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Abstract This paper utilizes a dynamic model of uni-
cycles to address the stabilization of formation motion
around closed curves in the presence of a time-invariant
flowfield. It is shown that our previous concentric com-
pression design can be extended to deal with robust
coordinated path following control for fighting against
the external flow field. Linear acceleration control for
each unicycle is used and combined with the rotation
control to achieve both temporal and spatial forma-
tions in the case of a spatially variable flow, which
breaks the restriction of temporally balanced forma-
tion relied solely on the angle control in the literature.
A potential function is introduced to force each uni-
cycle’s speed greater than the magnitude of flow. The
theoretical result is proved by two numerical examples.
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1 Introduction

Recent advances in control techniques for autonomous
vehicles and agile sensor networks bring researchers
the dawn to apply a family of sensor-equipped vehi-
cles to execute surveillance [1], environmental fields
measurement [2,3] and persistent survey of biologi-
cal system [4]. In almost any environment, the sensory
performance has been severely affected by an external
flow field (e.g., ocean current or atmospheric wind).
For example, the atmospheric wind can push each uni-
cycle away from its given path and disrupt the relative
position of each pair of unicycles (that is formation),
which leads to reducing the accuracy of data sampling.
Nowadays, most existing coordinated path following
control protocols [5–13] are derived based on flow-
free motion models, and thus, they often fail to account
for the degradation of control performance caused by
flow fields. Therefore, it is urgently needed to design a
robust coordinated path following control when vehi-
cles suffer an external flow field.

Although robust consensus control with distur-
bances of the external environment are well discussed
in the literature [14–16], prior works on robust coor-
dinated path following control for fighting against an
external flow field are still few due to the geometric
constraints on the vehicles’ movements (that is, each
vehicle must follow its given orbit). In [17], an angular
velocity algorithm is provided for each constant-speed
particle to stabilize the temporally balanced formation
around a circle in a steady, uniform flow field and then
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extended to deal with double integrators by the back-
stepping technology [18]. A similar idea is used to give
a solution to coordinate UAVs flying around a convex
loop in a spatially invariant wind [19]. Furthermore,
all the above results [17–19] are based on the assump-
tion that the magnitude of the flow is weaker than the
vehicle’s speed. It must be emphasized that one relying
solely on the angle control cannot maintain the spatial
formation (that is the uniform separation around orbits)
even in the simplest case of a steady, uniform flowfield.
This is due to the fact that the external flow leads to
the various actual linear speed of the vehicle at differ-
ent locations even though the vehicle satisfies constant
speed. Since the exact spatial formation is important
to the accuracy of data measurements and the (near)
optimal sampling trajectory for each vehicle is often
planned to be a simple and closed curve (not limited
in a circle or a convex loop) [2–4], we discuss coordi-
nated path following control for the temporal and spa-
tial formation motions around a set of closed orbits in
an external flow field.

This paper builds upon our prior research on the geo-
metric extension design. The key idea of this approach
is to extend the given curve to be a set of level curves
of the orbit function for path following and then incor-
porate the orbit function into the arc-length function to
give the solution to formation motion around the given
orbits. In the absence of a flow field, coordinated New-
tonian particle formation motion around closed curves
is solved based on the geometric extension along each
curve’s normal vector [9,10]. To maintain the same
geometric topology among the extended curves and
the given curve, Chen and Tian propose the concentric
compression design to deal with cooperative motion
along convex loops at first [11,12] and then a kind of
general non-convex and closed curves [13]. However,
the result of using the geometric extension design for
coordinated path following control in the presence of a
time-invariant flow field is not established yet.

The main contribution of this paper is that we show
that the concentric compression design can be extended
to deal with the temporal and spatial formationmotions
around a family of given closed curves in the presence
of a flow field, which breaks the restriction of tempo-
rally balanced formation on a circle or a convex loop
when vehicles suffer an external flow in the literature
[17–19]. The external flow field under consideration is
known, non-uniform and time-invariant, which covers
the types of the flow field discussed in [17–19]. We

deal with the control of the unicycle’s dynamics which
is the difference from the constant-speed particle on the
additional linear acceleration control. In this paper, the
inertial velocity of the flow is first converted to the lin-
ear speed and the orientation of the unicycle. Then, the
component where the linear acceleration and the angu-
lar acceleration are projected onto the actual orientation
of each unicycle is used to accomplish both temporal
and spatial formations, and at the same time, the com-
ponent where the linear acceleration and the angular
acceleration are projected onto the normal vector per-
pendicular to the actual orientation of each unicycle is
applied to achieve the orbit tracking. For the purpose
of ensuring that each unicycle’s speed is greater than
the magnitude of flow, a potential function often used
in collision avoidance [21] is introduced into the con-
troller design.

This paper is organized as follows. Section 2 sum-
marizes the unicycle’s model in an external flow field
and formulates the coordinated control problem based
on concentric compression. In Sect. 3, the control
design scheme is designed based on the backstepping
technology. Simulation results are given in Sect. 4. Sec-
tion 5 provides conclusion.

2 Problem statement

2.1 Unicycle’s model in a time-invariant flow field

In this subsection, we will show the dynamic model of
a unicycle in a time-invariant flow field. Each unicycle
is subject to two independent control inputs {ui , τi } in
order to provide the linear acceleration force and the

angular moment in the flow field. Let zi = [
zxi , z

y
i

]T ∈
R
2 indicate the position of thewheel axis center defined

in an inertia coordinate frame W . Also let θi be the
i th unicycle’s orientation with respect to the x-axis
of W . υi and ωi are its linear and angular velocities,
respectively. In this paper, the flow field is known and
time-invariant. Its inertial velocity at zi is represented
as f(zi ) = [

f x (zi ), f y(zi )
]T such that ‖f‖ ≤ fM

where fM is a bounded constant. With loss of general-
ity, the flow field is permitted to be spatially variable
(non-uniform) as long as it is C2 smooth where f ′ =
∂f/∂zi = [∇ f x ,∇ f y

]T =
[

∂ f x/∂zxi ∂ f x/∂zyi
∂ f y/∂zxi ∂ f y/∂zyi

]
.

The dynamics of a unicycle in the presence of a time-
invariant flow field (see Fig. 1) is
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Fig. 1 Unicycle’s model in a time-invariant flow field

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

żxi = υi cos θi + f x

ż yi = υi sin θi + f y

θ̇i = ωi

υ̇i = ui
ω̇i = τi

(1)

Remark 1 In [18,19], only a uniform, time-invariant
flow so that f = [β, 0]T is considered where con-
stant β satisfies that |β| < 1 due to the unit speed
of each particle. A simple non-uniform time-invariant

flow f = [
f x (zxi ), f y(zyi )

]T
is discussed in [17]. Com-

pared with the flow field considered in this paper, each
above-mentioned flowfield can be regarded as a special
case of this paper.

Let γi = arctan 2(żxi , ż
y
i ) be the orientation of

the actual inertial velocity of the i th unicycle and
υ fi = ‖żi + f‖ denote its magnitude. Also let xi =
[
cos γi , sin γi

]T be the unit vector tangent to the tra-
jectory of the i th unicycle at the current location and
the normal vector yi is perpendicular to xi . The dynam-
ics of the position of the i th unicycle can be written as
żi = υ fi xi . In the following, we first show the dynam-
ics of γi . From the first two equations of (1), we have

tan γi = υi sin θi + f y

υi cos θi + f x
. (2)

Differentiating (2) with respect to time along the
solution of (1) for γ̇i , we obtain

γ̇i = κu
γi
ui + κω

γi
ωi + dγi (3)

where

κu
γi

= −υ−1
i υ−1

fi
f yi cos γi + υ−1

i υ−1
fi

f xi sin γi

= −υ−1
i υ−1

fi
(fi · yi ) ,

κω
γi

= 1 − υ−1
fi

(
f xi cos γi + f yi sin γi

)

= 1 − υ−1
fi

(fi · xi ) ,

dγi = (∇ f x · xi
)
cos γi − (∇ f y · xi

)
sin γi .

It is obvious that Eq. (3) is suitablewhenυi > ‖f‖ or
υi < ‖f‖. In this paper, we only consider the situation
that υi > ‖f‖. Next we will express υ fi as a function
of (υi , f, γi ). Also from the first two equations of (1),
one gets

υ fi =
√

υ2
i − ‖f‖2 + 2 (f · xi ) υ fi (4)

which implies

υ2
fi − 2 (f · xi ) υ fi + ‖f‖2 − υ2

i = 0. (5)

When υi > ‖f‖, the quadratic Eq. (5) has the solution
υ fi = f · xi +

√
υ2
i − (f · y)2. (6)

Differentiating (6) with respect to time along the
solution of (1) and solving for υ̇ fi using (3), we obtain

υ̇ fi = κu
υ fi

ui + κω
υ fi

ωi + dυ fi
(7)

where

κu
υ fi

= κu
γi

[
(fi · yi ) −

(
υ2
i − (fi · yi )2

)− 1
2

× (fi · yi ) (fi · xi )
]

+
(
υ2
i − (fi · yi )2

)− 1
2
υi ,

κω
υ fi

= κω
γi

[
(f · yi ) − (

υ fi − f · xi
)−1

(f · yi ) (f · xi )
]
,

dυ fi
= υ fi

(
f ′xi

) · xi
−υ fi

(
υ fi − f · xi

)−1
(f · yi )

(
f ′xi

) · yi .
Furthermore, one gets υi=

√
υ2
fi
−2(f ·xi )υ fi +‖f‖2

from (5) and then κu
γi
can be rewritten as

κu
γi

= υ−1
fi

(υ2
fi − 2(f · xi )υ fi + ‖f‖2)− 1

2 (f · yi ).
In the Sect. 3, we first regard ωi as a virtual control

and then apply the backstepping technology to design
τi . By using (3) and (7) to calculate (ωi , ui ) , it is
required
∥∥
∥∥∥

κu
γi

κω
γi

κu
υ fi

κω
υ fi

∥∥
∥∥∥

�= 0 (8)

which implies

gκi =
√

υ2
fi

− 2 (f · xi ) υ fi + ‖f‖2 (υ fi − f · xi
)−1

×
(
1 − υ−1

fi
(f · xi )

)
�= 0. (9)
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(9) is true when υi > ‖f‖ and the proof is similar to
the procedure described in [17].

From the above discussion, the dynamics of unicycle
with a time-invariant flow becomes
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

żi = υ fi xi
ẋi = (κu

γi
ui + κω

γi
ωi + dγi )yi

ẏi = −(κu
γi
ui + κω

γi
ωi + dγi )xi

υ̇ fi = κu
υ fi

ui + κω
υ fi

ωi + dυ fi

ω̇i = τi

(10)

Remark 2 As compared with the model of unit-speed
particle in a time-invariant flow field [17–19], the
dynamic model (10) with the acceleration control is
more complex. κu

υ fi
ui + κω

υ fi
ωi is the term where the

linear acceleration and the angular acceleration are pro-
jected onto xi , andwe use it to accomplish the temporal
and spatial formations. κu

γi
ui + κω

γi
ωi is the component

where the linear acceleration and the angular acceler-
ation are projected onto yi , and it is used to achieve
the orbit tracking. In Subsect. 3.2, these two compo-
nents are designed at first and then used to solve ui and
ωi . At last, τi is obtained by using the backstepping
technology.

2.2 Concentric-compressing-based design

Consider that the given orbitΓi0 associated with the i th
unicycle is a simple and closed curve with nonzero cur-
vature. Suppose that Γi0 can be parameterized by using
a smooth map Γi0 : [0, 2π) → R

2, φi 	→ Γi0(φi )with
‖Γi0(φi )‖ > 0 and ‖dΓi0(φi )/dφi‖ > 0, where φi is
the phase angle that describes the direction of the vec-
tor from the origin of the orbit to the point on the orbit
with respect to the positive axis ofW . Also assume that
the vector from the origin of the orbit to each point zi,k
on the orbit and the tangent vector to the orbit on zi,k
are linearly independent, that is

∣∣∣Γi0(φi ),
dΓi0(φi )

dφi

∣∣∣ �= 0

for all φi . Referring to Lemma 1 in [13], a set of orbits
can be obtained by concentric compressing, that is

Γiλ (φi , λ) = (1 − λ) Γi0 (φi ) (11)

and each one corresponds to a special constant value
of the orbit function λi (zi ), where λi (zi ) satisfies
∇λi (zi ) �= 0 and |λi (zi )| < εi , (εi > 0). The orbit
value associated with the given orbit Γi0 is 0 (see
Fig. 2). Some corresponding proofs and examples can
be found in [11,13].
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Fig. 2 Concentric compression: aAfamily of convex and closed
curves, b A family of non-convex and closed curves

In order to follow the given orbit, the path follow-
ing control should drive the orbit value λi (zi ) and the
direction error αi ∈ (−π, π ] between the unicycle’s
motion and the tangent vector to the orbit to 0 asymp-
totically (see Fig. 3), i.e.,

lim
t→∞ λi (zi (t)) = 0, (12)

lim
t→∞ αi (t) = 0, (13)

Due to the domain of the orbit function, the trajec-
tory of each unicycle should be limited in the set Ωi ,
i.e.,

|λi (zi (t))| < εi . (14)

When each unicycle moves along its given orbit, the
control object is to achieve the desired formation with
the given orbits adopted. To this end, communication
among the unicycles is essential. Let G = {V ,E } be
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Fig. 3 Path following control design method

the bidirectional graph induced by the inter-unicycle
communication topology, where V denotes the set of
n unicycles and E is a set of data links. Also let Ni

denote the neighbor set of the i th unicycle and we
assume that Ni is time-invariant. Two matrices such
as the adjacency matrix A = [ai j ] and the Laplacian
matrix L = [li j ] are used to represent the graph. The
key idea of the formation description on given orbits
is based on the consensus design (see Fig. 4), which is
widely applied in recent works. Some corresponding
explanations can be found in [7,10–13]. It is said that
the formation is maintained when the generalized arc-
lengths ξi (t) defined in Assumption 1 reach consensus,
i.e.,

lim
t→∞

(
ξi (t) − ξ j (t)

) = 0. (15)

Assumption 1 Each generalized arc-length ξi (si (t)) is
aC2 smooth function of arc-length si that ∂ξi

/
∂si sat-

isfies +∞ > ε̄M ≥ ∂ξi
∂si

≥ ε̄m > 0 and that ∂2ξi
/
∂s2i

is uniformly bounded.

Remark 3 Let us consider a rigid formation on a set of
ellipses as shown in Fig. 4a. Each ellipse is obtained
by translating the desired trajectory of the group center
along the formation vector hi , i = 1, 2, 3. Also let z∗

i
denote the starting point associated with Γi0 for com-
puting the arc-length si and each pair satisfies z∗

i −z∗
j =

hi −h j . The rigid formation zi (t)− z j (t) = hi −h j is
maintained if si (t) = s j (t). To form an in-line forma-
tion andmove along the concentric orbits with different
parameters ai ∈ R, it is required that ξi = si/ai reach
to consensus where the starting point for each orbit is

(a)

(b)

Fig. 4 Formation description on orbits: a Rigid formation, b
In-linear formation

selected as the intersection of the orbit with the hori-
zontal axis (see Fig. 4b).

In some practical situations, multiple unicycles are
required for the formation motion at a specified orbital
speed. Note that the deviation of the generalized arc-
length ηi (t) = dξi (t)/dt on the given orbit reflects
the orbital speed of the unicycle. This is due to the
fact that ηi (t) defined in (25) is a product obtained by
multiplying the actual linear speed of a unicycle and a
parameter with respect to the desired formation pattern.
Therefore, ηi (t) is regarded as the generalized orbital
speed. To accomplish formation motion in accordance
with the desired orbital speed, it is required that the gen-
eralized orbital speed ηi (t) converges to the reference
η∗(t), i.e.,

lim
t→∞ ηi (t) = η∗(t). (16)

It must be emphasized that condition υi > ‖f‖ is
important to deduce the dynamics of unicycle in the
flow field. Differing from the assumption that υi > ‖f‖
in [17–19], we design the controller to ensure it in this
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paper. Because of the relationships between υi and the
definition of ηi , here we use

ηi > ηm = 2ε̄M fM (17)

to replaceυi > ‖f‖. From (16), (25) andAssumption 1,
one gets

υ fi =
(

∂ξi

∂si

)−1

ηi > 2

(
∂ξi

∂si

)−1

ε̄M fM ≥ 2 fM (18)

and then

υ2
i = υ2

fi − 2 (f · xi ) υ fi + ‖f‖2
≥ (

υ fi − ‖f‖)2 > ‖f‖2 . (19)

To move on, we make an assumption as follow:

Assumption 2 The reference η∗(t) is uniformly
bounded and greater than 2ε̄M fM . Also η̇∗(t) is uni-
formly bounded.

From the above discussion, we define the coor-
dinated path following control problem in a time-
invariant flow field as follows:

Problem 1 Design a coordinated path following con-
troller

τi = gi (zi , υ fi , γi , ωi , ui , f, λi , αi , xi , yi , si , ξi , ξ j ,

η∗, η̇∗)
ui = g̃i

(
zi , υ fi , γi , ωi , f, λi , si , ξi , ηi , ξ j , η j , η∗, η̇∗

)

for the i th unicycle who suffers a time-invariant flow
field f by using its neighbors’ communication infor-
mation such that requirements (12)-(17) are satisfied,
where i ∈ V , j ∈ Ni .

Remark 4 The information required in the control
consists of two parts. On the one hand, the states
{zi , ui , υi , θi , ωi , f} are measured in the inertial ref-
erence frame. Then, we use them to calculate the
states {υ fi , γi , xi , yi , dγi , dυi , αi } and the values of{
λi , ∇λi , ∇2λi , ∇3λi , si ,

∂si
∂λi

,
∂2si
∂λ2i

, ξi ,
∂ξi
∂si

,
∂2ξi
∂s2i

, ηi

}

according to the functional forms of {λi , si , ξi , ηi }. The
definition of each function can be found inSubsects. 2.1
and 3.1. On the other hand, information {ξi , ηi } should
be transferred to its neighbors for the cooperation. The
details can be found in Subsect. 3.2.

3 Main results

3.1 Coordinated control system

Let Ni = − ∇λi‖∇λi‖ and Ti =
[

0 1
−1 0

]
Ni be the nor-

mal vector and the tangent vector to each level orbit,
respectively. The direction error αi between xi and Ti

can be defined as

cosαi = xi · Ti = yi · Ni , (20a)

sin αi = yi · Ti = −xi · Ni . (20b)

The time derivative of (20b) yields

α̇i = υ fi

(
κa
i cosαi + κb

i sin αi

)

−
(
κu
γi
ui + κω

γi
ωi + dγi

)
(21)

where

κa
i = 1

‖∇λi‖Ti · ∇2λiTi ,

κb
i = − 1

‖∇λi‖Ti · ∇2λiNi

and ∇2λi is the Hessian matrix of λi
(
z fi

)
. Since the

orbit value with respect to Γi0 is 0, the position error
of path following can be represented as λi

(
z fi

)
, and

then, the dynamics of position error of path following
can be written as

λ̇i = ∇λi · żi = υ fi ‖∇λi‖ sin αi . (22)

Since the movement of the i th unicycle projected
to Ti leads to the variation in arc-length si while the
motion along the direction of concentric compression
causes the orbit change which also induces the changes
of the arc-length, the arc-length si measured from the
starting point can be written as

si (λi , φi ) �
∫ φi

φ∗
i

∂si (λi , τ )

∂τ
dτ. (23)

where the starting points for computing si around each
level orbit in Ωi are chosen based on the same value of
arc-length parameter φ∗

i corresponding to the starting
point selected on the given orbitΓi0.When the unicycle
moves, the variation of generalized arc-length is

ξ̇i = ∂ξi

∂si

(
∂si
∂φi

φ̇i + ∂si
∂λi

λ̇i

)

= ∂ξi

∂si

(
dsi
dt

∣∣
λi=const + ∂si

∂λi
‖∇λi‖ υ fi sin αi

)

= ∂ξi

∂si
υ fi

(
cosαi + ∂si

∂λi
‖∇λi‖ sin αi

)
. (24)
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In the next subsection, each unicycle is driven to
arrive at its given orbit, which implies αi (t) = 0 and
then ξ̇i (t) = ∂ξi

∂si
υ fi . In order to reduce the amount of

calculation and simplify the design of the control laws,
ηi is defined as

ηi = ∂ξi

∂si
υ fi . (25)

Then, the variation of the generalized arc-length can be
written as

ξ̇i = ηi + dηi (26)

where dηi = ηi

(
−2 sin2 αi

2 + ∂si
∂λi

‖∇λi‖ sin αi

)
. Dif-

ferentiating ηi , we have

η̇i = ∂ξi

∂si

(
κu
υ fi

ui + κω
υ f i

ωi + dυ fi

)

+ ∂2ξi

∂s2i
υ fi

(
ηi + dηi

)
. (27)

3.2 Backstepping design

Step 1. Convergence of λi , αi , ξi − ξ j , ηi − η∗: The
control Lyapunov function is selected as follows:

VI =
n∑

i=1

hi (λi ) −
n∑

i=1

ln
(
cos2

αi

2

)

+ k0
4

n∑

i=1

n∑

j=1

ai j
(
ξi − ξ j

)2

+
n∑

i=1

(
ln

(
ηi − ηm

η∗ − ηm

)
+ η∗ − ηm

ηi − ηm
− 1

)
(28)

where k0 > 0 and hi (λi ) is a C2 smooth, nonnegative
function on (−εi , εi ). Let hi (λi ) and ∇hi = dhi

/
dλi

satisfy the following conditions:

(C1) hi (λi ) → +∞ and ∇hi → −∞ as λi → −εi .
(C2) hi (λi ) → +∞ and ∇hi → +∞ as λi → εi .
(C3) hi (λi ) = 0 if and only if λi = 0.

There are many functions that satisfy all the above
properties of hi ( fi ). An example is

hi ( fi ) =
∫ fi

f ∗
i

[
c1

(
1

εi − τ
− 1

εi + τ

)

+ c2 (ln (εi + τ) − ln (εi − τ))] dτ,

where f ∗
i = fi (zi (0)) ∈ Ωi and c1, c2 > 0.

In the function (28), the first term contributes to forc-
ing the trajectory of each unicycle to its given orbit and

stays in Ωi when it start from Ωi . It vanishes when
λi = 0. The second term aligns the direction of each
unicycle’s motion and the tangent vector to the orbit. It
vanishes when αi = 0. The next term ensures the con-
sensus of the generalized arc-lengths. It vanishes when
ξi = ξ j . The fourth term guarantees that ηi converge
to the reference and υi > ‖f‖ for all time. It vanishes
when ηi = η∗.

The time derivation of VI is

V̇I =
n∑

i=1

tan
αi

2

(
Δαi −

(
κu
γi
ui + κω

γi
ωi + dγi

))

+
n∑

i=1

(ηi − η∗)
(
(
ηi − ηm

)−2 ∂ξi

∂si

×
(
κu
υ fi

ui + κω
υ fi

ωi + dυ fi

)
+ Δηi

)
(29)

where

Δαi = υ fi

(
κa
i cosαi + κb

i sin αi

)

+ 2υ fi ∇hi ‖∇λi‖ cos2 αi

2

+ k0ηi

(
− sin αi + 2

∂si
∂λi

‖∇λi‖ cos2 αi

2

)

×
n∑

j=1

ai j
(
ξi − ξ j

)
,

Δηi = (
η∗ − ηm

)−2 ∂2ξi

∂s2i
υ fi

(
ηi + dηi

)

+ k0

n∑

j=1

ai j
(
ξi −ξ j

)−(
ηi −ηm

)−1 (
η∗ − ηm

)−1
η̇∗.

Here, we first use the unicycle’s angular velocity ωi

as the virtual control ω̄i and the acceleration input ui to
fulfill the coordinated path following control problem.
The choices are
[

κu
γi

κω
γi

κu
υ fi

κω
υ fi

][
ui
ω̄i

]
=

[
gαi

gηi

]
(30)

where

gαi = Δαi + k1 sin
αi

2
− dγi ,

gηi = − (
ηi − ηm

)2
(

∂ξi

∂si

)−1

×
⎛

⎝Δηi +k2 (ηi −η∗)+k3

n∑

j=1

ai j
(
ηi − η j

)
⎞

⎠ − dυ fi
.
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Obviously, Eq. (30) has a unique solution

ui = g−1
κi

(
κu
γi
gαi − κu

υ f i
gηi

)
, (31)

ω̄i = g−1
κi

(
κω
υ f i

gαi − κω
γi
gηi

)
. (32)

Remark 5 Since the speed of particle in [17–19] is
fixed (that is, unit-speed), the authors just assume that
the flow field satisfies ‖f‖ < 1. In this paper, the speed
is controllable and serves two targets. On the one hand,
the linear acceleration contributes to accomplishing the
temporal and spatial formation motions along given
orbits. On the other hand, the goal such that the speed
is greater than ‖f‖ and converges to the reference is
guaranteed by using the speed control. For the latter
object, a potential function used in collision avoidance
[21] is introduced in this paper, which can be found in
the last term in (28).

Remark 6 In the flow field, the virtual control ω̄i and
the acceleration input ui work together to achieve path
following and formation motion, while they are sep-
arately responsible for path following and formation
motion in [11]. All these changes are due to the effect
of the external flow field.

Now, substituting (31) and (32) into (29) results in

V̇I = −k1

n∑

i=1

sin2 αi
2

cos αi
2

− k2

n∑

i=1

(ηi − η∗)2

− k3 (η − η∗1n)T L (η − η∗1n) ≤ 0 (33)

where η = [η1, . . . , ηn]T and 1n = [1, . . . , 1]T .
To accomplish the control input τi , the error variable

is introduced such as

ωei = ωi − ω̄i (34)

which should be driven to zero, and re-write V̇I as

V̇I = −k1

n∑

i=1

sin2 αi
2

cos αi
2

− k2

n∑

i=1

(ηi − η∗)2

−k3 (η − η∗1n)T L (η − η∗1n) +
n∑

i=1

ωei Δei

(35)

where

Δei = −κω
γi
tan

αi

2
+ κω

υ fi

∂ξi

∂si

(
ηi − ηm

)−2
(ηi − η∗) .

Step 2. Backstepping forωei : The second control Lya-
punov function is given by

VII = VI +
n∑

i=1

ω2
ei . (36)

Taking the time derivative of both sides of Eq. (36)
along the solution of (31), one gets

V̇II = − k1

n∑

i=1

sin2 αi
2

cos αi
2

− k2

n∑

i=1

(ηi − η∗)2

− k3 (η − η∗1n)T L (η − η∗1n)

+
n∑

i=1

ωei

(
τi − ˙̄ωi − Δei

)
. (37)

We design the yaw force τi as follows:

τri = ˙̄ωi + Δei − k4ωei (38)

where k4 > 0, which yields

V̇II = −k1

n∑

i=1

sin2 αi
2

cos αi
2

− k2

n∑

i=1

(ηi − η∗)2

− k3 (η − η∗1n)T L (η − η∗1n)

− k4

n∑

i=1

ω2
ei ≤ 0. (39)

3.3 Stability analysis

Under the control laws (31) and (38), the equation of
the closed-loop system for λi is denoted as (22), the
equation of the closed-loop system for αi is (21) where
ω̇i satisfies (32) , and the equation of the closed-loop
system for the relative generalized arc-length is

ξ̇i − ξ̇ j = ηi + dηi − η j − dη j , (40)

the equation of the closed-loop system for ηi − η∗ sat-
isfies

η̇i − η̇∗ =
(

ηi − ηm

η∗ − ηm
− 1

)
η̇∗ − (

ηi − ηm
)2

×
⎛

⎝k0

n∑

j=1

ai j
(
ξi − ξ j

) + k2 (ηi − η∗)

+ k3

n∑

j=1

ai j
(
ηi − η j

)
⎞

⎠ . (41)

Theorem 1 Consider a family of level closed curves
of the orbit function constructed by concentric com-
pression. Suppose the generalized arc-lengths and the
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reference η∗(t) satisfy Assumption 1 and Assumption 2,
respectively. Assume the initial conditions of unicycles
make the initial value of VI I given in (36) finite. Then,
Problem 1 is solved via the linear acceleration force
(31) and the angular acceleration force (38) if the com-
munication topology is connected.

Proof The set Φ = {(
λi , αi , ξi − ξ j , ηi − η∗, ωei

)

|VI I � c} such that VI I ≤ c, for c > 0, is closed
by continuity. Since |λi | < εi due to the bounded-
ness of VI I , αi is defined in (−π, π ],

∣∣ξi − ξ j
∣∣ ≤√

4c, and |ηi | ≤ h−1
ηi

(c) + η∗ + ηm where hηi =
ln ((ηi − ηm) / (η∗ − ηm)) + (ηi − ηm / (η∗ − ηm)

− 1, the set Φ is compact. On the compact set Φ,∣∣∂si (λi , φi )
/
∂λi

∣∣ and
∣∣∂2si (λi , φi ) /∂λ2i

∣∣ are bounded
because φi ∈ [0, 2π). ‖∇λi‖ is bounded by continu-
ity. Since ∂ξi

/
∂si is bounded away from 0, υ fi =

(
∂ξi
∂si

)−1
ηi is also bounded on Φ. Thus, the closed-

loop system is Lipschitz continuous on the set Φ and a
solution exists and is unique.

Because the value of VI I is time independent and
non-increasing, we conclude that the entire solution
stays in Φ and then ηi > ηm when the initial value
of VI I is finite. At the same time, |λi (zi (t))| < εi is
satisfied by (C1) and (C2).Applying the invariance-like
theorem, it follows that the trajectories of the closed-
loop system will converge to the set inside the region
E = {(λi , αi , ξi − ξ j , ηi − η∗, ωei

) ∣∣V̇I I = 0 } as t →
∞, that is

αi = 0, ηi = η∗, ωei = 0, (42a)

(η − η∗1n)T L (η − η∗1n) = 0 ⇒ ηi = η j . (42b)

On the set E , the equations of the whole closed-loop
system become

λ̇i = 0, (43a)

α̇i = −2υ fi ∇hi ‖∇λi‖

−2k0ηi
∂si
∂λi

‖∇λi‖
n∑

j=1

ai j
(
ξi − ξ j

)
, (43b)

ξ̇i − ξ̇ j = 0, (43c)

η̇i − η̇∗ = −k0
(
ηi − ηm

)2
n∑

j=1

ai j
(
ξi − ξ j

)
. (43d)

In the following, we will show ξi − ξ j → 0 as
t → ∞. On the set E , from (43c) one gets that
ξi − ξ j is constant. Applying the extension of the Bar-
balat lemma in [22], from (43d) and Assumption 2,

η̇i − η̇∗ = −k0 (ηi − ηm)2
∑n

j=1 ai j (ξi − ξ j ) → 0.
Since ηi − ηm → η∗ − ηm �= 0 as t → ∞, one gets
Lξ = 0 where ξ = [ξ1, . . . , ξn]T , which implies that
ξi − ξ j → 0 as t → ∞ when the communication
topology is connected.

Because ξi − ξ j → 0 as t → ∞, the equation of the
closed-loop system for αi on the set E is changed to

α̇i = −2υ fi ∇hi ‖∇λi‖ . (44)

It is easy to check that limt→∞ υ fi = (∂ξ/∂si )η∗ >

0 is uniformly continuous and bounded from Assump-
tion 1 and 2. The details can be found in [11]. From
(43a), λi approaches to a constant and thus ∇hi
approaches to a constant. Therefore, −2∇hiυ fi ‖∇λi‖
is uniformly continuous. Applying the extension of the
Barbalat lemma [22], from (44) we have α̇i → 0 as
t → ∞. Because limt→∞υ fi ‖∇λi‖ �= 0, one gets
∇hi → 0 as t → ∞. By (C3), λi approaches to 0. ��

4 Simulation results

In this section, the proposed control law is applied
to coordinate four unicycles moving along the given
closed curves. The communication topology is shown
in Fig. 5. The control gains are selected as k0 =
20, k j = 10, j = 1, . . . , 5. The non-uniform flow field
is fi = [−0.25 ∗ sin(2 ∗ π ∗ 5/360 ∗ (zxi + zyi )), 0.25 ∗
cos(2 ∗ π ∗ 5/360 ∗ (zxi + zyi ))]T .
Case 1 The given orbits are a set of concentric ellipses
with different semi-major axis and semi-minor axis,
that is
(
zxi
3li

)2

+
(
zyi
2li

)2

= 1

where li = 1 + 0.5 (i − 1), i = 1, . . . , 4. In this case,
four unicycles are required to form the in-line forma-
tion with η∗(t) = 2+0.2 sin(t). The starting points are

2

4 3

1

Fig. 5 Communication topology
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Fig. 7 Trapezoidal formation motion along non-convex orbits:
a Plot of movements, b Plot of λi , c Plot of αi , d Plot of ξi − ξ j ,
e Plot of ηi
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defined as the intersection of the orbits with the posi-
tive horizontal axis of W , and we choose the general
arc-lengths as ξ j = si/ li . The movement of unicy-
cles is shown in Fig. 6a. From this figure, we can see
that four unicycles finally move along the set of given
orbits and form the desired formation. The path fol-
lowing errors fi and αi tend to zero and are plotted in
Fig. 6b, c, respectively. Figure 6d demonstrates that ξi
reaches consensus and Fig. 6e shows ηi converges to
the reference. According to these pictures, we conclude
that our control law is suitable to deal with formation
motion around convex curves.

Case 2 The given orbits are a set of concentric super-
ellipses (non-convex orbits) such as

1

ai

[(
2zxi z

y
i

)4 +
((
zxi
)2 − (

zyi
)2)4

] 1
8 = 1

where ai = 3+ 0.5 (i − 1) , i = 1, . . . , 4. In this case,
the desired pattern is that forming a trapezoidal forma-
tion with η∗ = 0.5. The starting points are defined as
the intersection of the orbits with the positive horizon-
tal axis of W , and we choose ξ j = s j/a j ; ( j = 1, 4),
ξ2 = s2/a2 + π/6 and ξ3 = s3/a3 + π/8. The move-
ment of unicycles is shown in Fig. 7a. From this figure,
we can see that four unicycles finally move along the
set of given orbits and form the desired formation. The
path following errors fi and αi tend to zero and are
plotted in Fig. 7b, c, respectively. Figure 7d demon-
strates that ξi reaches consensus, and Fig. 7e shows ηi
converges to the reference. According to these pictures,
coordinated non-convex curve path following control
problem is also solved via our proposed controller.

5 Conclusion

In this paper, our previous geometric extension design
[11] is developed to deal with coordinated path follow-
ing control of unicycles in an external time-invariant
flow field. Both temporal and spatial formations is
achieved by introducing the acceleration control. The
potential function is used to force each unicycle’s speed
greater than the magnitude of flow. The validity of the
proposed approach is confirmed by theoretical analysis
and numerical simulation.
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