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Abstract Considering the effect of pedestrian’s antic-
ipation, an extended lattice hydrodynamic model for
bidirectional pedestrian flow with passing is proposed
in this paper. The stability condition is obtained by
the use of linear stability analysis. It is shown that the
anticipation term can significantly enlarge the stability
region on the phase diagram, and the passing term may
reduce the stability region and aggravate the pedestrian
jam. Based on nonlinear analysis method, the Burgers,
Korteweg–de Vries and modified Korteweg–de Vries
equations are derived to describe the shock waves,
soliton waves and kink–antikink waves in the stable,
metastable and unstable region, respectively. The the-
oretical results show that jams may be alleviated effi-
ciently by considering the effect of pedestrian’s antici-
pation. Numerical simulations are carried out in order
to verify the theoretical results.
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1 Introduction

In recent years, with the development of urbanization,
pedestrian flow becomes a topic issue in public secu-
rity problems. The congested pedestrian flow not only
causes much inconvenience, but also results in security
risks for pedestrian. Pedestrian flow has attracted con-
siderable attention in the field of physical science [1–
6]. In order to gain a better understanding of pedes-
trian flow, there is a demand for realistic and quan-
titative models that can predict pedestrian movements
and travel times for a given infrastructure and duplicate
the phenomena observed in real situation. To achieve
this goal, various pedestrian flow models including the
social forcemodels, the hydrodynamicmodels, the cel-
lular automaton models, the lattice models and emer-
gency and evacuation models were proposed by many
scholars with different backgrounds. A series of exper-
iments had been done for investigating the mechanism
of pedestrian flow and identifying the influence fac-
tors.Many interesting nonequilibriumphenomena such
as phase transition, density waves, freezing by heat-
ing and faster-is-slow effect in panic situations, sudden
transitions from laminar to stop-and-go and turbulent
flows had been observed. To investigate and represent
the complex phenomena of pedestrian flow, investiga-
tions have been carried out by scholars using different
methodologies [7–32], such as mathematical model-
ing and simulation, experimental studies. Compared
with experimental studies, mathematical modeling and
simulation have the ability to study pedestrian flow in
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general and get the analytical results easily. Dynamical
models for pedestrian flow are useful for such studies,
especially for analytical studies, because the motion of
pedestrians is described by the dynamical equation of
motion [27].

Pedestrianflowdynamics is similar to the trafficflow
dynamics to some extent. Ivancevic and Reid [23] ana-
lyzed crowd turbulence from both classical and quan-
tum perspective and found shock waves and soliton
waves in crowd dynamics. The nonlinear waves in traf-
fic dynamics have been investigated by using nonlin-
ear analysis [33–41]. Kerner et al. [33] had found the
single-pulse density waves in the numerical simulation
with the hydrodynamic model. Kurtze and Hong [34]
had shown that the single-pulse density wave is a soli-
ton. Komatsu and Sasa [35] derived MKdV equation
from optimal velocitymodel to describe the traffic jams
in terms of the kink density waves. In pedestrian flow
theory, based on the two-dimensional optimal veloc-
ity model proposed by Nakayama et al. [27,28], Tian
et al. [19] proposed a new lattice hydrodynamic model
for bidirectional pedestrian flowand derived theMKdV
equations to describe the density wave of pedestrian
congestion. Considering the pedestrian’s visual field
effects, Kuang et al. [13] proposed an extended lattice
hydrodynamic model for bidirectional pedestrian flow
and concluded that taking the pedestrian’s visual field
effect into account can improve the stability of pedes-
trian flow dynamics.

Anticipation effect, which is considered as pedes-
trian’s ability of avoiding collisions by forecasting
other pedestrians movement, adjusting their velocity
according to the observed surrounding situations and
estimating their walking behavior, plays an important
role in stabilizing and destabilizing the pedestrian flow.
Heavy jamming and confusion would occur if no one
should anticipate, especially under crowded situations.
In Ref. [42], considering the anticipation as the abil-
ity of avoiding collisions with other pedestrians, Suma
et al. proposed the anticipation floor field (AFF) as an
extension of the floor field (FF) model and found that
strength and range of anticipation significantly affect
pedestrian dynamics. However, the effect of pedes-
trian’s anticipation on the formationmechanismof den-
sity wave of pedestrian jam has not been considered.
In this paper, taking the effect of pedestrian’s antici-
pation into account, an extended lattice hydrodynamic
model for bidirectional pedestrian flow with passing is
proposed.

The paper is organized as follows. In Sect. 2, the
model is formulated by considering anticipation effect
and passing effect. The stability analysis is obtained by
using linear stability analysis in Sect. 3. We can see the
stability condition varies with the anticipation effect.
In Sect. 4, the Burgers, KdV and MKdV equations
are derived in three types of pedestrian flow regions
by using nonlinear analysis. Numerical simulations are
given in Sect. 5.

2 Model

In this section, considering the effect of pedestrian’s
anticipation in pedestrian dynamics with passing, an
extended lattice hydrodynamic model for bidirectional
pedestrian flow will be established. As mentioned in
Ref. [19], in the two-dimensional bidirectional pedes-
trian flow, four types of pedestrians are considered:
east-bound pedestrians move freely only to the posi-
tive x direction x+, west-bound only to the negative
x direction x−, north-bound only to the positive y
direction y+, and south-bound only to the negative y
direction y−. Figure 1 is the illustration of the two-
dimensional bidirectional pedestrian flow.

The continuity equations of the east-bound, west-
bound, north-bound and south-bound pedestrians are
given as follows [19]

∂tρx+( j,m, t) + cc1ρ0[Qx+( j,m, t)

− Qx+( j − 1,m, t)] = 0, (1)

∂tρx−( j,m, t) + c(1 − c1)ρ0[Qx−( j,m, t)

− Qx−( j + 1,m, t)] = 0, (2)

∂tρy+( j,m, t) + (1 − c)c2ρ0[Qy+( j,m, t)

− Qy+( j,m − 1, t)] = 0, (3)

∂tρy−( j,m, t) + (1 − c)(1 − c2)ρ0[Qy−( j,m, t)

− Qy−( j,m + 1, t)] = 0, (4)

where ρ0 is the total average density, ρx+(x, y, t),
ρx−(x, y, t), ρy+(x, y, t), ρy−(x, y, t)denote the den-
sity of east-bound,west-bound, north-bound and south-
bound pedestrians at site (x, y) at time t , respec-
tively, and Qx+(x, y, t), Qx−(x, y, t), Qy+(x, y, t),
Qy−(x, y, t) represent the flux of east-bound, west-
bound, north-bound and south-boundpedestrians at site
(x, y) at time t , respectively. c is the proportion of east-
bound and west-bound pedestrians in all pedestrians,
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Fig. 1 The schematic
diagram of the moving
direction of the pedestrians
when n sites in front of site
( j,m) are considered. The
circle denotes the position
of site, and E,W, N and S
represent the east-bound,
west-bound, north-bound,
and south-bound
pedestrians, respectively.
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c1 is the proportion of east-bound pedestrians in east-
bound and west-bound pedestrians, and c2 is the pro-
portion of north-bound pedestrians in north-bound and
south-bound pedestrians.

In terms of Nagatani’s idea [25], the flux for each
direction pedestrian is determined by the total optimal
current with delay time τ , that is [19]
Qx+( j,m, t + τ) = cc1ρ0V (ρ( j + 1,m, t)), (5)

Qx−( j,m, t + τ) = c(1 − c1)ρ0V (ρ( j − 1,m, t)), (6)

Qy+( j,m, t + τ) = (1 − c)c2ρ0V (ρ( j,m + 1, t)), (7)

Qy−( j,m, t + τ) = (1 − c)(1 − c2)ρ0V (ρ( j,m − 1, t)).

(8)

Here, V (ρ( j,m, t)) is the optimal velocity function
and adopted as in Ref. [25], that is

V (ρ( j,m, t)) = tanh

(
2

ρ0
− ρ( j,m, t)

ρ2
0

− 1

ρc

)

+ tanh

(
1

ρc

)
. (9)

where ρc is the critical density and it is equal to the
inverse of the safety distance [26].

Considering the effect of pedestrian’s anticipation
on the pedestrian flow with passing, we extend the
flux for each direction pedestrian based on Nagatani’s
idea [43]

Qx+( j,m, t + τ) = cc1ρ0V (ρ( j + 1,m, t + ατ))

+ λcc1ρ0[V (ρ( j + 1,m, t + ατ))

− V (ρ( j + 2,m, t + ατ))], (10)

Qx−( j,m, t + τ) = c(1 − c1)ρ0V (ρ( j − 1,m, t + ατ))

+ λc(1−c1)ρ0[V (ρ( j−1,m, t+ατ))

− V (ρ( j − 2,m, t + ατ))], (11)

Qy+( j,m, t + τ) = (1 − c)c2ρ0V (ρ( j,m + 1, t + ατ))

+ λ(1 − c)c2ρ0[V (ρ( j,m + 1, t + ατ))

− V (ρ( j,m + 2, t + ατ))], (12)

Qy−( j,m, t + τ) = (1 − c)(1 − c2)ρ0
× V (ρ( j,m − 1, t + ατ))

+ λ(1 − c)(1 − c2)

× ρ0[V (ρ( j,m − 1, t + ατ))

− V (ρ( j,m − 2, t + ατ))], (13)

where λ is the reaction coefficient to the passing effect
and α > 0 represents anticipation walking behavior or
the pedestrian’s forecast effect in a pedestrian dynam-
ics. And the bigger value of α corresponds to conscious
pedestrian in the model.

Inserting Eqs. (10)–(13) into Eqs. (1)–(4) and using

ρ( j,m, t) = ρx+( j,m, t) + ρx−( j,m, t)

+ρy+( j,m, t) + ρy−( j,m, t),
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the total density equation is obtained as

ρ( j,m, t + 2τ) − ρ( j,m, t + τ) + τ(cc1ρ0)
2

[V (ρ( j + 1,m, t + ατ)) − V (ρ( j,m, t + ατ))]
+τ [c(1 − c1)ρ0]2[V (ρ( j − 1,m, t + ατ))

−V (ρ( j,m, t + ατ))] + τ [(1 − c)c2ρ0]2
[V (ρ( j,m + 1, t + ατ)) − V (ρ( j,m, t + ατ))]
+τ [(1 − c)(1 − c2)ρ0]2
[V (ρ( j,m − 1, t + ατ)) − V (ρ( j,m, t + ατ))]
+λτ(cc1ρ0)

2[2V (ρ( j + 1,m, t + ατ))

−V (ρ( j + 2,m, t + ατ)) − V (ρ( j,m, t + ατ))]
+λτ [c(1 − c1)ρ0]2[2V (ρ( j − 1,m, t + ατ))

−V (ρ( j − 2,m, t + ατ)) − V (ρ( j,m, t + ατ))]
+λτ [(1 − c)c2ρ0]2[2V (ρ( j,m + 1, t + ατ))

−V (ρ( j,m + 2, t + ατ)) − V (ρ( j,m, t + ατ))]
+λτ [(1−c)(1−c2)ρ0]2[2V (ρ( j,m−1, t+ατ))

−V (ρ( j,m−2, t+ατ))−V(ρ( j,m, t+ατ))]=0.

(14)

3 linear stability analysis

We apply the linear stability theory to analyze the
pedestrian flow model described by Eq. (14). Suppos-
ing the pedestrian running with the uniform density ρ0
and optimal velocity V (ρ0) along four directions, then
we get the uniform steady-state solution ρ( j,m, t) for
Eq. (14)

ρ( j,m, t) = ρ0,

vx+( j,m, t) = vx−( j,m, t)

= vy+( j,m, t) = vy−( j,m, t) = V (ρ0).

(15)

Assuming y( j,m, t) be a small deviation from the uni-
form steady solution, that is

ρ( j,m, t) = ρ0 + y( j,m, t). (16)

Inserting it and Eq. (15) into Eq. (14), then the
linearized equation for y( j,m, t) is obtained from
Eq. (14)

y( j,m, t + 2τ) − y( j,m, t + τ)

+τ(cc1ρ0)
2V ′(ρ0)[y( j + 1,m, t + ατ)

−y( j,m, t + ατ)]
+τ [c(1 − c1)ρ0]2V ′(ρ0)[y( j − 1,m, t + ατ)

−y( j,m, t + ατ)]

+τ [(1 − c)c2ρ0]2V ′(ρ0)[y( j,m + 1, t + ατ)

−y( j,m, t + ατ)]
+τ [(1 − c)(1 − c2)ρ0]2V ′(ρ0)

[y( j,m − 1, t + ατ) − y( j,m, t + ατ)]
+λτ(cc1ρ0)

2V ′(ρ0)
[2y( j + 1,m, t + ατ) − y( j + 2,m, t + ατ)

−y( j,m, t + ατ)]
+λτ [c(1 − c1)ρ0]2V ′(ρ0)

[2y( j − 1,m, t + ατ) − y( j − 2,m, t + ατ)

−y( j,m, t + ατ)]
+λτ [(1 − c)c2ρ0]2V ′(ρ0)

[2y( j,m + 1, t + ατ) − y( j,m + 2, t + ατ)

−y( j,m, t + ατ)]
+λτ [(1 − c)(1 − c2)ρ0]2V ′(ρ0)

[2y( j,m − 1, t + ατ) − y( j,m − 2, t + ατ)

−y( j,m, t + ατ)]
= 0, (17)

where V ′(ρ0) is the derivative of optimal velocity func-
tion V (ρ) at point ρ = ρ0. Expand y( j,m, t) ∝
exp[ik( j+m)+ zt] resulting in the following equation
of z

e2zτ − ezτ + τ(cc1ρ0)
2V ′(ρ0)eατ z

(
eik − 1

)
+τ [c(1 − c1)ρ0]2V ′(ρ0)eατ z

(
e−ik − 1

)
+τ [(1 − c)c2ρ0]2V ′(ρ0)eατ z

(
eik − 1

)
+τ [(1 − c)(1 − c2)ρ0]2V ′(ρ0)eατ z

(
e−ik − 1

)
+λτ(cc1ρ0)

2V ′(ρ0)eατ z
(
2eik − e2ik − 1

)
+λτ [c(1− c1)ρ0]2V ′(ρ0)eατ z

(
2e−ik − e−2ik− 1

)
+λτ [(1 − c)c2ρ0]2V ′(ρ0)eατ z

(
2eik − e2ik − 1

)
+λτ [(1 − c)(1 − c2)ρ0]2V ′(ρ0)eατ z(
2e−ik − e−2ik − 1

)
= 0, (18)

where z = z1(ik) + z2(ik)2 + · · · and inserts it into
Eq. (18), the first- and second-order terms of ik are
obtained

z1 = −hρ2
0V

′(ρ0), (19)

z2 = −3τ z21
2

− fρ2
0V

′(ρ0)
2

− ατ z21 + λ fρ2
0V

′(ρ0),
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Fig. 2 Phase diagram in the (ρ, a) space with ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for a different values of α; b different values of λ.

(20)

where

f =(cc1)
2 + [c(1 − c1)]2 + [(1 − c)c2]2

+ [(1 − c)(1 − c2)]2,
h =(cc1)

2 − [c(1 − c1)]2 + [(1 − c)c2]2
− [(1 − c)(1 − c2)]2.

If z2 > 0, the uniform steady state becomes stable,
while the uniform steady state becomes unstable if z2 <

0. Then the stable condition for pedestrian flow is

τ <
(2λ − 1) f

(3 − 2α)h2ρ2
0V

′(ρ0)
. (21)

Moreover, for small disturbances of long wave length,
the neutral stability condition is given by

τs = (2λ − 1) f

(3 − 2α)h2ρ2
0V

′(ρ0)
. (22)

When c1 = c2 = 0.5, then h = 0, there is a singularity
irrespective of the value of c, which reflects the phase
transition never occurs without the unstable region.

The coexisting curves (dash lines), neutral stabil-
ity lines (solid lines) and critical points in the space
(ρ, a) (a = 1/τ ) for different values of λ and α with
ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 are shown in Fig. 2,

respectively. The coexisting curve and the neutral sta-
bility line are similar to the conventional gas–liquid
phase transition. Three regions in the pedestrian flow
are distinguished: the unstable region which is within
the neutral stability line, the metastable region which
is between the neutral stability line, and the coexisting
curve and the stable region which is out of the coex-
isting curve. When λ = 0, α = 0 in Fig. 2b, it is
agreed with the result in Ref. [19]. From Fig. 2a, it is
shown that the pedestrian flow becomes stable with the
increase of α, which means that pedestrian jam can be
suppressed efficiently by enhancing the anticipation of
pedestrian. Without the anticipation which as shown in
Fig. 2b, the passing effect will aggravate the pedestrian
jam with the increasing of λ.

4 Nonlinear analysis

In this section, by using the reductive perturbation
method introduced in Ref. [35], we derive the non-
linear equations in the stable, metastable and unsta-
ble regions, respectively. We introduce slow scales for
space variable j,m and time variable t and define slow
variables X and T for 0 < ε � 1 [44]

X = ε( j + m + bt), T = εs t (23)

where b is a constant to be determined. Assuming

ρ( j,m, t) = ρ0 + εl R(X, T ). (24)
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The values of the index s, l represent different phases of
the pedestrian flow. Three groups of values s = 2, l =
1; s = 3, l = 2; s = 3, l = 1 are corresponding to
the stable pedestrian flow region, metastable pedestrian
flow region and unstable pedestrian flow, respectively.

By Substituting Eqs. (23)–(24) into Eq. (14) and
expanding to the s + l + 1 order of ε, we obtain the
following nonlinear partial differential equation

εl+1
(
b + hρ2

0V
′(ρ0)

)
∂X R

+ εl+2
(3b2τ

2
+ f + 2bhατ + λP1

2
ρ2
0V

′(ρ0)
)
∂2X R

+ εl+3
( P2 + λP3

6
ρ2
0V

′(ρ0) + 7b3τ 2

6

)
∂3X R

+ εl+4
(5b4τ 3

8
+ P4 + λP5

24
ρ2
0V

′(ρ0)
)
∂4X R

+ ε2l+1 h

2
ρ2
0V

′′(ρ0)∂X R2

+ ε2l+2 f + 2bhατ + λP1
4

ρ2
0V

′′(ρ0)∂2X R2

+ ε3l+1 h

6
ρ2
0V

′′′(ρ0)∂X R3

+ ε3l+2 f + 2bhατ + λP1
12

ρ2
0V

′′′(ρ0)∂2X R3

+ εs+l∂T R + εs+l+1(3bτ

+ hατρ2
0V

′(ρ0))∂X∂T R = 0. (25)

Here

P1 = (cc1)
2[2(1 + bατ)2 − (2 + bατ)2 − (bατ)2]

+[c(1 − c1)]2[2(−1 + bατ)2

−(−2 + bατ)2 − (bατ)2]
+[(1 − c)c2]2[2(1 + bατ)2

−(2 + bατ)2 − (bατ)2]
+[(1 − c)(1 − c2)]2[2(−1 + bατ)2

−(−2 + bατ)2 − (bατ)2],
P2 = (cc1)

2[(1 + bατ)3 − (bατ)3]
+[c(1 − c1)]2[(−1 + bατ)3 − (bατ)3]
+[(1 − c)c2]2[(1 + bατ)3 − (bατ)3]
+[(1 − c)(1 − c2)]2[(−1 + bατ)3 − (bατ)3],

P3 = (cc1)
2[2(1 + bατ)3 − (2 + bατ)3 − (bατ)3]

+[c(1 − c1)]2[2(−1 + bατ)3

−(−2 + bατ)3 − (bατ)3]
+[(1 − c)c2]2[2(1 + bατ)3

−(2 + bατ)3 − (bατ)3]
+[(1 − c)(1 − c2)]2[2(−1 + bατ)3

−(−2 + bατ)3 − (bατ)3],
P4 = (cc1)

2[(1 + bατ)4 − (bατ)4]
+[c(1 − c1)]2[(−1 + bατ)4 − (bατ)4]
+[(1 − c)c2]2[(1 + bατ)4 − (bατ)4]
+[(1 − c)(1 − c2)]2[(−1 + bατ)4 − (bατ)4].

P5 = (cc1)
2[2(1 + bατ)4 − (2 + bατ)4 − (bατ)4]

+[c(1 − c1)]2[2(−1 + bατ)4

−(−2 + bατ)4 − (bατ)4]
+[(1 − c)c2]2[2(1 + bατ)4

−(2 + bατ)4 − (bατ)4]
+[(1 − c)(1 − c2)]2[2(−1 + bατ)4

−(−2 + bατ)4 − (bατ)4].
Firstly, we discuss the triangular shock waves of the
pedestrian flow in the stable region. The nonlinear par-
tial differential equation is obtained from Eq. (25) for
s = 2, l = 1.

ε2
(
b + hρ2

0V
′(ρ0)

)
∂X R

+ ε3
[
∂T R + h

2
ρ2
0V

′′(ρ0)∂X R2 +
(3b2τ

2

+ f + 2bhατ + λP1
2

ρ2
0V

′(ρ0)
)
∂2X R

] = 0.

(26)

Taking b = −hρ2
0V

′(ρ0), the second-order terms of
ε are eliminated in Eq. (26). We obtain the following
partial differential equation

∂T R + hρ20V
′′(ρ0)R∂X R

=
[− f −2bhατ − λP1−3h2ρ20V

′(ρ0)τ
2

ρ20V
′(ρ0)

]
∂2X R.

(27)

In accordance with criterion Eq. (22), the coefficient
of the second derivative of Eq. (27) is positive in the
stable region. Therefore, in the stable region, Eq. (27)
is just the Burgers equation. If R(X, 0) is of compact
support, then the solution R(X, T ) of Eq. (27) is

R(X, T ) = 1

|hρ2
0V

′′(ρ0)|T
[
X − ηn+1 + ηn

2

]

− ηn+1 − ηn

2|hρ2
0V

′′(ρ0)|T

× tanh

[(− f − 2bhατ − λP1 − 3h2ρ2
0V

′(ρ0)τ
8

ρ2
0V

′(ρ0)
) (ηn+1 − ηn)(X − ξn)

|hρ2
0V

′′(ρ0)|T
]
. (28)
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where ξn are the coordinates of the shock fronts and
ηn are the coordinates of the intersections of the slopes
with the x-axis (n = 1, 2, ..., N ). As O( 1

T ), R(X, T )

decays to 0 when T → +∞. That means any shock
wave expressed by Eq. (28) in stable pedestrian flow
region will evolve to a uniform flow when time is suf-
ficiently large.

Secondly, we discuss the soliton waves of the pedes-
trian flow in the metastable region. The nonlinear par-
tial differential equation is obtained from Eq. (25) for
s = 3, l = 2.

ε3
(
b + hρ2

0V
′(ρ0)

)
∂X R

+ε4
(3b2τ

2
+ f + 2bhατ + λP1

2
ρ2
0V

′(ρ0
)
∂2X R

+ε5
[
∂T R + h

2
ρ2
0V

′′(ρ0)∂X R2

+
( P2 + λP3

6
ρ2
0V

′(ρ0) + 7b3τ 2

6

)
∂3X R

]
+ε6

[ f + 2bhατ + λP1
4

ρ2
0V

′′(ρ0)∂2X R2

+(3bτ + hατρ2
0V

′(ρ0))∂X∂T R

+
(5b4τ 3

8
+ P4 + λP5

24
ρ2
0V

′(ρ0)
)
∂4X R

]
= 0.

(29)
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Near the neutral stability line in the unstable region, let

τ

τs
= 1 − ε2. (30)

By taking b = −hρ2
0V

′
0(ρ0), the third- and fourth-order

terms of ε are eliminated from Eqs. (29), and Eq. (29)
can be rewritten as

ε5
[
∂T R − f1∂

3
X R − f2R∂X R

]
+ ε6

[
− f3∂

2
X R + f4∂

2
X R

2 + f5∂
4
X R

]
= 0

(31)

where

f1 =
[
7(2λ − 1)2 f 2

6(3 − 2α)2h
− P2 + λP3

6

]
ρ2
0V

′(ρ0),

f2 = −hρ2
0V

′′(ρ0),

f3 = − f + 2bhατ + λP1
2

ρ2
0V

′(ρ0),

f4 = − f + 2bhατ + λP1
4

ρ2
0V

′′(ρ0),

f5 =
[
f (2λ − 1)(α − 3)(P2 + λP3)

6h(3 − 2α)
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Fig. 7 The pedestrian patterns at time t =60,000 where a = 2, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for λ = 0, 0.1, 0.2, 0.3 with α = 0,
respectively.

+ f 3(2λ−1)3(28α −69)

24h2(3−2α)3
− P4+ λP5

24

]
ρ2
0V

′(ρ0).

In order to derive the standard KdV equation with
higher-order correction, we make the following trans-
formation in Eq. (31)

T = √
f1Tk, X = −√

f1Xk, R = 1

f2
Rk . (32)

By using of Eq. (32), we obtain the standardKdV equa-
tion with higher-order correction term

∂Tk Rk + ∂3Xk
Rk + Rk∂Xk Rk

+ ε√
f1

[
− f3∂

2
Xk

Rk+ f4
f2

∂2Xk
R2
k + f5

f1
∂4Xk

Rk

]
= 0.

(33)

Next, we assume that Rk(Xk, Tk) = R0(Xk, Tk) +
εR1(Xk, Tk) to consider the O(ε) correction in Eq.
(33). If we ignore the O(ε) term in Eq. (33), it is just
the KdV equation with the soliton solution

R0(Xk, Tk) = A sech2
[√

A

12

(
Xk − A

3
Tk

)]
, (34)

where A is a free parameter. It is the amplitude of
soliton solutions of the KdV equation. The perturba-
tion term in Eq. (33) gives the condition of selecting
a unique member from the continuous family of KdV
solitons. In order to obtain the value of A, the solvabil-
ity condition

(R0, M[R0]) ≡
∫ ∞

−∞
dXk R0M[R0] = 0 (35)

must be satisfied, here M[R0] is the O(ε) term in Eq.
(33). By computing the integration in Eq. (35), we
obtain the value of amplitude A

A = 21 f1 f2 f3
24 f1 f4 − 5 f2 f5

. (36)

Substituting the values of f1 − f5 into Eq. (36), we get
the value of A. Substituting each variable by the origi-
nal one, we obtain the soliton solution of the density

ρ( j,m, t) = ρ0 + A

f2

(
τ

τs
− 1

)
sech2
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Fig. 8 The density profiles ρ( j, 60, t) at time t = 60,000 where a = 2, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for λ = 0, 0.1, 0.2, 0.3
with α = 0, respectively.

[√
A

12 f1

(
τ

τs
− 1

) (
j + m + ρ2

0V
′(ρ0)t

+ A

3

(
τ

τs
− 1

)
t

)]
. (37)

Now, we have derived the soliton density wave descri-
bed by the KdV equation near the neutral stability
line.

Finally, we discuss the kink–antikink waves of the
pedestrian flow in the unstable region. The nonlinear
partial differential equation is obtained from Eq. (25)
for s = 3, l = 1.

ε2
(
b + hρ2

c V
′(ρc)

)
∂X R

+ε3
(3b2τ

2
+ f + 2bhατ + λP1

2
ρ2
c V

′(ρc)
)
∂2X R

+ε4
[( P2 + λP3

6
ρ2
c V

′(ρc) + 7b3τ 2

6

)
∂3X R

+h

6
ρ2
c V

′′′(ρc)∂X R3 + ∂T R
]

+ε5
[(5b4τ 3

8
+ P4 + λP5

24
ρ2
c V

′(ρc)
)
∂4X R

+ f + 2bhατ + λP1
12

ρ2
c V

′′′(ρc)∂2X R3

+(3bτ + hατρ2
0V

′(ρ0))∂X∂T R
]

= 0. (38)

Supposing
τ

τc
= 1 + ε2 (39)

for τ near the critical point (hc, 1/τc), where τc =
(2λ−1) f

(3−2α)h2ρ2
c V

′(ρc) , the second- and third-order terms of

ε can be eliminated from Eq. (38). Then Eq. (38) can
be rewritten as

ε4
[
∂T R − g1∂

3
X R + g2∂X R

3
]

+ ε5
[
g3∂

2
X R + g4∂

2
X R

3 + g5∂
4
X R

]
= 0

(40)

where

g1 =
[
7(2λ − 1)2 f 2

6(3 − 2α)2h
− P2 + λP3

6

]
ρ2
c V

′(ρc),
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Fig. 9 The density profiles ρ(60,m, t) at time t = 60, 000 where a = 2, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for λ = 0, 0.1, 0.2, 0.3
with α = 0, respectively.

g2 = −h

6
ρ2
c V

′′′(ρc),

g3 = − f + 2bhατ + λP1
2

ρ2
c V

′(ρc),

g4 = − f + 2bhατ + λP1
12

ρ2
c V

′′′(ρc),

g5 =
[
f (2λ − 1)(α − 3)(P2 + λP3)

6h(3 − 2α)

+ f 3(2λ − 1)3(28α − 69)

24h2(3 − 2α)3

− P4 + λP5
24

]
ρ2
c V

′(ρc).

In order to derive the standard MKdV equation with
higher-order correction, we make the following trans-
formation in Eq. (40)

T = 1

g1
Tm, R =

√
g1
g2

Rm . (41)

Then we obtain the standard MKdV equation with
higher-order correction term

∂Tm Rm − ∂3X Rm + ∂X R
3
m

+ ε

g1

[
g3∂

2
X Rm+ g1g4

g2
∂2X R

3
m+g5∂

4
X Rm

]
= 0. (42)

If we ignore the O(ε) term in Eq. (42), it is just the
MKdV equation with the kink–antikink solution

Rm0(X, Tm) = √
B tanh

√
B

2
(X − BTm). (43)

Similar to the process of deriving the amplitude A
for KdV equation, we obtain the value of propagation
velocity B for the kink–antikink solution as follows

B = 5g2g3
2g2g5 − 3g1g4

(44)

which is the same as the one in Ref. [33]. Inserting
Eq. (41) into Eq. (43), we get the solution of theMKdV
equation

R(X, T ) =
√
g1B

g2
tanh

√
B

2
(X − Bg1T ). (45)

Then we gain the kink–antikink solution of the density

ρ( j,m, t) = ρc+
√
g1B

g2

(
τ

τc
− 1

)
tanh
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Fig. 10 The pedestrian patterns at time t =60,000 where a = 1.9, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for α = 0, 0.1, 0.2, 0.3 with
λ = 0.1, respectively.

×
[√

B

2

(
τ

τc
− 1

) (
j + m + ρ2

c V
′(ρc)t

−Bg1

(
τ

τc
− 1

)
t

)]
. (46)

And the amplitude C of the kink–antikink solution
equation (46) is given by

C =
√
g1B

g2

(
τ

τc
− 1

)
.

The kink solution represents the coexisting phase,
which consists of the freely moving phase with low
density and the congested phase with high density. The
coexisting curve can be described by ρ = ρc ± C .
Therefore, we get the coexisting curve in the (ρ, a)

plane (see Fig. 2).

5 Simulation

To check the theoretical results, we carry out numer-
ical simulations in this section. The initial conditions

of the numerical simulation are as follows: There are
N = 100 lattices in the system, and the periodical
boundary condition is applied. The initial perturbations
are adopted as follows: ρ( j,m, 0) = ρ0 = ρc = 0.2.
The local densities ρ(N/2, N/2, 1) and ρ(N/2 − 1,
N/2−1, 1) at sites (N/2, N/2) and (N/2−1, N/2−1)
at time t = 1 are set as 0.15 and 0.25.

Figure 3 shows the plots of ac against reaction coeffi-
cient α and λ, respectively, with ρ2

c V
′
0(ρc) = −1, c =

c1 = c2 = 0.1. From Fig. 3a, we can see that the
critical sensitivity ac increases with the increase of λ,
which means the pedestrian flow becomes more and
more unstable under passing behavior, but the con-
scious passing behavior (represented by anticipation
and its coefficient α) will alleviate the congestion.
From Fig. 3b, we can see that the critical sensitivity
ac decreases with the increase of α, which means the
pedestrian flow becomes more and more stable under
conscious walking behavior.

Figures 4, 5 and 6 show the plots of ac against c, c1
and c2 for different values ofα, λwith ρ2

c V
′
0(ρc) = −1,
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Fig. 11 The density profiles ρ( j, 60, t) at time t = 60, 000 where a = 1.9, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for α = 0, 0.1, 0.2, 0.3
with λ = 0.1, respectively.

respectively. From Figs. 4 and 6, the critical sensitivity
ac decreaseswith the increase of c and c2 as c, c2 ≤ 0.5,
and increases with the increase of c and c2 as 1 ≥ c,
c2 ≥ 0.5. Figure 5 shows that with the increase of
c1, the critical sensitivity ac decreases. According to
the above results, when c and c2 remain unchanged,
enlarging the east-bound density (c2)may alleviate the
occurrence of jams effectively. From Figs. 4, 5 and 6,
we can also see that anticipation and passing effect play
an important role in pedestrian flow,which is samewith
the result in Fig. 2.

Figure 7 shows the pedestrian patterns after a suf-
ficiently long time t = 60, 000 with different λ for
a = 2, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1, α = 0.
In Fig. 7, the patterns (a), (b), (c) and (d) exhibit
the time evolution of the density ρ( j,m, t) for λ =
0.0, 0.1, 0.2, 0.3, respectively. The value of parameter
λ is chosen to show the passing effect upon the pedes-
trian flow. By using the linear stability condition (21),
the pedestrian flow is linear unstable in patterns (b), (c)

and (d). The pedestrian flow is stable in pattern (a). So
the small disturbances will be amplified, and the den-
sity waves appear in patterns (b), (c) and (d). The small
disturbances dissipate in pattern (a) as time goes on.

Figures 8 and 9 show the density profile obtained at
t = 60, 000 corresponding to Fig. 7, respectively. And
it makes us see the evolution of the density with the
small disturbances more clearly.

From Figs. 7, 8 and 9, we can see the unconscious
passing behavior will make the pedestrian flow become
unstable, and the pedestrian jams appear with the pass-
ing behavior.

Figure 10 shows the pedestrian patterns after a suf-
ficiently long time t = 60, 000 with different λ for
a = 1.9, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1, λ = 0.1.
In Fig. 10, the patterns (a), (b), (c) and (d) exhibit
the time evolution of the density ρ( j,m, t) for α =
0.0, 0.1, 0.2, 0.3, respectively. The value of parameter
α is chosen to show the effect of anticipation upon the
pedestrian flow. By using the linear stability condition
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Fig. 12 The density profiles ρ(60,m, t) at time t = 60, 000 where a = 1.9, ρ0 = ρc = 0.2, c = c1 = c2 = 0.1 for α = 0, 0.1, 0.2, 0.3
with λ = 0.1, respectively.

(21), the pedestrian flow is linear unstable in patterns
(a), (b) and (c). The pedestrian flow is stable in pattern
(d). So the small disturbances will be amplified, and the
density waves appear in patterns (a), (b) and (c). The
small disturbances dissipate in pattern (d) as time goes
on. Figures 11 and 12 show the density profile obtained
at t = 60, 000 corresponding to Fig. 10, respectively.

From Figs. 10, 11 and 12, we can see the pedestrian
flow becomesmore andmore stable with the increasing
of α, which means pedestrian jams induced by passing
behavior can be alleviated with the consideration of the
anticipation effect.

6 Summary

In order to investigate the effect of pedestrian’s antic-
ipation upon pedestrian flow, we propose an extended
lattice hydrodynamic model for bidirectional pedes-
trian flow with passing by taking this factor into

account. We obtain the stability condition of the pro-
posed model by the use of linear stability theory. The
stability condition shows that the anticipation effect
plays an important role in influencing the stability
of pedestrian flow. The Burgers, KdV and MKdV
equations are obtained to describe the pedestrian flow
behavior in the stable, metastable and unstable region,
respectively. The results show that enlarging the reac-
tion coefficient of pedestrian’s anticipation may lead to
the stabilization of the pedestrian flow. Such findings
indicate that in crowded environment such as railway
entrance and the corner of subway tunnel, pedestrian
should enhance awareness of walking behavior and try
to avoid passing behavior in order to make the pedes-
trian flow stable. The numerical simulations show a
good agreement with the analytical results.
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