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Abstract In this paper, a feedback controller for a
nonholonomic system with three states and two inputs
is derived using an artificial potential function that has
no local minima, and the stability of equilibria of the
system is analyzed. Although the system with the con-
troller has an infinite number of equilibria due to the
nonholonomic constraint, those equilibria except the
critical points of the potential function are unstable
because of a skew-symmetric component of the con-
troller. When the potential function has critical points
of saddle type, the saddles may be stable equilibria in
addition to the stable equilibrium at the minimum of
the function. The controller is applied to a two-wheeled
mobile robot among obstacles and modified by using a
time-varying potential function in order to avoid con-
vergence to the saddles. As a result, with the controller,
the mobile robot converges to a desired position and
orientation without collision with obstacles.
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1 Introduction

Two-wheeled mobile robots are expected to carry out
autonomously various tasks such as transportation and
surveillance. To accomplish the tasks, the robots must
move to a desired position and orientation avoiding
obstacles. For a controller design, both motion plan-
ning to avoid the obstacles and stabilization to the
desired configuration should be solved simultaneously.
The main difficulty in solving them arises from the fact
that two-wheeled robots are subject to nonholonomic
constraints that the wheels do not skid sideways. The
controller has to be designed based on nonlinear control
approaches for nonholonomic systems.

The potential field method is a powerful method
to solve motion planning with obstacle avoidance for
mobile robots, where an artificial potential function
is constructed according to obstacles [1–4]. Rimon
and Koditschek proposed an artificial potential func-
tion called navigation function for the obstacles that
are represented by star-shaped sets [5,6]. However,
when the potential field method is applied to non-
holonomic systems, the trajectories generated by the
method may be infeasible, because the systems can-
not always move along the gradient vector of the
potential function owing to the nonholonomic con-
straints. That is, there are an infinite number of
points where the gradient vector is perpendicular to
input vector fields. To overcome the drawback, some
methods of changing infeasible trajectories to feasi-
ble ones have been proposed [7–9], although they

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2082-5&domain=pdf


1476 T. Urakubo

do not make the potential function strictly decrease.
Other approaches to obtain feasible collision-free
trajectories for nonholonomic mobile robots have
been proposed based on differential flatness [10,
11], iterative calculation [12–14] and so on [15–
19]. As a practical approach for obstacle avoidance,
sensor-based reactive navigation has also been studied
[20–22].

Feedback stabilization of a two-wheeled mobile
robot has already been studied extensively as a typi-
cal example of nonholonomic systems [23]. Since non-
holonomic systems cannot be stabilized by any time-
invariant smooth state feedback law [24], two types of
controller, time-varying controllers [25,26] anddiscon-
tinuous time-invariant controllers [27–29], have been
proposed so far. We have also proposed a discontinu-
ous time-invariant one for a class of nonholonomic sys-
tems based on a potential function [36,37]. For a two-
wheeled robot in the absence of obstacles, the potential
function is set to be a quadratic form of state variables.
As mentioned above, when the control input is derived
from thegradient vector, the systemhas an infinite num-
ber of equilibria. In our method, the input has an addi-
tional component that does not decrease or increase the
potential function, and it makes those equilibria other
than the desired point unstable. Consequently, the sys-
tem converges to the desired point from almost all ini-
tial points.

On the other hand, only a few studies deal with
simultaneouslymotion planning for obstacle avoidance
and feedback stabilization to a desired position and ori-
entation. Tanner et al. [30–33] have proposed a discon-
tinuous feedback controller for a two-wheeled robot in
the presence of obstacles by utilizing the gradient vec-
tor of a potential function. In their method, to make the
orientation of the robot converge to the desired one, a
dipolar potential function has been used. LaValle et al.
have proposed a motion planning method called RRT
in [34], which can be applied to nonholonomic vehi-
cles among obstacles. They have also proposed a feed-
back motion strategy by using the cost-to-go function
as a navigation function in [35]. We have extended our
method proposed in [36,37] to design a controller in
the presence of obstacles in [38]. A potential function
is constructed by using the navigation function [5,6].
Unlike the quadratic potential function used in [36,37],
the critical points of the potential function are not only
the minimum at the desired point, but also the saddles
near isolated obstacles such as pillars. As a result, the

stability of the equilibria is different from the one in
[36,37]; in addition to the stable equilibrium located
at the minimum of the potential function, the equilib-
ria at the saddles may also be stable. To escape the
saddles, a periodic input which decreases the averaged
value of the potential function was applied near the
saddles.

In this paper, we first consider a nonholonomic sys-
temwith three states and two inputs in its general form.
A feedback controller for the system is constructed
based on a potential function that has a minimum and
saddles. Similarly to the results in [38], the saddles
may be stable equilibria in addition to the stable equi-
librium at the minimum. Next, we apply the controller
to the feedback stabilization problem of a two-wheeled
mobile robot among obstacles and propose a new way
of avoiding the convergence to the saddles of the poten-
tial function. We make the potential function time-
varying near the saddles and guarantee that the time
derivative of the potential function is semi-negative
definite. The effectiveness of the proposed controller
is verified by numerical simulations.

The proposed controller can stabilize a nonholo-
nomic vehicle while achieving obstacle avoidance
simultaneously, unlike many other stabilizers for non-
holonomic systems. The controller can be easily
derived if once the potential function is constructed by
the method in [5,6] or other methods. The system with
the controller is guaranteed to be stable in the sense of
Lyapunov even among obstacles.

The theoretical contribution of this paper is to ana-
lyze the behavior of a nonholonomic system when a
potential field method is applied to it. For nonholo-
nomic dynamical systems such as Lagrange’s equa-
tions of motion with nonholonomic constraints, it is
well known that there is a manifold of equilibrium
states, and the stability of an equilibrium located on
the manifold is determined by the stability of a sub-
system composed of a part of state variables [39,40].
Although this paper deals with a driftless control-
affine system that represents the kinematics with non-
holonomic constraints, the system with the proposed
state feedback controller is also an autonomous non-
holonomic system and has a manifold of equilibria.
The stability of each equilibrium is also analyzed in
a similar way as in [39,40]. The equilibrium except
the critical points of the potential function is made
unstable by a skew-symmetric component of the con-
troller.
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2 Time-invariant controller with potential fields

2.1 Nonholonomic system with three states and two
inputs

In this paper, we consider the following nonholonomic
system:

ż = B(z)u, (1)

where

z = [z1, z2, z3]T ∈ R3, (2)

B = [b1(z), b2(z)] ∈ R3×2, b1(z), b2(z) ∈ R3, (3)

u = [u1, u2]T ∈ R2, (4)

The state variables z are supposed to be in an open
subset D in R3. We make the following assumptions
on the system (1).
Assumptions :

1. b1(z) and b2(z) are linearly independent for ∀z ∈
D.

2. b1(z) and b2(z) are bounded for ∀z ∈ D.
3. ∂bi/∂zk(z) exists and is bounded for ∀z ∈ D (i =

1, 2, k = 1, 2, 3).
4. The system (1) satisfies the following controllabil-

ity rank condition:

rank(C(z)) = 3, for ∀z ∈ D, (5)

where

C(z) = [
b1, b2, adb1b2

]
, (6)

adb1b2 = ∂b2
∂ z

b1 − ∂b1
∂ z

b2. (7)

The input vector fields, b1 and b2, and the first level
of the Lie brackets, adb1b2, span the tangent space
at each point of the state space.

2.2 Design of a controller

The desired point is set to be the origin without loss of
generality (using a coordinate transformation if neces-
sary). First, we consider a potential function that satis-
fies the following properties.
Properties of potential function V (z):

(a) The function V (z) is at least twice continuously
differentiable for ∀z ∈ D, and all elements of

the gradient vector ∇V (z) and the Hessian matrix
P(z) are bounded for ∀z ∈ D, where ∇ =
[∂/∂z1, ∂/∂z2, ∂/∂z3]T and P(z) = ∂(∇V )/∂ z.

(b) V (z) ≥ 0 for ∀z ∈ D, and V (z) = 0 ⇔ z = 0.
(c) The critical points of V (z) are aminimum at z = 0

and saddles. V (z) does not have any critical points
other than them.

(d) V (z) is a Morse function. That is, the Hessian
matrix P(z) is nonsingular at the critical points.

(e) V (z) ≤ V (zb) for ∀z ∈ D, where zb is a boundary
point of D.

Next, the input vector is designed based on a poten-
tial function V (z) as follows:

u = −(α I + β̂ J)BT∇V, (8)

where

I =
[
1 0
0 1

]
, J =

[
0 1

−1 0

]
, (9)

β̂ = −β
(adb1b2)

T∇V

h(g)
. (10)

The coefficients α and β are positive constants. The
function h(g) is a non-decreasing one of g such that

h(0) = 0 , h(g) > 0 for g > 0, (11)

where the variable g is defined as

g = ‖BT∇V ‖ ≥ 0. (12)

Depending on the choice of h(g), the input vector is
discontinuous or at least non-differentiable for ∀z in
the set H that is defined as

H = {z ∈ D|BT∇V = 0}. (13)

We define (1/h(g)) · BT∇V = 0 for z ∈ H.
Equation (1) with the input (8) becomes

ż = −B(α I + β̂ J)BT∇V . (14)

With (14), the time derivative of V is computed as

V̇ = −α‖BT∇V ‖2 ≤ 0. (15)

Therefore, we obtain

‖BT∇V ‖ → 0, as t → ∞. (16)
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Equilibrium points of the controlled system are located
only in the set H, and (16) shows that the controlled
system converges to one of the equilibrium points.

In the next subsection, we will examine the stability
of each point inH.

2.3 Stability analysis of equilibrium points

To proceed to the stability analysis, wemodify Eq. (14)
that is not differentiable on H as follows:

ż = −B(α I + tanh
(h(g)

ε

)
β̂ J)BT∇V , (17)

where ε is a small positive constant. Equation (17) is
differentiable on H and approaches (14) as ε is taken
to zero. The time derivative of V along the trajectory
of the system (17) can be calculated again as in (15),
and the equilibrium points of (17) are the points in H.
Then, we obtain the following proposition.

Proposition 1 Any solution z(t) of the system (17) [or
(14)] is bounded and converges to one of the equilibria
on H.

By linearizing (17) in the neighborhood of an equi-
librium point z = z0 ∈ H, we obtain the following
linearized equation:

δ ż = A(z0)δz, (18)

where

A = −B(α I + β̄ J)(BTP + D), (19)

D =
[
∂BT

∂z1
∇V,

∂BT

∂z2
∇V,

∂BT

∂z3
∇V

]
, (20)

β̄ = −(β/ε) · (adb1b2)
T∇V . (21)

The eigenvalues of A determine the stability of the
equilibrium point z0. We denote the three eigenvalues
as λ1, λ2 and λ3. One of them is always zero, because
the rank of A is less than or equal to two from B ∈
R3×2. We choose λ3 = 0 without loss of generality.
The eigenvector corresponding to λ3 lies in the tangent
space of the setH at the point z0. SinceH is the set of
equilibria, ż in the direction of the eigenvector cannot
be generated, even in the nonlinear system (17). In other
words, themotion in that direction is restricted, because
ż is in the column space of B due to the nonholonomic
constraint.

On the other hand, the eigenvectors corresponding
to λ1 and λ2 lie in the column space of B(z0), and λ1

and λ2 determine the stability of the equilibrium point
z0 [39,40]. Since λ3 = 0, the sum of λ1 and λ2 is
calculated as

λ1 + λ2 = trace(A)

= −αtrace(BI BTP) − αtrace(BI D)

−β̄trace(B J BTP) − β̄trace(B J D). (22)

The third term in the right-hand side of (22) is shown
to be zero as follows. Since P is a symmetric matrix,
it is diagonalized as P = STPΛSP , where SP is an
orthogonal matrix and Λ is a diagonal matrix. Since
trace(A1A2) = trace(A2A1) for square matrices A1

and A2 of the same order, we obtain

trace(B J BTP) = trace(SP B J BTSTPΛ) = 0, (23)

because SP B J BTSTP is skew-symmetric and Λ is
diagonal. The fourth term in the right-hand side of (22)
can be calculated as

trace(B J D) =
(

∂b2
∂ z

b1 − ∂b1
∂ z

b2

)T

∇V

= (adb1b2)
T∇V . (24)

The above Eq. (24) shows that the skew-symmetric
matrix J makes the effect of the Lie bracket adb1b2.
From (23) and (24), (22) is rewritten as

λ1 + λ2 = −αtrace(BI BTP) − αtrace(BI D)

+(β/ε) · ∣∣(adb1b2)
T∇V

∣∣2. (25)

A necessary condition for the equilibrium point z0
to be stable is that λ1 + λ2 ≤ 0, and it is expressed
from (25) as follows:
∣
∣(adb1b2)

T∇V
∣
∣2 ≤

εα

β
(trace(BI BTP) + trace(BI D)). (26)

We recall that any equilibrium point z0 is in H and
satisfies

BT∇V = 0. (27)

From the above equations, we obtain the following
proposition.

Proposition 2 All stable equilibrium points of the sys-
tem (17) are located in the regions that are defined by
(26) and (27), while the points ofH outside the regions
are unstable equilibrium points.
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For a sufficiently small ε, from (26) and (27), we
obtain that

CT∇V ≈ 0 ⇔ ∇V ≈ 0, (28)

where C is nonsingular from assumption 4. As a result,
only the points near the critical points of V satisfy both
(26) and (27). From the above proposition, if stable
equilibrium points exist, they must be located in the
small regions near the critical points. As ε approaches
zero, those regions shrink until they become the critical
points.

From property (c), the critical points of V are a min-
imum at the origin and saddles if V has them. Denoting
a critical point as zc, A in (19) is rewritten for z0 = zc
as

A(zc) = −αB(zc)B(zc)TP(zc), (29)

because D = 0 and β̄ = 0 from ∇V = 0 at a critical
point.

At the origin, the function V has a minimum, and
the Hessian matrix P is positive definite from property
(d). In the diagonalization of P = STPΛSP , Λ is also
positive definite. From (29), the matrix A is similar to
the following semi-negative definite matrix:

Ā = −α
√

ΛSP BBTSTP
√

Λ, (30)

where
√

Λ is a positive definite diagonal matrix such
that (

√
Λ)2 = Λ. Since rank( Ā) = 2 from rank(B) =

2, two eigenvalues of Ā are negative, that is, two eigen-
values of A(0), λ1 and λ2, are negative. As a result, the
origin, zc = 0, is a stable equilibrium point.

For a saddle point, P has at least one negative eigen-
value from property (d). If the system did not have
nonholonomic constraints (B was 3× 3 and full rank)
and ż = −∇V was realized with u = −B−1∇V ,
the linearized Eq. (18) would be δz = −Pδz and
the system would escape from the saddle easily by
moving along the eigenvector of the negative eigen-
value. However, it is possible that the system does
not move along the eigenvector of the negative eigen-
value due to the nonholonomic constraint. For exam-
ple, if the eigenvector is perpendicular to the column
space of B, the negative eigenvalue of P does not
affect on the eigenvalues of A. Therefore, we have
to investigate the eigenvalues of A(zc) for each sad-
dle in order to know the stability of the saddle. We

suppose that there exist M saddles of V and denote
the saddles as the points Si and their coordinates as
z = zsi (i = 1, . . . , M). Assuming that the first
N of them satisfy that the real parts of λ1 and λ2

are negative or zero, we denote the N points as S∗
i

(i = 1, . . . , N ≤ M).
The behavior of the controlled system (14) is sum-

marized as follows: The origin is a stable equilibrium
point of the controlled system.Thepoint S∗

i is also a sta-
ble equilibrium point if the real parts of both λ1 and λ2

are negative. When at least one of the real parts is zero,
the point S∗

i may be stable or not due to the nonlinear
terms. The other points in H are unstable equilibrium
points. Therefore, the system converges to the origin
or the points S∗

i from almost all initial states. Figure 1
is a sketch of the set of equilibria H and the critical
points zc, which is drawn inspired by the numerical
examples for a two-wheeled mobile robot shown in the
next section.

In this section, we constructed a feedback controller
for a nonholonomic system that is expressed in a gen-
eral form (1), by using potential functions that satisfy
the properties (a–e). The controller can be applied to
many examples such as a two-wheeled mobile robot,
a satellite with two reaction wheels and a planar space
robot composed of three links, because they can be
expressed by (1). An approachwith a potential function
would be useful when the state space D is restricted.
The two-wheeled mobile robot has to avoid walls and
obstacles, and the joint rotation of a space robot is lim-
ited by the maximum joint angle. In the next section,
we will apply the controller to a two-wheeled mobile
robot among obstacles.

saddle of V
(unstable)

H(set of equilibria)

minimum of V
(stable)

saddle of V
(stable)

z3

z1

z2

unaccessible region
(complement of D)

Fig. 1 Equilibrium points of the system (All the equilibrium
points are inH. The minimum and some saddles of V are stable
equilibrium points, while the other points in H are unstable)
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3 Application to a two-wheeled mobile robot

In this section, the controller (8) is applied to a two-
wheeled mobile robot among obstacles. Under the
assumption that the wheels of the robot do not skid
sideways, the motion of a two-wheeled mobile robot
on a floor surface can be expressed in the form (1):

ż = B(z)u ≡ b1(z)u1 + b2(z)u2, (31)

z =
⎡

⎣
z1
z2
θ

⎤

⎦ , B =
⎡

⎣
cos θ 0
sin θ 0
0 1

⎤

⎦ , u =
[
u1
u2

]
,

where z1 and z2 denote the position of the robot and θ

denotes the orientation of the robot (Fig. 2). The control
inputs of the system are translational velocity u1 and
angular velocity u2 of the robot.

The Lie bracket between b1 and b2 is calculated as

adb1b2 = ∂b2
∂ z

b1− ∂b1
∂ z

b2 = [sin θ,− cos θ, 0]T. (32)

The system (31) is controllable, because b1, b2 and
adb1b2 are linearly independent.

In [38], we considered two kinds of obstacles, flat
walls and star-shaped obstacles and constructed poten-
tial functions for them in order to obtain a feedback con-
troller in the same form as (8). In case of flat walls, the
potential function does not have any saddles, although
the admissible area for the robot is limited by the walls.
The controller (8) stabilizes the robot to the desired
position and orientation without any modification of
the controller. When there are star-shaped obstacles on
the floor surface, the potential function has saddles. In
[38], we added a periodic input to the input (8) near

θ

u1

u2

z2

z1

Fig. 2 State variables, z1, z2 and θ , and inputs, u1 and u2, of a
two-wheeled mobile robot

O1

O2

z2

z1

O0

Fig. 3 Star-shaped obstacles on the floor surface

the saddles to escape from them. In this paper, we con-
sider only star-shaped obstacles and propose a newway
of escaping from the saddles by using a time-varying
potential function.

3.1 Potential functions

Rimon et al. [5] have proposed a potential function,
called navigation function, for robot navigation in an
environment with star-shaped obstacles. It is assumed
that the obstacles are static and that their position and
shape are known. We also assume that the robot is a
point mobile robot. An obstacle Oi (i = 0, . . . , M)

can be expressed by a real-valued function Oi called
obstacle function as follows:

Oi = {r ∈ R2|Oi (r) ≤ 0}, (33)

where r = [z1, z2]T. The obstacle function Oi is zero
on the boundary of Oi , positive on the outside of Oi

and negative on the inside ofOi .When themobile robot
goes toward the desired point avoiding collision with
the obstacles, the state variables z must be in an open
subsetD defined asD = {z | r ∈ R2 −∪iOi , θ ∈ R}.
Without loss of generality, the desired point can be set
to be the origin in D. The outer boundary of the set
D is expressed by an obstacle O0, and there are some
isolated obstacles in the interior of the outer boundary
(Fig. 3).

Each obstacleOi is assumed to be a star-shaped set.
The star-shaped set has a “center point,” qi , fromwhich
all the rays cross the boundary of Oi once and only
once and is transformed into a disk by the following
coordinate transformation:

T i (r)= ρi (1+Oi (r))
‖r−qi‖

(r − qi )+ pi (i =1, . . . , M),

(34)
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T0(r)= ρ0(1 − O0(r))
‖r − q0‖

(r − q0) + p0, (35)

where ρi is a radius of the disk that Oi is transformed
into and pi is a center of the disk (i = 0, . . . , M). A
navigation function can be designed as follows:

Vn(r) = ‖r̂‖2
{‖r̂‖2κ + ∏M

i=0 Ôi (r̂)}1/κ
, (36)

r̂ = [ẑ1, ẑ2]T =
(

1 −
M∑

i=0

si (r)

)

r

+
M∑

i=0

si (r)T i (r) , (37)

si (r) = ‖r‖2 ∏
j �=i O j (r)

‖r‖2 ∏
j �=i O j (r) + λs Oi (r)

, (38)

Ôi (r̂) = ‖r̂ − pi‖2 − ρ2
i , Ô0(r̂) = ρ2

0 − ‖r̂ − p0‖2,
(39)

where κ and λs are positive parameters.
In this paper, the state variables z include the orien-

tation θ , and we construct a potential function for z by
modifying the navigation function Vn(r) as follows:

V (z) = ‖r̂‖2 + wθ2

{(‖r̂‖2 + wθ2)κ + ∏M
i=0 Ôi (r̂)}1/κ

. (40)

The coefficient w of θ2 is defined as

w(r̂) = kw/(kw + ‖r̂‖2), (41)

where kw is a positive constant.
It can be shown, from properties of Vn(r), that V (z)

satisfies the properties (a–e). From (40), we have an
additional property of V (z) as follows.

(f) ∂V/∂θ = 0 ⇔ θ = 0 ⇒ ∂2V/∂z1∂θ =
∂2V/∂z2∂θ = 0 and ∂2V/∂θ2 > 0.

The property (d) ofV holds from the above property, for
a navigation function Vn that is a Morse function. The
matrix P satisfies (77) in “Appendix 2” at the critical
points.

3.2 Time-invariant controller

Based on the potential function V (z) derived in
Sect. 3.1, the controller (8) is constructed as

u = −(α I + β̂ J)BT∇V . (42)

The function h is chosen as

h(z) = g(z)2 + εgV (z)
√
g(z), (43)

where εg is a small positive constant. The function h
does not have to be a function of only g. For h in (43),
the input vector is continuous except at z = 0, but is not
differentiable for ∀z in the set H. The same analytical
results as in Sect. 2 are obtained for h in (43).

To analyze the stability of the system, we have to
modify the controller (42) as in Sect. 2.3.

u = −(α I + tanh
(h(z)

ε

)
β̂ J)BT∇V . (44)

The same linearized equation as in (18) is obtainedwith
the controller (44). From property (f), the equilibrium
points in the set H satisfy the following equation:

BT∇V = 0 ⇔ ∂V/∂z1 = 0 and ∂V/∂θ = θ = 0.

(45)

Then, the eigenvalues of A, λ1 and λ2, are calculated
as

λ1,λ2 =
(

−ηa ±
√

η2a − 4ηb

) /
2, (46)

where

ηa = α

(
∂2V

∂z12
+ ∂2V

∂θ2

)
− β

ε

(
∂V

∂z2

)2

, (47)

ηb =
[

α2 + β2

ε2

(
∂V

∂z2

)2
]

∂2V

∂z12
∂2V

∂θ2
. (48)

The necessary condition (26) for an equilibrium point
to be stable is rewritten as

(
∂V

∂z2

)2

≤ εα

β

(
∂2V

∂z12
+ ∂2V

∂θ2

)
. (49)

From (46), another necessary condition is obtained as
follows:

∂2V

∂z12
≥ 0. (50)

If a critical point of V satisfies (50), the real parts of λ1

and λ2 for the critical point are negative or zero. The
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saddles denoted as S∗
i in Sect. 2 are the saddles that

satisfy (50).
The above results for (44) are applied to the system

with the controller (42) by taking the parameter ε to 0.
As a result, the systemwith (42) converges to the origin
or one of the saddles that satisfy (50) from almost all
initial states.

Note 1 The region of attraction of point S∗
i can be

approximated to be a two-dimensional space in a small
neighborhood of S∗

i (See “Appendix 1”). The system
goes away from S∗

i slowly outside the two-dimensional
space,while z1 and θ oscillatewith small amplitude and
high frequency.

Note 2 When z(t) passes nearH, the input umay have
large values of O(1/(εgV )2/3). However, because the
system (31) is a driftless control-affine system, we can
put the upper limit on ‖u‖ without changing the path
of z by modifying the norm of the input. For example,
the following modified input has the upper limit of kL :

u = −kL

1 + ‖(α I + β̂ J)BT∇V ‖ (α I + β̂ J)BT∇V

≡ uL , (51)

where kL is a positive constant. In a similar way as in
[36], it can be shown that, as the system approaches the
origin, the input u in (42) [or (51)] converges to zero
along the system trajectory when β > 4α.

3.3 Saddle avoidance via time-varying potential
functions

In the remainder of this section, we use uL in (51) as the
controller for the mobile robot among obstacles. How-
ever, further modification of the controller is proposed
in order to avoid the convergence to S∗

i and the oscil-
latory behavior of z near S∗

i mentioned in Note 1. The
basic idea is tomake S∗

i temporarily unstable by chang-
ing the desired orientation of the robot. If the desired
orientation is set to be a nonzero constant value of θd,
the saddle S∗

i is shifted from zsi to zsi +[0, 0, θd]T, and
the same results as in Sect. 3.2 are obtained by rotating
the coordinate axes (z1, z2) through θd and redefining
θ as θ − θd. That is, denoting the new coordinates as
(z̃1, z̃2, θ̃ ), the necessary conditions for the equilibrium
point to be stable are written in the same form as in (49)
and (50) for (z̃1, z̃2, θ̃ ). By choosing the desired orien-
tation θd so that ∂2V/∂ z̃21 < 0, we can make the saddle
S∗
i unstable.

The desired orientation near Si is determined by the
matrix P = ∂(∇V )/∂ z. From (40), P has two posi-
tive eigenvalues and one negative eigenvalue at a saddle
point Si (See also “Appendix 2”). The eigenvector cor-
responding to the negative eigenvalue lies in z1z2 plane.
We denote it as xi = [xi1, xi2, 0]T and the direction of
xi in z1z2 plane as θsi . When the system moves from
Si along xi , the value of function V decreases. If the
desired orientation θd is chosen as θsi , ∂2V/∂ z̃21 < 0
at Si .

We consider a time-varying desired orientation θd(t)
that varies continuously from zero to θsi when the state
z comes into a small neighborhood of Si in z1z2 plane.
The neighborhood is defined as

Ri =
{
(z1, z2)|

√
(z1 − zsi1)2 + (z2 − zsi2)2 < τ

}
,

(52)

where τ is a small constant and chosen so that any two
neighborhoods do not overlap.

The potential function Ṽ for θd(t) is chosen as

Ṽ (z, θd(t)) = V (z1, z2, θ − θd). (53)

The function Ṽ is identical with V for θd = 0.
The control input is modified to make Ṽ monotoni-

cally decreasing as follows:

u = ũL + [0, θ̇d]T, (54)

where ũL = −k̃L(α I+ β̂ J)BT∇ Ṽ and k̃L = kL/(1+
‖(α I + β̂ J)BT∇ Ṽ ‖). The time derivative of Ṽ along
the system trajectory is calculated as

˙̃V = (∇ Ṽ )T ż + ∂ Ṽ /∂t

= (∇ Ṽ )TB(ũL + [0, θ̇d]T) − (∂ Ṽ /∂θ)θ̇d

= (∇ Ṽ )TBũL + (∂ Ṽ /∂θ)θ̇d − (∂ Ṽ /∂θ)θ̇d

= −k̃Lα‖BT∇ Ṽ ‖2 ≤ 0. (55)

Using the input (54),we consider the following algo-
rithm for changing θd(t).

1. Set θd = 0. If z ∈ Ri and V (z) > V (zsi ) at the
time t , we set t0 = t and go to 2.

2. Set

θd(t) = (θsi/2) · (1 − cos(π(t − t0)/T )), (56)

for t0 < t ≤ t0 + T , and go to 3.
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3. Set θd = θsi . If Ṽ (z, θsi ) ≤ V (zsi ) or z ∈ R j

( j �= i) at the time t , we set t0 = t and go to 4.
4. Set

θd(t) = (θsi/2) × (1 + cos(π(t − t0)/T )), (57)

for t0 < t ≤ t0 + T , and return to 1.

In step 1, the system may approach to a stable equi-
librium located at S∗

i . If the system enters the neigh-
borhood Ri , the desired orientation θd is varied from 0
to θsi through step 2. In step 3, the equilibrium at S∗

i is
unstable, and the system goes away from S∗

i decreasing
Ṽ (z, θsi ). If Ṽ (z, θsi ) ≤ V (zsi ) at the end of step 3,
the system never converge to S∗

i because Ṽ (z, θd(t))
is monotonically decreasing. Then, the desired orien-
tation is set to be zero again through step 4. If the sys-
tem in step 3 enters another neighborhood R j before
Ṽ (z, θsi ) ≤ V (zsi ) is satisfied, we return to step 1 to
avoid the convergence to S j .

Proposition 3 By the above algorithm, the system
avoids the convergence to any Si without increasing
the value of Ṽ (z, θd(t)).

It is shown by contradiction that steps 2–4 are not
repeated infinite times. If the system entered the neigh-
borhood Ri of S∗

i satisfying V (z) > V (zsi ) infinite
times in step 1, BT∇V ≈ 0 from (55) at the k th time
for sufficiently large k. That is, z is almost on theH at
the moment when the system enters Ri . Therefore, z at
the moment can be expressed as zsi + a t where a is a
small scalar and t satisfies (∂BT∇V/∂ z)|z=zsi t = 0.
Then, we obtain

V (z) − V (zsi ) ≈ −a2

2
tTP(zsi )t

= −a2

2

∂2V

∂z21

{( ∂2V

∂z1∂z2

)2 − ∂2V

∂z21

∂2V

∂z22

}
≤ 0, (58)

because ∂2V/∂z21 ≥ 0 and (∂2V/∂z1∂z2)2−∂2V/∂z21 ·
∂2V/∂z22 > 0 for S∗

i (See “Appendix 2”). It contradicts
V (z) > V (zsi ). As a result, the system avoids the con-
vergence to S∗

i with finite repetitions of steps 2–4 and
goes toward the origin.

Note 3 Several other strategies can be considered to
avoid the saddle points. In [38], we have proposed a
method of adding a periodic input that decreases the
averaged value of V .

3.4 Numerical simulations

In this subsection, the behavior of the system with the
input (54)will be examined, and the results in Sects. 3.2
and 3.3 will be verified by numerical simulations.

Numerical simulationswere performed in two cases:
Case 1 and Case 2. In Case 1, there are two obstacles
O0 and O1 on the floor surface that are expressed by
the following obstacle functions:

O0=1−(z1/5)
4−(z2/5)

4, O1=(z1 + 1.5)4+z42−1.

In Case 2, there are three obstacles, O0, O1 and O2,
on the floor. Obstacles O0 and O1 are the same ones
used in Case 1, and obstacle O2 is expressed by the
following obstacle function:

O2 = (z1 − 2.5)4 + ((z2 − 0.5)/2.5)4 − 1.

In both cases, the parameters ofV ,κ ,λs and kw were set
to 2.0, 1.0× 106 and 0.1, respectively, and parameters
in (34) and (35), ρ0, p0, ρ1 and p1, were set to 8.0,
[0.0, 0.0]T, 0.8 and [−1.5, 0.0]T. In Case 2, ρ2 and
p2 were set to 0.8 and [2.5, 0.5]T. The parameters of
the controller, α, β, εg , kL and τ , were set to 10.0,
50.0, 1.0×10−6, 1.0 and 0.01 in both cases. The initial
values of z were set to [−3.85, 0.0, 0.0]T in Case 1 and
[3.5, 3.5, 0.0]T in Case 2.

In Case 1, there exists one saddle point S1 at z =
[−3.36, 0.0, 0.0]T and the system with the controller
(54) enters the region R1 definedby (52).Theparameter
T in (56) and (57) was set to 3.0. Figure 4 shows the
trajectory of the system in the z1z2 plane. The system
with the algorithm in Sect. 3.3 is not trapped in S1
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Fig. 4 Motion of the robot in the z1z2 plane (Case1)
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Fig. 5 Time histories of input variables u1 and u2 (Case1)
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Fig. 6 Motion of the robot in the z1z2 plane (Case2)

by changing the desired orientation θd to θsi = π/2
and converges to the origin avoiding collision with the
obstacles, O0 and O1. Figure 5 shows the time history
of the input u. For 5.1 < t ≤ 46.7, the system is in step
3 of the algorithm, and the input u makes the robot go
away from S1 slowly. The value of Ṽ is monotonically
decreasing along the trajectory.

In Case 2, there exist two saddle points S1 and S2
at z = [−4.23, 0.27, 0.0]T and z = [4.60, 1.02, 0.0]T.
However, the controlled systemdoes not enter either R1

or R2. Figure 6 shows the trajectory of the system in the
z1z2 plane. The system converges to the origin without
any collision with the obstacles, O0, O1 and O2.

Note 4 The norm of the input vector, ‖u‖, changes
abruptly in Fig. 5, which tends to happen when z(t)

passes near H. From a practical point of view, such
abrupt changes of ‖u‖ are undesirable because they
may cause too large acceleration of the robot. In order
to prevent such abrupt changes, we can choose another
modification of the control input u as shown in Note 2.
For example, the following input keeps ‖u‖ close to k1
for ‖z‖ > O(

√
k2):

u = −k1 tanh(‖z‖2/k2)
‖(α I + β̂ J)BT∇V ‖ (α I + β̂ J)BT∇V, (59)

where k1 and k2 are positive constants.

4 Conclusion

In this paper, we proposed a feedback controller that
makes a two-wheeled mobile robot converge to a
desired position and orientation among obstacles. First,
the controller was designed for a general form of non-
holonomic systems with three states and two inputs,
based on a potential function that has a minimum and
saddles as its critical points. It was shown that the stable
equilibrium points of the controlled system are located
only at the critical points. Next, the controller was
applied to a two-wheeled mobile robot among obsta-
cles. To avoid the convergence to the saddles, the con-
troller was modified by making the potential function
time-varying near the saddles. The controlled system
converges to the desired point without collision with
obstacles. The effectiveness of the controller was veri-
fied by numerical simulations.

Appendix 1: Region of attraction of point S∗
i

In the neighborhood of a saddle point S∗
i , from proper-

ties (d) and (f), the function V (z) can be approximately
expressed as

V (z) = 1

2
z̄T

⎡

⎣
p11 p12 0
p12 p22 0
0 0 p33

⎤

⎦ z̄ + V (zsi ), (60)

where z̄ = [z̄1, z̄2, θ ]T = z − zsi and, from the condi-
tion (50), p11 ≥ 0. In the following analysis,we assume
that p11 > 0 and that the controller (42) is applied
to the system. We can choose new state variables as
[ẑ1, z̄2, θ ]T where ẑ1 = p11 z̄1 + p12 z̄2. Neglecting
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smaller terms under the assumption that the state vari-
ables are small, the following equations are obtained:

˙̂z1 = −αp11 ẑ1 − β̂ p33(p11 + p12θ)θ, (61)
˙̄z2 = θ(−αẑ1 − β̂ p33θ), (62)

θ̇ = β̂

{

ẑ1 + θ

(
p12
p11

ẑ1 +
(

p22 − p212
p11

)

z̄2

)}

−αp33θ. (63)

Noting that ∇V = (∂V/∂ z)T = (∂V/∂ z̄)T, the coef-
ficient β̂ defined by (10) is approximately calculated
from (32), (43) and (60) as

β̂ = β

εgV (zsi )
√
g

(
p12
p11

ẑ1 +
(

p22 − p212
p11

)

z̄2

)

.

(64)

In order to express the magnitude of ẑ1 and θ , we intro-

duce the variable r̂ as r̂ =
√
ẑ21 + p11 p33θ2. From (61)

and (63), the variable r̂ satisfies approximately the fol-
lowing equation:

˙̂r = −αp11
r̂

(ẑ21 + p233θ
2) + kβ

p11 p33θ2

r̂
√
g

z̄22, (65)

where kβ = β(p212/p11 − p22)2/(εgV (zsi )). Since
| ˙̄z2| � |˙̂r | from (62) and (65), we obtain

˙̄z2 = 0, (66)

˙̂r ≤ −αlm
p33

r̂ + kβ

(
p11 p33
lm

) 1
4

r̂
1
2 z̄22, (67)

where lm = min{p11 p33, p233} and the following equa-
tion was used:

lm
p11 p33

r̂2 ≤ ẑ21 + p233θ
2 ≈ g2. (68)

Equation (67) shows that the system moves into the
region r̂ ≤ O(z̄42).

On the other hand, from (60),

V (z) = V (zsi ) + 1

2

(
1

p11
r̂2 − 1

p11
(p212 − p11 p22)z̄

2
2

)
,

(69)

where, as shown in “Appendix 2,” p212 − p11 p22 > 0
because S∗

i is a saddle point. Therefore, (67) means

H
r̂ = O(z̄42)

V (z) = V (zsi )

z̄2 = const.

saddle point S∗
i

z̄2

θ

ẑ1

Fig. 7 Approximate behavior of the system near saddle point
S∗
i

that the system moves into the region V (z) < V (zsi )
for nonzero but sufficiently small z̄2. Once the system
enters the region, it cannot approach S∗

i because V̇ ≤ 0.
In other words, the region of attraction of S∗

i can be
approximated as a two-dimensional space that satisfies
z̄2 = 0 (Fig. 7).

The behavior of the system in the region r̂ ≤ O(z̄42)
can be approximately analyzed in a similar way as in
[36,39]. The state variables oscillate with a high fre-
quency around the set of equilibriaH and move slowly
alongH increasing the amplitude of oscillation (Fig. 7).
For simplicity, we assume that p11 = 1, p12 = 0,
p22 = −1 and p33 = 1. The variable g in (12) is

approximated as g =
√
ẑ21 + θ2 = r̂ , and the approx-

imate solution of z in the region r̂ ≤ O(z̄42) is sum-
marized as follows. Neglecting smaller terms in (61),
(62), (63) and (65), we obtain

˙̂z1 = −β̂θ, θ̇ = β̂ ẑ1, ˙̄z2 = 0, ġ = ˙̂r = 0. (70)

From (70), the solutions for ẑ1 and θ are given as ẑ1 =
g cos(β̂t + φ) and θ = g sin(β̂t + φ) where φ is a
constant. Substituting the solutions into (62) and (65),
averaging them with the period 2π/β̂ and neglecting
smaller terms, we obtain

ġ = −αg + 1

2
kβg

1
2 z̄22, (71)

˙̄z2 = 1

2
kβg

3
2 z̄2. (72)
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Because | ˙̄z2| � |ġ| from the above equations, g con-
verges to k2β z̄

4
2/(4α

2) exponentially, while z̄2 is con-

stant. Substituting g = k2β z̄
4
2/(4α

2) into (72), we obtain

˙̄z2 = 1

16α3 k
4
β z̄

7
2. (73)

From the above equation, |z̄2| becomes large as time
advances and the system goes away from the point S∗

i .
It should be noted that we can make the escape from
the saddle faster by changing the choice of h(g) [36].

Appendix 2: Derivation of (58)

From property (f), (∂BT∇V/∂ z)|z=zsi can be calcu-
lated as

∂BT∇V

∂ z

∣∣∣∣
z=zsi

=
⎡

⎣
∂2V
∂z21

∂2V
∂z1∂z2

0

0 0 ∂2V
∂θ2

⎤

⎦ . (74)

Therefore, we can choose t as

t = [∂2V/∂z1∂z2,−∂2V/∂z21, 0]T. (75)

Then, δV = V (zsi + a t) − V (zsi ) is calculated as

δV = a(∇V (zsi ))T t + a2

2
tTP(zsi )t + O(a3). (76)

From property (f) and the definitions of Vn and V in
(36) and (40), the matrix P(zsi ) is calculated as

P =

⎡

⎢
⎢⎢
⎣

∂2V
∂z21

∂2V
∂z1∂z2

0

∂2V
∂z1∂z2

∂2V
∂z22

0

0 0 ∂2V
∂θ2

⎤

⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

∂2Vn
∂z21

∂2Vn
∂z1∂z2

0

∂2Vn
∂z1∂z2

∂2Vn
∂z22

0

0 0 ∂2V
∂θ2

⎤

⎥⎥⎥
⎦

. (77)

Since ∂2V/∂θ2 > 0 from property (f) and the function
Vn has no local maxima, P has one negative eigenvalue
for the saddle z = zsi . Therefore, we obtain

(
∂2V

∂z1∂z2

)2

− ∂2V

∂z21

∂2V

∂z22
=

(
∂2Vn

∂z1∂z2

)2

− ∂2Vn

∂z21

∂2Vn

∂z22
>0.

(78)

For the saddle S∗
i that is stable in the analysis in

Sect. 3.2, the condition (50) also holds. Noting that
∇V (zsi ) = 0, δV is calculated from (50), (75), (77)
and (78) as

δV ≈ a2

2
tTP(zsi )t

= −a2

2

∂2V

∂z21

{( ∂2V

∂z1∂z2

)2 − ∂2V

∂z21

∂2V

∂z22

}
≤ 0.

(79)
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