking
and disturbance rejection performance are obtained for
the longitudinal dynamic system of HFV controlled by
RTSMC with SMDOB. The proposed method is stable
in finite time. With the method, the system is robust
with respect to parameter uncertainties and random
noises and the chattering is eliminated in actuator. The
external disturbance is estimated in finite time through
SMDOB, which has high-precision estimation.

6 Conclusions

The recursive terminal sliding mode controller with
sliding mode disturbance observer for longitudinal
dynamics of generic hypersonic flight vehicle is pro-
posed in this paper. First, a recursive terminal sliding
mode tracking controller is designed bymeans of recur-
sive terminal sliding mode theory. This controller is
finite-time convergence and robust for parameter uncer-
tainties. Next, a sliding mode disturbance observer is
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Fig. 11 Simulation results with measurement noises. a Velocity, b altitude
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designed for external disturbance, whose estimation
process is also finite time. Then, the composite con-
troller embracing above tracking controller and dis-
turbance observer is suggested. Finally, the numerical
simulation for trimmed cruise flight condition of hyper-
sonic flight vehicle is conducted. The simulation results
show that the proposed scheme satisfies the expected
performance.
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Appendix 1

The detailed expressions of the vectors �1,�1 and
matrices �2,�2 are as follows:

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂T
∂V

)
cosα − ∂D

∂V−mμ cos γ

r2−T sin α − (
∂D
∂α

)

(
∂T
∂β

)
cosα

2mμ sin γ

r3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

�2 = [
ω21 ω22 ω23 ω24 ω25

]

where

ω21 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂2T
∂V 2

)
cosα − ∂2D

∂V 2

0

− ( ∂T
∂V

)
sin α − ∂2D

∂V ∂α
(

∂2T
∂V ∂β

)
cosα

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,ω22 =

⎡

⎢
⎢
⎢
⎢
⎣

0
mμ sin γ

r2

0
0

2mμ cos γ

r3

⎤

⎥
⎥
⎥
⎥
⎦

,

ω23 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− ( ∂T
∂V

)
sin α −

(
∂2D
∂V ∂α

)

0

−T cosα −
(

∂2D
∂α2

)

−
(

∂T
∂β

)
sin α

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ω24 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2T
∂V ∂β

cosα

0

−
(

∂T
∂β

)
sin α

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,ω25 =

⎡

⎢
⎢
⎢
⎢
⎣

0
2mμ cos γ

r3

0
0

− 6mμ sin γ

r4

⎤

⎥
⎥
⎥
⎥
⎦

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L/∂V+(∂T /∂V ) sin α
mV − L+T sin α

mV 2 + μ cos γ

V 2r2
+ cos γ

r

μ sin γ
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− V sin γ
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⎥
⎥
⎥
⎥
⎥
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⎥
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⎢
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⎢
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⎣

(
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mV − ∂L/∂α+T cosα
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⎥
⎥
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⎥
⎥
⎦

Appendix 2

Without loss of generality, the angle of attack and flight
path angle are assumed near this singularity to be

α = ε, γ = π

2
(72)

where ε is a small positive number.
Then,

b11 =
(

ρV 2Scβω2
n

2m

)

cosα =
(

ρV 2Scβω2
n

2m

)

cos ε

≈ ρV 2Scβω2
n

2m
(73)

b12 = −
(
ceρV 2Sc̄

2mIyy

)

(T sin α + Dα)
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≈ −
(
ceρV 2Sc̄

2mIyy

)

(T ε + σ) (74)

where σ = ∂
(
1
2ρV 2SCD

)

∂α
and which is a small real num-

ber.

b21 =
(

ρV 2Scβω2
n

2m

)

sin(α + γ )

=
(

ρV 2Scβω2
n

2m

)

sin(ε + π

2
) ≈ ρV 2Scβω2

n

2m
(75)

b22 =
(
ceρV 2Sc̄

2mIyy

)
[
T cos(α + γ )

+ Lα cos γ − Dα sin γ
]

≈
(
ceρV 2Sc̄

2mIyy

)

(0 + 0 − σ)

= −σ

(
ceρV 2Sc̄

2mIyy

)

(76)

In the above case, b11 is equal to b21, and the matrix
B will be singular if b12 = b22 = 0. Therefore, we
give b12 and b22 some restrictions near the singularity,
namely

b12 =
{

δ∗
1 , |b12| ≤ δ∗

1
b12, |b12| > δ∗

1
(77)

b22 =
{

δ∗
2 , |b22| ≤ δ∗

2
b22, |b22| > δ∗

2
(78)

moreover, δ∗
1 �= δ∗

2 , b12 �= b22.
In that way, the matrix

B =
[
b11 b12
b21 b22

]

�= 0 (79)

And the controller in the paper can be used.
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