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Abstract In this paper, a new lattice hydrodynamic
traffic flow model is proposed by considering the
driver’s anticipation effect (DAE) in sensing optimal
current difference (OCD) for two-lane system. The
effect of anticipation parameter on the stability of traf-
fic flow is examined through linear stability analysis
and shown that it can significantly enlarge the stabil-
ity region on the phase diagram. Nonlinear analysis is
conducted, and mKdV equation is derived to describe
propagation behavior of a density wave near the criti-
cal point. The driver’s physical delay in sensing optimal
current difference effect is also investigated and found
that it has different effect on two-lane traffic based on
whether lane changing is allowed or not. Simulation
results are found in good agreement with the theoreti-
cal findings, which confirms that traffic jam can be sup-
pressed efficiently by considering the DAEOCD effect
in a two-lane traffic system.
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1 Introduction

Due to the rapid increase in automobile on roads, the
traffic problems became more and more serious and
attracted much attention of scientists and researchers
because of its complex mechanism, recently. There-
fore, to understand the dynamics of traffic flow and
investigate the properties of traffic jams, a considerable
variety of traffic models have been developed and dis-
cussed by physicists, mathematicians, and so on [1–23]
in past few decades. To explain the dynamical phase
transitions on freeway, Nagatani [11] firstly in 1998
proposed a simple lattice hydrodynamic model and
derived modified Korteweg–de Vries (mKdV) equa-
tion to describe the traffic congestion in terms of kink
density wave near the critical point. Thereafter, this
modeling approach was widely referred and extended
to study various nonlinear phenomenon present in real
traffic flow like backward effect [12], lateral effect of
the lane width [13] and anticipation effect of potential
lane changing [14]. Recently, Peng [15] incorporated
the effect of anticipation individual driving behavior
and proposed a new lattice model. Kang and Sun [16]
introduced a lattice hydrodynamicmodel by taking into
account driver’s delay effect in sensing relative flux
(DDSRF) and found that this effect has an important
influence on the traffic jams.
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Most of the aforementionedmodels focus mainly on
some traffic phenomena only on a single lane. These
models cannot fully describe the real traffic on road-
ways consists of two or more lanes since they do not
consider the lane-changing behavior. In view of the
above mentioned facts, Nagatani [24] further extended
his model to two-lane system, two-dimensional traffic
system [25] and also to high-dimensional [26] traffic
dynamics. Later, some modifications have been made
in two-lane latticemodel by incorporating different fac-
tors like optimal current difference [27] and flow differ-
ence effect [28]. Peng [29] analyzed the effect of driver
anticipation in two-lane system. Very recently, Gupta
and Redhu [30] developed a new model to investigate
the effect of driver’s anticipation in sensing relative flux
(DAESRF) for two-lane system.

In real traffic, the driver always adjusts his/her
velocity according to observed traffic situation in the
surroundings and estimates his/her driving individual
behavior. Most of highways comprise of multi-lanes,
so it will be more adequate to investigate this effect on
a two-lane system with the consideration of potential
lane changing. However, in the existing lattice models,
driver’s anticipation effect in sensing optimal current
difference effect (DAEOCD) in two-lane system has
not been studied. This motivates us to develop a two-
lane latticemodel by incorporating the effect of driver’s
anticipation individual behavior in sensingOCDeffect.

In this paper, a more realistic lattice model with
DAE in sensing OCD effect for two-lane traffic sys-
tem is presented. In Sect. 3, the stability condition of
traffic flow is investigated by means of linear stability
theory. To describe the propagation behavior of traf-
fic jams, Sect. 4 is devoted to the nonlinear analysis in
whichmKdV equation is derived near the critical point.
Numerical simulations are carried out to validate the
theoretical findings in Sect. 5, and finally, conclusions
are drawn in Sect. 6.

2 A new model

To describe the traffic phenomena on single lane, the
simplest lattice hydrodynamic model was, firstly, pro-
posed by Nagatani [11] in 1998 and is given as

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1) = 0, (1)

∂t (ρ jv j ) = a[ρ0V (ρ j+1) − ρ jv j ]. (2)

where ρ0 is the average density; ρ j and v j , respec-
tively, represent the local density and velocity at site j
at time t . V (.) is the optimal velocity function, which is
a monotonically decreasing function having an upper
bound and an inflection point at critical density. The
idea is that the variation in traffic flow ρv at site j is
determined by the difference between the actual flow
at site j and the optimal flow ρ0V (ρ j+1) at the next
site.

While describing the traffic flow on road networks,
multi-lane models are found to be more appropriate as
most of the road networks are made up of more than
one lane. In this regard, Nagatani [11] further extended
single-lane lattice model to describe traffic phenom-
enon on two lanes by incorporating lane change effect
in the lattice version of continuity equation. The lane
changing on a two-lane highway occurs only in the fol-
lowing two cases.

Case (a): If ρ2, j−1(t) > ρ1, j (t), i.e., the density
at site j − 1 on the second lane is higher than that at
site j on the first lane, the lane changing occurs from
the second lane to the first lane and the lane-changing
rate will be proportional to their density difference as
follows: γ |ρ2

0V
′(ρ0)|

(
ρ2, j−1(t) − ρ1, j (t)

)
.

Case (b): If ρ1, j (t) > ρ2, j+1(t), i.e., the density at
site j on the first lane is higher than that at site j +1 on
the second lane, the lane changing occurs from the first
lane to the second lane and the lane-changing rate will
be proportional to their density difference as follows:
γ |ρ2

0V
′(ρ0)|

(
ρ1, j (t) − ρ2, j+1(t)

)
.

Here, ρ1, j (t) and ρ2, j (t) are the densities on the
first and second lane, respectively, and γ is a fixed
dimensionless coefficient. The proportionality con-
stant

(
γ |ρ2

0V
′(ρ0)|

)
is chosen in such a way that

it becomes dimensionless. Based on the above lane-
changing rules, the continuity equation for two-lane
traffic can be obtained in the same fashion as in Ref.
[24] and is given by

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1)

= γ |ρ2
0V

′(ρ0)|(ρ j+1 − 2ρ j + ρ j−1), (3)

where ρ j = ρ1, j+ρ2, j
2 represents the local density at site

j and ρ jv j = ρ1, jv1, j+ρ2, jv2, j
2 represents the local flow

at site j for the two-lane system.
In addition, the evolution equation of traffic current

on each lane will not be affected by lane changing.
Hence, the evolution equation for two-lane traffic [24]
was incorporated as
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∂t (ρ jv j ) = a[ρ0V (ρ j+1) − ρ jv j ]. (4)

Further, Peng [27] extended the Nagatani’s two-lane
lattice model by considering the optimal current differ-
ence effect and found that it has an important influence
on multi-lane traffic flow system. The continuity equa-
tion remains preserved, while the evolution equation is
modified by looking at the difference of optimal traffic
currents on site— j + 2 and j + 1. This effect plays a
significant role in stabilizing the traffic flow and sup-
presses effectively the traffic jams. Then, the modified
evolution equation is given by

∂t (ρ jv j ) = aρ0V (ρ j+1) − aρ jv j

+ aλ[ρ0V (ρ j+2) − ρ0V (ρ j+1)]. (5)

Here, λ is the reaction coefficient of optimal current
difference. However, the important aspect of driver’s
anticipation effect (DAE) was not incorporated in this
lattice traffic flow model. As observed in real traf-
fic flow, drivers always adjust their vehicles based on
the available dynamic estimation information. In this
dynamic process, drivers sense the traffic relative infor-
mation from surroundings at time t and make a deci-
sion to adjust velocity of their vehicles at a later time
t + τ1, where τ1 is the delay of driver’s response in
sensing headway. Once the decision has been taken,
vehicle actually moves at some later time t + τ1 + τ2
due to the delay of car motion, where τ2 represents the
delay time of car motion. So, the total delay time is
the sum of two different delay times τ1 and τ2. With-
out lose of generality, a linear relationship between
driver’s response delay τ1 and the total delay time τ

is chosen as τ1 = ατ , where the α is the anticipa-
tion coefficient that corresponds to driver’s behavior
and τ = 1/a denote the delay time, which allows for
the time lag, that it takes the traffic current to reach
the optimal current when the traffic is varying. How-
ever, driver’s anticipation effect was not explicitly con-
sidered in two-lane Peng’s model [27]. Therefore, we
propose a new evolution equation with consideration
of anticipation driving effect in sensing optimal current
difference effect (DAEOCD) on a two-lane system as
follows:

∂t (ρ j (t)v j (t)) = aρ0V [ρ j+1(t + ατ)] − aρ j (t)v j (t)

+ aλ[Q j+2(t+ατ) − Q j+1(t+ατ)].
(6)

where Q j (t) = ρ0V [ρ j (t)] and the last term in the
above evolution equation denote the optimal current
difference on site j+1. In the proposedmodel, the sign
of anticipation coefficient α explores different char-
acteristics of driver’s behavior on two-lane highway.
The positive value of α represents anticipation driving
behavior or the drivers forecast effect in a traffic sys-
tem with intelligent transportation system (ITS). Here,
driver adjusts his driving individual speed to the antic-
ipation optimal speed at time t + ατ after delay time
τ in advance. So, the bigger value of α corresponds to
more skillful drivers in the model.

For α < 0, i.e., negative anticipation coefficient
corresponds to the explicit driver’s physical delay in
sensing optimal current difference effect. The effect of
driver’s delay in sensing relative flux is also analyzed in
single-lane model by Kang and Sun [16] and for two-
lane traffic system by Zhang et al. [31], recently. When
α = 0, the new model reduces to Peng’s [27]. For sim-
plicity, using theTaylor series expansion andneglecting
the nonlinear terms, the new evolution equation can be
obtained as:

∂t (ρ j (t)v j (t)) = aρ0[V (ρ j+1(t))

+ ατV ′(ρ j+1(t))∂tρ j+1(t)] − aρ j (t)v j (t)

+ aλρ0[V (ρ j+2(t)) − V (ρ j+1(t))]
+ aλατρ0[V ′(ρ j+2(t))∂tρ j+2(t)

− V ′(ρ j+1(t))∂tρ j+1(t)]. (7)

By taking the difference form of Eqs. (3) and (7) and
eliminating speed v j , the density equation is obtained
as

ρ j (t + 2τ) − ρ j (t + τ) + τρ2
0 [V (ρ j+1(t))

− V (ρ j (t))]
+ αρ2

0τ [V ′(ρ j+1(t))Δ̃ρ j+1(t) − V ′(ρ j (t))Δ̃ρ j (t)]
+ λτρ2

0 [V (ρ j+2(t)) − 2V (ρ j+1(t)) + V (ρ j (t))]
+ ατλρ2

0 [V ′(ρ j+2(t))Δ̃ρ j+2(t)

− 2V ′(ρ j+1(t))Δ̃ρ j+1(t) + V ′(ρ j (t))Δ̃ρ j (t)]
− τγ |ρ2

0V
′(ρ0)|[ρ j+1(t + τ)

− 2ρ j (t + τ) + ρ j−1(t + τ)] = 0, (8)

where Δ̃ρ j (t) = ρ j (t + τ) − ρ j (t).

3 Linear stability analysis

To investigate the influence of driver anticipation effect
on jamming transition of traffic flow, linear stability
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analysis is conducted on the extended model in this
section. For this, under the condition of homogeneous
trafficflow, the state of uniform traffic is definedby con-
stant density ρ0 and optimal velocity V (ρ0). Hence, the
steady-state solution of the homogeneous traffic flow
is given as

ρ j (t) = ρ0, v j (t) = V (ρ0). (9)

Let y j (t) be a small deviation to the steady-state density
on site j . Then,

ρ j (t) = ρ0 + y j (t). (10)

Putting this perturbed density profile into Eq. (8) and
linearizing it, we obtain

y j (t + 2τ)−y j (t + τ) + τρ2
0V

′(ρ0)[y j+1(t) − y j (t)]
+ ατρ2

0V
′(ρ0)Δ̃[y j+1(t) − y j (t)]

+ λρ0τV
′(ρ0)[y j+2(t) − 2y j+1(t) + y j (t)]

+ ατλρ2
0V

′(ρ0)Δ̃[y j+2(t) − 2y j+1(t) + y j (t)]
− τγ |ρ2

0V
′(ρ0)|[y j+1(t + τ) − 2y j (t + τ)

+ y j−1(t + τ)] = 0. (11)

Substituting y j (t) = exp(ik j + zt) in Eq. (11), we get

e2τ z − eτ z + τρ2
0V

′(ρ0)[eik − 1]
+ ατρ2

0V
′[eτ z − 1][eik − 1]

+ λρ2
0τV

′(ρ0)[eik − 1]2
+ λτρ2

0αV
′(ρ0)[eτ z − 1][eik − 1]2

− τγ |ρ2
0V

′(ρ0)|[eik − 2 + e−ik]eτ z = 0. (12)

Inserting z = z1(ik) + z2(ik)2 . . . into Eq. (12), we
obtained the first-order and second-order terms of the
coefficient ik and (ik)2, respectively, as

z1 = −ρ2
0V

′(ρ0), (13)

z2 = −3τ z21
2

− ρ2
0V

′(ρ0)
2

− ταρ2
0V

′(ρ0)z1

− λρ2
0V

′(ρ0) + γ |ρ2
0V

′(ρ0)|. (14)

When z2 < 0, the uniform steady-state flow becomes
unstable for long-wavelength waves. For z2 > 0, the
uniform flow becomes stable. Thus, the stability con-
dition for the steady state is

τ = − 1 + 2γ + 2λ

ρ2
0V

′(ρ0)(3 − 2α)
. (15)

The instability condition for the homogeneous traffic
flow can be described as

τ > − 1 + 2γ + 2λ

ρ2
0V

′(ρ0)(3 − 2α)
. (16)

As α = 0, the above unstability criteria (Eq. 16) will
become same as that of Peng’s model [27].

Eq. (16) clearly shows that lane-changing parameter
γ , anticipation coefficient α and reaction coefficient λ
play a significant role on the stability of traffic flow.
The neutral stability curves in the phase space (ρ, a)

are shown by solid curves in Fig. 1 for different values
of α. Figure 1a corresponds to without lane changing,
i.e., γ = 0 and Fig. 1b corresponds the lane-changing
case for γ = 0.1. It can be observed from the figures
that the apex of these curves (ρc, ac) decreases with an
increase in α in both the cases, which means that larger
value of α leads to enlargement of stability region, and
hence, the traffic jam is suppressed efficiently. For neg-
ative values of α, when explicit driver’s physical delay
is present, the instability region increases, which is in
accordance with the result of Gupta and Redhu [30] for
two-lane and Kang and Sun [16] for single-lane traffic
models. On comparing Fig. 1a, b, it can also be con-
cluded that under the same conditions, the traffic flow
has been strengthen with the increase in the value of
γ , which means that lane changing reduces traffic jams
significantly. This is similar to the real traffic phenom-
enon as under the jam situation, vehicles try to accom-
modate themselves in a less denser lane by changing
their lane quite frequently to overcome the congestion.

4 Nonlinear stability analysis

In this section, we investigate the evolution character-
istic of traffic jam around the critical point (ρc, ac)
on coarse-grained scales using reduction perturbation
technique. Long-wavelength expansion method is used
to understand the slowly varying behavior near the crit-
ical point. For that, the slow variables X and T for a
small positive scaling parameter ε(0 < ε � 1) are
defined as follows:

X = ε( j + bt), T = ε3t, (17)

where b is a constant to be determined. Let ρ j satisfy
the following equation:

ρ j (t) = ρc + εR(X, T ). (18)

By expanding Eq. (8) using Taylor expansion up
to fifth order (see Appendix 1) of ε with the help of
Eqs. (17) and (18), the following nonlinear equation is
obtained.
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Fig. 1 Phase diagram in parameter space (ρ, a), λ = 0.1 for a γ = 0, and b γ = 0.1, respectively

Table 1 The coefficients ki of the model

k1 k2 k3

b + ρ2
c V

′ 3
2b

2τ + ρ2
c V

′ [ 1
2 + bατ + λ + γ )

] 7
6b

3τ 2 + ρ2
c V

′
6

[
1 + 3αbτ(1 + bτ) + 6λ + 6αbτλ + 6γ bτ

]

k4 k5 k6 k7

ρ2
c V

′′′
6 3bτ + ατρ2

c V
′ 5

8b
4τ 3 + ρ2

c V
′

6

[
1
4 + 7λ

2 + α
(
bτ + 3b2τ 2

2 + b3τ 3
)

(2λ−1)ρ2
c V

′′′
12

+3αλ[b2τ 2 + 2bτ ] + γ (1+6b2τ 2)
2

]

ε2k1∂X R + ε3k2∂
2
X R

+ ε4(∂T R + k3∂
3
X R + k4∂X R

3)

+ ε5(k5∂T ∂X R + k6∂
4
X R + k7∂

2
X R

3) = 0. (19)

The coefficients ki (i = 1, 2, · · · , 7) are given in

Table 1, where V ′ = dV (ρ)
dρ |ρ=ρc , V

′′′ = dV 3(ρ)

dρ3 |ρ=ρc .
Near the critical point (ρc, ac), the value of τ is set as

τ = τc(ε
2 + 1). (20)

By taking b = −ρ2
c V

′ and eliminating the second-
order and third-order terms of ε, we obtain

ε4(∂T R − g1∂
3
X R + g2∂X R

3)

+ ε5(g3∂
2
X R + g4∂

4
X R + g5∂

2
X R

3) = 0, (21)

where the coefficients gi (1, 2, · · · , 5) are shown in
Table 2.

In order to determine the value of propagation veloc-
ity for the kink–antikink solution, it is necessary to sat-
isfy the following condition:

(R′
0, M[R′

0]) ≡
∫ ∞

−∞
dX R′

0M[R′
0] = 0, (22)

withM[R′
0] = M[R′]. By solvingEq. (22), the selected

value of c is

c = 5g2g3
2g2g4 − 3g1g5

. (23)

Hence, the kink–antikink solution is given by

ρ j = ρc + ε

√
g1c

g2
tanh

(√
c

2
(X − cg1T )

)
, (24)

with ε2 = ac
a − 1 and the amplitude A of the solution

is
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Table 2 The coefficients gi of the model

g1 g2 g3

− 7
6b

3τ 2c − ρ2
c V

′
6 [1 + 3αbτc(1 + bτc)

ρ2
c V

′′′
6

3
2b

2τc + bατcρ
2
c V

′

+ 6λ + 6αbτcλ + 6γ bτc]
g4 g5

(3b + αρ2
c V

′)τcg1 + 5
8b

4τ 3c + ρ2
c V

′
6

[
1
4 + 7λ

2 + γ (1+6b2τ 2c )

2
(2λ−1)ρ2

c V
′′′

12

+ 3αλ[b2τ 2c + 2bτc] + α
(
bτc + 3b2τ 2c

2 + b3τ 3c
) ]

A =
√
g1
g2

ε2c. (25)

The kink–antikink soliton solution represents the coex-
isting phase including both freelymoving phase (within
lowdensity) and congested phase (within high density),
which can be described by ρ j = ρc ± A, respectively,
in the phase space (ρ, a). For a particular case, when
α = 0, the results become similar to those found by
Peng [27]. The dashed lines in Fig. 1 represent the

coexisting curves, which divide the phase plane into
three regions: the stable region, the metastable region
and the unstable region. In the stable region, the traffic
flow will remain stable under a disturbance, while in
metastable andunstable region, a small disturbancewill
lead to the congested traffic. Moreover, with the con-
sideration of DAE when lane changing is allowed, the
corresponding neutral and coexisting curves both lower
down, which means that the stability of uniform traf-
fic flow has been further strengthen, while the negative
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Fig. 2 Spatiotemporal evolutions of density when γ = 0, λ = 0.1 for a α = 0, b α = 0.1, c α = 0.3, and d α = 0.5, respectively
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Fig. 3 Density profile at time t = 20300 when γ = 0, λ = 0.1 for a α = 0, b α = 0.1, c α = 0.3, and d α = 0.5, respectively

value of α produces the opposite effect and the ampli-
tude of these curves increases, which leads to reduction
in the stability region of traffic flow.

5 Numerical simulation

In this section, we carry out numerical simulation of
the new model to investigate the effect of drivers antic-
ipation on traffic flow dynamic as well as to validate
linear and nonlinear analysis. Periodic boundary con-
ditions are chosen, and the initial conditions are taken
as follows:

ρ j (1) = ρ j (0) =

⎧
⎪⎨

⎪⎩

ρ0; j �= M
2 , M

2 + 1

ρ0 − σ ; j = M
2

ρ0 + σ ; j = M
2 + 1

where σ is the initial disturbance,M is the total number
of sites taken as 100, and other parameters are set as
follows: σ = 0.1, a = 2.3, τ = 1

a .

The optimal velocity function given by Nagatani
[24] is adopted.

V (ρ)=Vmax

2

[
tanh

(
1

ρ
− 1

ρc

)
+ tanh

(
1

ρc

)]
, (26)

where Vmax and ρc denote themaximal velocity and the
safety critical density, respectively. The optimal veloc-
ity function is monotonically decreasing and has an
upper bound and a turning point at ρ = ρc = ρ0. For
computation, maximal velocity and critical density are
set at 2.0 and 0.25, respectively.

Figure 2 depicts the simulation results of spatiotem-
poral evolution of density after 2 × 104 time steps for
different values of α under no lane-changing situation
(γ = 0) and λ = 0.1. It is clear from the Fig. 2a–d
that initial disturbance leads to the kink–antikink soli-
ton, which propagates in the backward direction. Due
to this, initial uniform flow under a small amplitude
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disturbance evolves into congested flow as the stability
condition is not satisfied. Figure 2d shows that as soon
as α = 0.4, i.e., we entered into the stable region, a
small amplitude perturbation to the homogeneous den-
sity dies out and stop-and-go wave disappears. It is also
clear from Fig. 2a–d that anticipation driving behavior
has efficiently suppressed the traffic jam and also vali-
date the theoretical findings when lane changing is not
allowed.

Figure 3 describes the density profile at time t =
20, 300 s corresponding to panel of Fig. 2. It can be
easily depicted from Fig. 3a–d that the number of stop-
and-go waves gradually decreases with an increase in
anticipation coefficient. This validates the fact that in
real traffic, more skillful drivers help in removing the
traffic congestion. The region of free flow turns wide,
and the amplitude of density waves is weakened with
the increase in anticipation coefficient, which means
that anticipation effect enhances the stability of the traf-
fic flow. The traffic jam disappears, and flow becomes
homogeneous at α = 0.5. Therefore, it is worth to
conclude that driver’s anticipation effect significantly
enhances the stability of system.

Now, we examined the effect of anticipation coeffi-
cient α on traffic flow dynamics when lane changing is
allowed (γ = 0.1). Figures 4 and 5 display the simu-
lation results under the different values of anticipation
coefficient α for λ = 0.1. The results corresponding
to γ = 0.1 are found qualitatively similar to those
obtained for γ = 0. Parallel to no lane-changing case,
initial small amplitude disturbance is amplified in pat-
terns (a, c), while the disturbance will dissolve quickly
and the traffic flow becomes uniform over the whole
space for an appropriate value of the parameter α as
shown in pattern (d). It is also clear from the density
profile (Fig. 5d) that the traffic flow becomes stable for
small value of anticipation coefficient for lane changing
in comparison with without lane-changing situation.
This verifies that more skillful drivers play a crucial
role in avoiding jams when lane changing is permit-
ted in two-lane system. It indicates that the stability
of the new two-lane lattice model is better than that
of Nagatani’s lattice model by taking the DAE’s effect
into consideration.

We further investigate the effect of negative antici-
pation coefficient representing the explicit drier’s phys-
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Fig. 4 Spatiotemporal evolutions of density when γ = 0.1, λ = 0.1 for a α = 0, b α = 0.1, c α = 0.2, and d α = 0.3, respectively
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Fig. 5 Density profile at time t = 20300 when γ = 0.1, λ = 0.1 for a α = 0, b α = 0.1, c α = 0.2, and d α = 0.3, respectively

0

50

100

150

200

0
20

40
60

80
100

0
0.2
0.4

TimeCell number

D
en

si
ty

(a)

0

50

100

150

200

0
20

40
60

80
100

0
0.2
0.4

Time
Cell number

D
en

si
ty

(b)

Fig. 6 Spatiotemporal evolutions of density when γ = 0, λ = 0.1 for a α = −0.1, and b α = −0.2, respectively

ical delay in sensing optimal current difference effect.
Figures 6 and 7 show the simulation resultswhenα < 0
and lane changing are not allowed (γ = 0.0). It is clear
from the Fig. 6a, b that driver’s delay in sensing opti-
mal current difference effect plays an important role in
traffic congestion. The amplitude of the density waves

increases with an increase in the explicit drier’s phys-
ical delay, which means that jam can easily appear as
the driver has large delay of response.

Figures 8 and 9 show the simulation results when
the anticipation coefficient takes the negative values
and lane changing is permitted (γ = 0.1). The results
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Fig. 7 Density profile at time t = 10300 when γ = 0, λ = 0.1 for a α = −0.1, and b α = −0.2, respectively
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Fig. 8 Spatiotemporal evolutions of density when γ = 0.1, λ = 0.1 for a α = −0.1, and b α = −0.2, respectively

corresponding to γ = 0.1 are quite different from those
obtained for γ = 0. On comparing Fig. 7 with Fig. 9, it
is observed that the density profiles of congested flow
in passing case are no longer periodic. This jam pattern
exhibits irregular complex structure and propagates in
the opposite direction to the vehicle’s movement that
is a characteristic of chaos. In chaotic flow, density
waves band with one another, break up, and propagates
in the backward direction. From these results, we can
conclude that kink–antikink as well as chaotic region
can exist in the instable region on the phase plane for
different values of α when passing is allowed in two-
lane traffic system.

Figures 10 and 11 represent the phase space plot
of density difference ρ(t) − ρ(t − 1) against ρ(t) for
t = 10000 − 20000 corresponding to the traffic flows
in Figs. 7 and 9, respectively. Figure 10 of kink jam

exhibit the limit cycle, which corresponds to the peri-
odic traffic behavior. The points on the right and left
ends represent, respectively, the states within the traf-
fic jams and within the freely moving phase. The pat-
tern in Fig. 11 represents the set of dispersed points
around a closed loop in the phase space plot. It corre-
sponds to the irregular traffic behavior, which exhibits
the behavior characteristic of chaos. It is also clear from
the figure that the chaotic jam becomes more stronger
by decreasing the vale of α, which validates the fact
that as the driver’s delay increases, the traffic becomes
more and more irregular on a two-lane highway when
lane changing is allowed. Therefore, from theoretical
and simulation results, it is reasonable to conclude that
traffic jam can efficiently be suppressed by incorporat-
ing the driver’s anticipation effect on a two-lane traffic
system.
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Fig. 9 Density profile at time t = 10300 when γ = 0.1, λ = 0.1 for a α = −0.1, and b α = −0.2, respectively
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Fig. 10 Plot of density difference against density corresponds to the panels in Fig. 8, respectively
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Fig. 11 Plot of density difference against density corresponds to the panels in Fig. 9, respectively
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6 Conclusion

In this paper, we presented a new lattice hydrodynamic
model for two-lane traffic flow by considering antici-
pation driving individual behavior in sensing optimal
current difference effect (DAEOCD). Linear and non-
linear analyses are performed to investigate the traf-
fic behavior analytically. We derived the mKdV equa-
tion to describe the traffic jam near the critical point
and obtained kink–antikink soliton solution related to
the traffic flow density. In addition, phase diagrams in
the density-sensitivity space with the neutral stability
curves and the coexisting curves are presented, show-
ing the phase transition among the freely moving phase
to uniform congested phase through coexisting phase
in two-lane system. It is concluded that anticipation
coefficient corresponds to driver’s behavior in sensing
that optimal current difference increases the stability of
traffic flow significantly in two-lane system, while the
negative value of anticipation coefficient corresponds
to driver’s delay response in sensing that optimal cur-
rent difference effect reduces the stable region and
increases congestion.The simulation results are in good
accordancewith the theoretical findings. Therefore, it is
reasonable to conclude that driver’s anticipation effect
plays an important role in stabilizing/destabilizing the
traffic flow on two-lane highway. Though the results
discussed in this paper are complete, yet the proposed
two-lane model will be analyzed in our future work to
incorporate many important factors discussed in Refs.
[1–10] .
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Appendix 1

In this appendix, we give the expansion of each terms
in Eq. (8) using Eqs. (17) and (18) to the fifth order of
ε.

ρ j (t + τ) = ρc + εR + ε2(bτ)∂X R

+ ε3

2
(bτ)2∂2X R + ε4

6
(bτ)3∂3X R + ε4τ∂T R

+ ε5

24
(bτ)4∂4X R + ε5bτ 2∂T ∂X R. (27)

ρ j (t + 2τ) = ρc + εR + ε2(2bτ)∂X R

+ ε3

2
(2bτ)2∂2X R

+ ε4

6
(2bτ)3∂3X R + ε4(2τ)∂T R

+ ε5

24
(2bτ)4∂4X R + ε5(4bτ 2)∂T ∂X R. (28)

ρ j+1(t) = ρc + εR + ε2∂X R

+ ε3

2
∂2X R + ε4

6
∂3X R + ε5

24
∂4X R. (29)

ρ j+1(t + τ) − 2ρ j (t + τ) + ρ j−1(t + τ)

= ε3∂2X R + ε4(bτ)∂3X R

+ ε5

12
(1 + 6b2τ 2)∂4X R. (30)

The expansion of optimal velocity function at the turn-
ing point is

V (ρ j ) = V (ρc) + V ′(ρc)(ρ j − ρc)

+ V ′′′(ρc)
6

(ρ j − ρc)
3. (31)

V (ρ j+1) = V (ρc) + V ′(ρc)(ρ j+1 − ρc)

+ V ′′′(ρc)
6

(ρ j+1 − ρc)
3. (32)

Using Eqs. (31) and (32), we get

V (ρ j+1) − V (ρ j )

= V ′(ρc)
[

ε2∂X R + ε3

2
∂2X R + ε4

6
∂3X R + ε5

24
∂4X R

]

+V ′′′(ρc)
6

[

ε4∂X R
3 + ε5

2
∂2X R

3

]

. (33)

Some other important expansions are also computed
using Eqs. (27)–(33) and are given as

V ′(ρ j+2(t))Δ̃ρ j+2(t) − 2V ′(ρ j+1(t))Δ̃ρ j+1(t)

+ V ′(ρ j (t))Δ̃ρ j (t) = ε3(bτ)V ′(ρc)∂2X R

+ ε4(bτ)V ′(ρc)∂3X R

+ ε5

2
(b2τ 2 + 2bτ)V ′(ρc)∂4X R. (34)

V (ρ j+2) − 2V (ρ j+1) + V (ρ j )

= ε3V ′(ρc)∂2X R + ε4V ′(ρc)∂3X R

+ 7ε5

12
V ′(ρc)∂4X R. (35)

V ′(ρ j+1(t))Δ̃ρ j+1(t) − V ′(ρ j (t))Δ̃ρ j (t)

= ε3

2
(bτ)V ′(ρc)∂2X R
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+ ε4

2
(B2τ 2 + bτ)V ′(ρc)∂3X R + ε5V ′(ρc)

×
[
τ∂T ∂X R + (4bτ + 6b2τ 2 + 4b3τ 3)

24
∂4X R

]
.

(36)

By inserting (27), (28), (30), (33), (34), (35) and (36)
into Eq. (8), we obtain Eq. (19).
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