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Abstract With the modified Hirota method, analytic
soliton solutions for the generalized cubic complex
Ginzburg–Landau equation with variable coefficients
are derived for the first time. Based on the analytic
solutions, soliton amplification is realized by choosing
corresponding parameters properly. Besides, physical
effects affecting the soliton amplification are discussed.
Furthermore, stability analysis is presented. Results in
this paper may be of value in further understanding the
soliton amplification in fiber laser, and helpful for the
generation of supercontinuum.

Keywords Soliton amplification · Modified Hirota
method · Variable-coefficient Ginzburg–Landau
equation

L. G. Huang · W. J. Liu (B) · P. Huang · N. Pan ·
M. Lei (B)
State Key Laboratory of Information Photonics and Optical
Communications, Beijing University of Posts and
Telecommunications, Beijing 100876, China
e-mail: jungliu@bupt.edu.cn

M. Lei
e-mail: mlei@bupt.edu.cn

L. G. Huang · W. J. Liu · P. Huang · N. Pan · M. Lei
School of Science, Beijing University of Posts and Telecommu-
nications, P.O. Box 122, Beijing 100876, China

1 Introduction

Solitons are regarded as valid tools in optical commu-
nications due to their properties in the stable propaga-
tion during the long-distance transmission [1]. Because
of the actual transmission losses, the distortion of
solitons consequently occurs with energy attenuated
[2–6]. To solve that problem, research interests on
optical communications in gain medium have been
stimulated by the introduction of erbium-doped fiber
amplifiers [7–11]. Since then, the soliton amplifi-
cation has been hot research topic investigated on
both theoretically and experimentally in the past two
decades [12–29].

Some investigations on soliton amplification have
been applying different methods. In gain medium, the
effects of two-photon absorption (TPA) and gain dis-
persion on the soliton propagation are investigated by
adopting Rayleigh’s dissipation function in the frame-
work of variational approach [1]. In Ref. [30], soliton
amplification has been studied with the nonlinear opti-
cal amplifier. The property of amplification has been
researched by introduction of two-stage erbium-doped
fiber [31]. An analytic study on soliton amplification in
inhomogeneous optical fibers as well as in inhomoge-
neous optical waveguides has been presented [17–19].
Different physical effects affecting soliton amplifica-
tion have been discussed [20]. Dispersion management
has been applied successfully both in the oscillator
and amplifier, allowing dissipative soliton generation
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and amplification [32]. The standardGinzburg–Landau
(GL) equation containing both gain dispersion and gain
saturation term has been used to describe the amplifica-
tion process of solitons [1]. To date, some researches on
the cubic complexGinzburg–Landau equation (CGLE)
have been done. In the last century, Ref. [33] has sum-
marized and extended the works on coherent structures
in the one-dimensional CGLE and its generalizations,
with the existence and competition of fronts, pulses,
sources and sinks being completely studied. In Ref.
[34], a comprehensive description of various aspects
of the CGLE chaotic dynamics has been provided by
studying the relationship between modulated ampli-
tude waves and large-scale chaos. As one of the stud-
ied nonlinear equations in the physics community, an
overview of some phenomena described by the CGLE
in one to three dimensions has been given in order to
study the relevant solutions and gain insight into non-
equilibrium phenomena in spatially extended systems
[35]. In the recent work, two categories (pulses and
snakes) of dissipative solitons have been found. Fur-
thermore, the dependence of both their shape and sta-
bility on the physical parameters of the cubic–quintic
CGLE has been analyzed [36]. The normalized form
of the governing equation of fundamental soliton prop-
agation in gain medium is as follows [37].

i
∂u

∂x
+ 1

2
(1 − id)

∂2u

∂τ 2
+ |u|2 u

+ i K |u|2 u − i

2
μu = 0 (1)

where u(x, τ ), μ, d and K represent the optical field
amplitude, gain coefficient, gain dispersion and nor-
malized TPA coefficient, respectively.

However, the analytic soliton solutions of variable-
coefficient CGLE via the modified Hirota method have
not been reported before. To be more generalized, we
use the variable-coefficient CGLE as the master equa-
tion describing the soliton propagation in gain medium
[38]:

i
∂u

∂x
−

[
1

2
d(x) + iξ(x)

]
∂2u

∂τ 2

+[γ (x) − iχ(x)] |u|2 u − ih(x)u = 0 (2)

here, u(x, τ ) is the optical field amplitude, x is the nor-
malized propagation distance and τ is the retarded time.
The distributed parameters d(x), ξ(x), γ (x), χ(x),

h(x), which are functions of the propagation distance
x , are related to the group-velocity dispersion (GVD),
gain dispersion, self-phase modulation (SPM), TPA
and linear gain (loss).

In this paper, via themodifiedHirotamethod, Eq. (2)
will be studied analytically for the first time. Analytic
soliton solutionswill be derived. According to the solu-
tions obtained, corresponding parameters will be cho-
sen to realize soliton amplification with the physical
effects such as the gain coefficient and gain dispersion
being discussed.

The paper is arranged as follows. In Sect. 2, the ana-
lytic soliton solution for Eq. (2) will be derivedwith the
modified Hirota method [39]. In Sect. 3, the amplified
solitons will be shown, with the influence of gain coef-
ficient and gain dispersion being discussed. Stability
analysis will be made in Sect. 4. Finally, conclusions
are drawn in Sect. 5.

2 Analytic soliton solutions for Eq. (2)

Transformations facilitating the application of the
modified Hirota method are [39–42]

u(x, τ ) = g(x, τ )

f (x, τ )1+iα
(3)

where g(x, τ ) is a complex differentiable function,
and α, f (x, τ ) are assumed to be real.

By virtue of symbolic computation, bilinear forms
for Eq. (2) can be derived as

i Dx,αg · f −
[
1

2
d(x) + iξ(x)

]
D2

τ,αg · f

− ih(x)g · f = 0 (4)[
1

2
d(x) + iξ(x)

]
(1 + iα)(2 + iα)D2

τ,α f · f

+ 2[γ (x) − iχ(x)]g · g∗ = 0 (5)

Dx,α and D2
τ,α are the Hirota’s bilinear operators,

which can be defined by [39,40].

(Dm
x Dn

τ )α(g · f )

=
[

∂

∂x
− (1 + iα)

∂

∂x ′

]m [
∂

∂τ
− (1 + iα)

∂

∂τ ′

]n

×g(x, τ ) f (x ′, τ ′)|x ′=x,τ ′=τ (6)
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Bilinear forms (4), (5) can be solved by the following
power series expansions for g(x, τ ) and f (x, τ )

g(x, τ ) = εg1(x, τ ) + ε2g2(x, τ ) + ε3g3(x, τ )

+ ε4g4(x, τ ) + ε5g5(x, τ ) + · · ·
f (x, τ ) = 1 + ε f1(x, τ ) + ε2 f2(x, τ ) + ε3 f3(x, τ )

+ ε4 f4(x, τ ) + ε5 f5(x, τ ) + · · ·

However,wefind that the even powers of ε in g(x, τ )

and odd powers of ε in f (x, τ ) equaling to zero can
meet the recursion relations in the process of calcula-
tion. For the sake of simplicity, we directly set g(x, τ )

and f (x, τ ) in the following form:

g(x, τ ) = εg1(x, τ ) + ε3g3(x, τ )

+ε5g5(x, τ ) + · · · (7)

f (x, τ ) = 1 + ε2 f2(x, τ ) + ε4 f4(x, τ )

+ ε6 f6(x, τ ) + · · · (8)

where ε is a formal expansion parameter. Substitut-
ing expressions (7), (8) into bilinear forms (4), (5)
and equating coefficients of the same powers of ε to
zero yield the recursion relations for gn(x, τ ),s and
fn(x, τ ),s. Then, analytic solution for Eq. (2) can be
obtained.

For the analytic soliton solution of Eq. (2), g1(x, τ )

are assumed to be in the following form [43–46]:

g1(x, τ ) = exp(θ) (9)

θ = (a1 + ia2)τ + [b1(x) + ib2(x)]x
+ (k1 + ik2) (10)

with a j , k j , ( j = 1, 2) are real constants, and b j (x),
( j = 1, 2) are differentiable functions to be deter-
mined. Substituting g1(x, τ ) into the resulting set of
linear partial differential equations which refer to the
above recursion relations yielded by equating coeffi-
cients of the same powers of ε to zero, given in recur-
sion relations of ‘Appendix’, and after some calcula-
tions, we can get the constraints on the parameters:

b1(x) =
∫ [

a1a2d(x)+h(x)+a21ξ(x)−a22ξ(x)
]
dx

x

b2(x) =
∫ [

a22d(x) − a21d(x) + 4a1a2ξ(x)
]
dx

2x
f2(x, τ ) = σ(x) exp(θ + θ∗) (11)

where θ∗ is the conjugate of θ ,

γ (x) = 2a21
[
(α2 − 2)d(x) + 6αξ(x)

]
σ(x)

χ(x) = 2a21
[
3αd(x) − 2(α2 − 2)ξ(x)

]
σ(x)

σ (x)=η exp

{∫ [
−2a21αd(x)−2h(x)+ 2

(−a21α+a21α
3
)
ξ(x)

α

]
dx

}

a2 = αa1,

gn(x, τ ) = 0 (n = 3, 5, 7, . . .),

fn(x, τ ) = 0 (n = 4, 6, 8, . . .),

Without loss of generality, we set ε = 1, and the
analytic soliton solution can be expressed as:

u(x, τ ) = g(x, τ )

f (x, τ )1+iα
= g1(x, τ )

[1 + f2(x, τ )]1+iα

= exp
{
k1+ik2 + a1τ +ia1τα+ 1

2 ia
2
1

∫ [(α2 − 1)d(x)+4αξ(x)]dx+∫ [a21αd(x)+h(x) − a21(α
2 − 1)ξ(x)]dx}

[1 + ηe2(k1+a1τ)]1+iα

(12)

3 Results and discussions

With appropriate parameters in solution (12), soli-
ton solutions and the amplification of solitons can be
obtained in gain medium. First, we choose all the para-
meters as constants. And then, we change them to vari-
able coefficients to findmore fascinating properties.We
choose the combination of sine and cosine functions
as the variable coefficients, leading to the periodical
amplification of solitons.

3.1 Soliton solution

As is shown in Fig. 1a, we set α = 0.13, a1 =
0.114, d(x) = 0.46, h(x) = 0.12,

ξ(x) = −9.45, k1 = 0.92, k2 = −0.92, η = 1.1

The amplitude of pulse keeps stable along the line
of propagation. Soliton solution has been obtained
under this condition. Besides, the amplitude of soli-
tons remains unchanged during the propagation. On
one hand, the nonlinear effect (SPM) can counterbal-
ance the effect of GVD; on the other hand, the gain
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Fig. 1 a Evolution of
solitons derived from
solution (12). Parameters
are α = 0.13, a1 =
0.114, d(x) = 0.46, h(x) =
0.12, ξ(x) = −9.45, k1 =
0.92, k2 = −0.92, η = 1.1
b Soliton amplification in
gain medium. Parameters
are the same with (a) except
h(x) = 0.13

Fig. 2 a Amplification of
solitons derived from
solution (12) with the same
parameters as those given in
Fig. 1(b), but with
h(x) = 0.14; b Comparison
of soliton profiles (ξ(x) =
−9.45, h(x) = 0.14) at
z = 0 (black solid line) and
z = 40 (red dash-dotted
line)

dispersion, along with TPA, restricts the amplification
of the pulse due to its dissipative nature, reaching the
equilibrium with gain effects to a certain extent.

3.2 Soliton amplification affected by the gain
coefficient

We just change the value of gain coefficient such as
h(x) = 1.3 (or h(x) = 1.4), keeping other parameters
unchanged as shown in Figs. 1b and 2a. From Figs. 1b
and 2a, we can obviously see that the soliton is ampli-
fied during the propagation by changing the value of
h(x). Intuitively, the parameter plays an important role
in determining the properties of solitons. One reason-
able interpretation is thatwithGVDandSPMachieving
a balance, the effect of gain coefficient is greater than
the effect of gain dispersion. As a result, the amplifica-
tion of solitons is realized.

Furthermore, the degree of soliton amplification can
be controlled by different values of gain coefficient
in the gain medium in the case of other coefficients
unchanged. Because the greater the value of gain coef-
ficient is, the more remarkable the energy compensa-
tion is due to the gain effect. At z = 0, the amplitude

of soliton in Fig. 1b is about 0.2, which is the same
with that in Fig. 2a. However, at z = 40, the value of
the latter (increased to about 1.2) is much larger than
that of the former (increased to about 0.5). A higher
value of gain efficient indicates a higher amplification
of solitons along the fibers of propagation. Thereby, we
can adjust the parameter of gain coefficient to achieve
soliton amplification.

Next, variable coefficientswill be chosen as the para-
meters as shown in Fig. 4. Similar to that shown in
Figs. 4b and 2a, the gain coefficient plays the same
role in soliton amplification as is shown in Fig. 4. The
choice of the periodic function [d(x) and ξ(x)] leads
to the periodic amplification. The gain coefficient is
also powerful enough to be the dominant factor to con-
trol the soliton amplification (the same with the case of
constant coefficient discussed above).

3.3 Soliton amplification affected by the gain
dispersion

When the absolute value of gain dispersion ξ(x)
changes, if we keep the gain coefficient unchanged, the
amplification can also be influenced as shown in Figs. 2
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Fig. 3 a Amplification of
solitons derived from
solution (12) with the same
parameters as those given in
Fig. 2(a), but with
ξ(x) = −9.8; b Comparison
of soliton profiles (ξ(x) =
−9.8, h(x) = 0.14,) at
z = 0 (blue solid line) and
z = 40 (green dash-dotted
line)

Fig. 4 a Amplification of solitons derived from solu-
tion (12) in the gain medium. Parameters are a1 = 0.11,
d(x) = −0.46cos(0.30x), h(x) = 0.01, ξ(x) = 10.45
cos(0.30x), k1 = 0.92, k2 = −10.92, η = 1.02 and α = 0.10;

bAmplification of solitons derived from solution (10) in the gain
medium with the same parameters as those given in (a), but with
h(x) = 0.015

Fig. 5 a Growth
(amplification) of solitons
with the same parameters as
those given in Fig. 1(a), but
with ξ(x) > −9.45 (e.g.,
ξ(x) = −9); b Decay of
solitons with the same
parameters as those given in
Fig. 1(a), but with
ξ(x) < −9.45 (e.g.,
ξ(x) = −10)

and 3. At z = 40, when ξ(x) = −9.8, the amplitude of
solitons is lower than that when ξ(x) = −9.45. It sug-
gests that the gain dispersion coefficient can weaken
the amplification of solitons. Physically, this behav-
ior can be understood by noting that the gain disper-
sion can restrict the soliton amplification due to its

dissipative nature. The existence of gain dispersion
ξ(x) can make the equivalent loss coefficient become
larger in the gain medium. As a result, the ampli-
tude of solitons is attenuated during the propagation
if we do not consider the gain effect in the gain
medium.
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Fig. 6 a Amplification of
solitons without the
Gaussian white noise from
solution (12); b
Amplification of solitons
with the Gaussian white
noise from solution (12).
Parameters are the same
with Fig. 1(a), except
ξ(x)=−9.4

4 Stability analysis

4.1 Regions where the growth/decay exists based on
the parameters ξ(x)

Soliton solution has been obtained under appropriate
parameters (Fig. 1a). Our research shows that if we
keep other parameters unchanged, and just change the
value of ξ(x), the growth/decay can be obtained.When
we set ξ(x) > −9.45, the growth (amplification) is
realized. And when we set ξ(x) < −9.45, the decay
exists.(see Fig. 5)

Different from the so-called “exploding solitons,”
found in numerical simulations [47,48] and experimen-
tally confirmed in a passively mode-locked solid laser
[49], our research indicates that the soliton amplifica-
tion is continuous with the increase of z. The explod-
ing solitons explode at a certain point, break down into
multiple pieces, and subsequently recover their original
shape [50]. However, in this paper, the soliton can be
amplified continuously and stably, which can be con-
firmed by expanding the range of z (from 0 to 400, see
Fig. 6a). It is notable that no matter how large the range
of z is, we can choose the value of ξ(x) to make the
soliton amplification finite at the end.

4.2 Stability analysis with white noise

The stability analysis is one of the significant issues in
the nonlinearwave physics.And it is involved in plasma
physics [51], hydrodynamics [52] as well as nonlinear
optics [53]. In this part, we will study the stability of
soliton amplification by embedding white noise, which
is subject to Gaussian distribution [54]. We set the
amplitude of embeddedwhite noise to be 0.01(Fig. 6b).
By comparison between Fig. 6a, b, Gaussian white

noise has very little impact on the shape and ampli-
tude of the soliton. And the soliton amplification is still
continuous, just with slight perturbation. Undoubtedly,
the stability is useful to the soliton amplification during
the soliton propagation.

5 Conclusions

Thegeneralized cubic complexGinzburg–Landau equa-
tion with variable coefficient[see Eq. (2)], which can
be used to describe the amplification of solitons in gain
medium, has been investigated analytically. A simple
and straightforwardmethod of modified Hirota method
has been proposed, with which the bilinear forms (4)–
(5) for Eq. (2) have been derived, and the analytic soli-
ton solution (12) has been obtained after some sym-
bolic computation. Amplification of solitons in gain
medium has been studied (see Figs. 1, 2, 3, 4). Accord-
ing to the solution, with appropriate parameters, the
stable soliton has been obtained. By changing the arbi-
trary parameters, we achieve the amplification of soli-
tons. At last, we have discussed as well as analyzed the
influences of gain dispersion coefficient ξ(x) and gain
coefficient h(x) on soliton amplification. Through the
comparison between the amplitudes of soliton at x = 0
and at x = 40, we find that the gain effect can stimu-
late the soliton amplification while the gain dispersion
restricts the soliton amplification. This is the result of
their opposite effects. We hope the results are helpful
for the experimental research on fiber lasers and super-
continuum generation.
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Appendix

Generalized Hirota method

It is very difficult to find exact solutions of nonlinear
differential equations, since the superposition principle
does not hold in them.Oneway to solve a nonlinear dif-
ferential equation is to find a transformation to a linear
equation. The Hirota method is to translate nonlinear
differential equations into linear differential equations
by means of a dependent variable transformation to a
rational function g/ f [55]. With the help of D-operator,
which is defined by

Dm
x Dn

τ (g · f ) =
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂τ
− ∂

∂τ ′

)n

×g(x, τ ) f (x ′, τ ′)|x ′=x,τ ′=τ

we can get

∂

∂x

g

f
= Dxg · f

f 2
;

∂2

∂x2
g

f
= D2

x g · f

f 2
− g

f

D2
x f · f

f 2
;

∂3

∂x3
g

f
= D3

x g · f

f 2
− 3

Dxg · f

f 2
D2
x f · f

f 2
(13)

Take the KdV equation for example

∂u

∂t
+ 6u

∂u

∂x
+ ∂3u

∂x3
= 0

By putting u = g/f and making use of (13), the KdV
equation may be rewritten as

Dtg · f

f 2
+ 6

g

f

Dxg · f

f 2
+ D3

x g · f

f 2

−3
Dxg · f

f 2
D2
x f · f

f 2
= 0

The above equation can be reorganized as

Dtg · f + D3
x g · f

f 2
+ 3Dxg · f (2g f − D2

x f · f )

f 4
= 0

According to the form of denominator f 2 and f 4, it
can be decoupled into the bilinear form:

(Dt + D3
x )g · f = 0

D2
x f · f − 2g · f = 0

Another typical example is the nonlinear Schrödinger
equation:

i
∂u

∂x
= 1

2

∂2u

∂t2
− N 2 |u|2 u

Through the same process with KdV equation, the
nonlinear Schrödinger equation may be rewritten as

2i Dx g · f − D2
t g · f

f 2

+g · f (D2
t f · f + 2N 2 |g|2)

f 4
= 0

According to the form of denominator f 2 and f 4, it can
be decoupled into the bilinear form:

(2i Dx − D2
t )g · f = 0

D2
t f · f + 2N 2 |g|2 = 0

In the next work, we can solve the bilinear form by
the power series expansions for g(x, τ ) and f (x, τ ). As
a result, the soliton solution ofKdVequation/ nonlinear
Schrödinger equation can be relatively easy to solve.

Recursion relations

ε : h(x)g1 − g1x − 1

2
id(x)g1t t + ξ(x)g1t t = 0.

ε2 : (2γ (x) − 2iχ(x)) |g1|2
−(α2 − 3iα − 2)(d(x) + 2iξ(x)) f2t t = 0

ε3 : −2ih(x) f2g1 + 2(1 + iα)(d(x) + 2iξ(x)) f2t g1t

+(−i + α)g1(2 f2x + (α − i)(d(x) + 2iξ(x)) f2t t )

+ f2(2ig1x − (d(x) + 2iξ(x))g1t t = 0

ε4 : f 22t − f2 f2t t = 0
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