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Abstract A modified incremental harmonic balance
(IHB) method is introduced, where Fourier coeffi-
cients of the residual of nonlinear algebraic equations
are approximated by the fast Fourier transform, and
the Jacobian of the nonlinear algebraic equations is
approximated byBroyden’smethod. Themodified IHB
method is first illustrated by solving Duffing’s equa-
tion, whose solutions from the modified IHB method
are in excellent agreement with that fromRunge–Kutta
method. The calculation time for the modified IHB
method is almost two orders ofmagnitude less than that
for the original IHBmethod. By showing that the Jaco-
bian of the path function in Broyden’s method is invari-
ant, the arc-length method with the path-following
technique is used to calculate an amplitude–frequency
response curve of Duffing’s equation. Bifurcations of
Mathieu–Duffing equation are also studied using the
modified IHB method.
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1 Introduction

In analysis of nonlinear problems, perturbation meth-
ods [1], such as the multiple scales method and the
averaging method, are often used to derive analytical
solutions. However, the perturbation methods are fea-
sible and reliable for low-degree-of-freedom systems
with weak nonlinearities. In the work of Bajkowski
and Szemplinska-Stupnicka [2], internal resonance in a
two-degree-of-freedom system was investigated using
both the averaging method and a numerical method,
and results showed that amplitude–frequency response
curves from the two methods become very different
when there are strong nonlinearities in the system. To
dealwithmulti-degree-of-freedom systemswith strong
nonlinearities, the incremental harmonic balance (IHB)
method is one of the most amenable approaches: It can
provide arbitrarily high accuracy for periodic solutions
and is suitable for computer implementation [3]. The
IHB method is a combination of Newton’s method and
Galerkin procedure [4], which was first introduced by
Lau andCheung [5];Galerkin procedure is essentially a
harmonic balance procedure. The IHBmethodwas suc-
cessfully applied to many periodic vibration problems
as well as some aperiodic vibration problems [6]. To
automatically and reliably obtain amplitude–frequency
response curves, an incremental arc-length method
with a cubic extrapolation technique was developed
in Ref. [7], and an improved arc-length method with
a path-following technique was presented in Ref. [8].
With the arc-length method, an amplitude–frequency
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response curve can successfully trace a sharp peak, and
a small number of iterations are required to obtain a
convergent solution. Stability of periodic solutions of
nonlinear systems was investigated using Liapunov–
Floquet transformation based onFloquet theory [9–11].
Instability occurs when the transformation matrix has
an eigenvalue whose modulus exceeds unity. There is a
period-doubling bifurcationwhen the eigenvalue is less
than −1. A periodic solution is stable when all eigen-
values are inside the unit circle. An efficient numerical
method for approximating the transformation matrix
in one period was developed by Hsu and Cheng [16].
Friedmann et al. [17] gave a concise formulation of
Hsu’s method. The technique based on Floquet the-
ory was used to study stability of steady-state solutions
from the IHB method [7,8], and bifurcations of peri-
odic solutions can be detected and traced [12–14]. The
IHB method can also be used to determine paramet-
ric instability boundaries of a parametrically excited
system [3,15].

While the IHBmethod provides an efficient and reli-
able way to solve strongly nonlinear problems, to apply
Newton’smethod, much effort is devoted to calculating
the Jacobian of nonlinear algebraic equations, which
result from Galerkin procedure that is used to balance
truncated terms of Fourier series of periodic solutions
of nonlinear differential equations. Calculation of the
Jacobian can be extremely difficult for a system with
a high degree of freedom and complex nonlinearities.
If numbers of truncated terms of the Fourier series are
large enough, the Fourier coefficients can be approx-
imated by coefficients of a discrete Fourier transform
(DFT) that are calculated without using integrals. In
practice, the fast Fourier transform (FFT) is used to effi-
ciently calculate coefficients of a DFT [18–20], which
can improve calculation efficiency of the IHB method.
However, complexity of constructing the Jacobian is
still significant due to two reasons: First, calculation
for obtaining FFT coefficients can be huge when there
are large numbers of terms of Fourier series and sec-
ond,Galerkin procedure and the following procedure to
combine similar trigonometric terms are not simplified;
they need cumbersome computation and are mistake-
prone. To overcome the difficulties in constructing the
Jacobian, a quasi-Newton method called Broyden’s
method [21] can be used, in which the true Jacobian
is replaced by an approximated Jacobian that is iter-
atively updated. The method was proved to have Q-
quadratic convergence for nonlinear problems [22]. By

usingBroyden’smethod, one does not need to construct
the complex Jacobian of nonlinear algebraic equations.
Instead, the Jacobian of the associated linear algebraic
equations is used as the initial guess of an iteration
procedure. Construction of the Jacobian of linear alge-
braic equations is much easier than that of nonlinear
algebraic equations, which can be automatically gen-
erated with customized mass, damping, and stiffness
matrices of the linear algebraic equations. When the
arc-length method with the path-following technique is
used to obtain an amplitude–frequency response curve,
a complete set of equations is constructed by combin-
ing nonlinear algebraic equations with an augmenting
equation [8]. Consequently, the Jacobian of the com-
plete set of equations is a combination of the Jaco-
bian of nonlinear algebraic equations and that of the
augmenting equation. By using Broyden’s method to
obtain the approximated Jacobian of the complete set of
equations, the approximated Jacobian of the augment-
ing equation is also updated. However, the Jacobian of
the augmenting equation that is updated by Broyden’s
method should be invariant since its initial guess has
exact values.

In this paper, a modified IHB method based on the
FFT and Broyden’s method is presented. The Jacobian
is not exactly calculated, but approximated using Broy-
den’s method, and Fourier coefficients of a residual are
obtained using the FFT. To start Broyden’s method,
the Jacobian of the associated linear algebraic equa-
tions is used as an initial guess of that of the nonlinear
algebraic equations, which is directly generated with
the mass, damping, and stiffness matrices, as shown
in what follows. To obtain an amplitude–frequency
response curve using the modified IHB method, the
approximated Jacobian of the complete set of equa-
tions is constructed, and the property that the updated
Jacobian of the augmenting equation is invariant when
the augmenting equation is selected as a linear equa-
tion is proved. Duffing’s equation is used as an exam-
ple to demonstrate the procedure of the modified IHB
method. Solutions from the modified IHB method
and Runge–Kutta method are compared, and stabil-
ity of solutions is analyzed. The modified IHB method
is also successfully used to calculate bifurcations of
Mathieu–Duffing equation [24]. While single-degree-
of-freedom systems are used to illustrate the modi-
fied IHB method in this paper, the methodology can
be readily extended to multi-degree-of-freedom sys-
tems.
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2 Modified IHB method

2.1 Introduction to the IHB method in solving
Duffing’s equation

A second-order nonlinear differential equation for a
single-degree-of-freedom system can be usually repre-
sented by

f (ü, u̇, u, t, λ, F) = 0, (1)

where f is a nonlinear function, t and u are independent
and dependent variables of the equation, respectively,
u̇ and ü are the first and second derivatives of u with
respect to t , respectively, λ is a parameter of the equa-
tion, and F is the amplitude of a harmonic excitation.
If the nonlinear equation is Duffing’s equation, Eq. (1)
can be written as

ü + 2ξ u̇ + αu + εu3 − F cosω f t = 0, (2)

where ξ is the damping ratio, α is a linear stiffness
coefficient, ε is a nonlinear stiffness coefficient, and
ω f is the frequency of the harmonic excitation. The
procedure of the IHB method to solve Eq. (2) is shown
below:

1. Assigning a dimensionless variable τ = ωt , where
ω is the frequency variable. Replacing t by τ in the
first and second derivatives of u with respect to t
yields

u̇ = du

dt
= ω

du

dτ
= ωu′,

ü = d2u

dt2
= ω2 d

2u

dτ 2
= ω2u′′, (3)

respectively. Substituting Eq. (3) into Eq. (2) and
letting p = ω f /ω yield

ω2u′′ + 2ωξu′ + αu + εu3 − F cos pτ = 0. (4)

When p is an integer, one can calculate period-p
solutions of subharmonic responses.

2. Linearizing Eq. (4) around a trial solution (uo, u′
o,

u′′
o, ωo) yields

ω2
o�u′′ + 2ωoξ�u′ + (α + 3εu2o)�u + fω(uo)�ω

= − fo(uo, τ ), (5)

where fo(uo, τ ) = ω2
ou

′′
o + 2ωoξu′

o + αuo + εu3o
−F cos pτ is the residual of the linearized equa-
tion, fω(uo) = 2ωou′′

o + 2ξu′
o is the partial deriva-

tive of f with respect toω, and (�u,�u′,�u′′,�ω)

are increments of (uo, u′
o, u

′′
o, ωo) defined by ω =

ωo + �ω and u = uo + �u.

3. Using truncated Fourier series to represent u and
�u yields

u = [1/2 cos τ · · · cos nτ sin τ · · · sin nτ ]

[a0 a1 · · · an b1 · · · bn]
T = CT

s A, (6)

�u = [1/2 cos τ · · · cos nτ sin τ · · · sin nτ ]

[�a0 �a1 · · · �an �b1 · · · �bn]
T

= CT
s �A, (7)

where n is the number of truncated cosine and
sine terms, CT

s = [1/2 cos τ · · · cos nτ sin τ

· · · sin nτ ] is the basis of the truncated Fourier
series, A = [a0 a1 · · · an b1 · · · bn]T is the
vector of the truncated Fourier coefficients for
u, and �A = [�a0 �a1 · · · �an �b1 · · ·
�bn]T is the vector of the truncated Fourier coef-
ficients for �u, which is also the increment of A.
The first and second derivatives of u are u′ = CT ′

s A
and u′′ = CT ′′

s A, respectively; the first and sec-
ond derivatives of �u are �u′ = CT ′

s �A and
�u′′ = CT ′′

s �A, respectively. Substituting Eqs. (6)
and (7) into Eq. (5) yields

(ω2
oC

T ′′
s + 2ωoξCT ′

s + (α + 3εCT
s AoCT

s Ao)CT
s )�A

+ fω(CT
s Ao)�ω = − fo(CT

s Ao, τ ), (8)

where uo = CT
s Ao is the trial solution of Eq. (4).

Note that Eq. (8) is the incremental equation of Eq.
(4).

4. Making harmonic balance for Eqs. (4) and (8) via
Galerkin procedure. Premultiplying Eq. (4) with
u = CT

s A byCs and integrating the resulting equa-
tion from τ = 0 to 2π yield

1

π

∫ 2π

0
Cs

(
ω2CT ′′

s A + 2ωξCT ′
s A + (α + εCT

s AC
T
s A)

× CT
s A − F cos pι

)
dι = 0(2n+1)×1, (9)

where 0(2n+1)×1 is the (2n + 1)-dimensional zero
vector. A similar procedure for Eq. (8) yields the
incremental equation of Eq. (9):

�A�A + �ω�ω = −rAo , (10)

where �A = 1
π

∫ 2π
0 Cs(ω

2
oC

T ′′
s + 2ωoξCT ′

s + (α

+3εCT
s AoCT

s Ao)CT
s )dι is the Jacobian of Eq. (9)

with respect to A, �ω = 1
π

∫ 2π
0 Cs(2ωoCT ′′

s + 2ξ

CT ′
s )Aodι is the Jacobian of Eq. (9) with respect to

ω, and rAo = 1
π

∫ 2π
0 Cs fo(CT

s Ao, ι)dι is the resid-
ual of Eq. (9) associated with uo = CT

s Ao.
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5. Applying Newton’s method. Newton’s method is
an iterative method to obtain a solution q of A in
Eq. (9). With a fixed ω in Eq. (9), the incremental
equation in Eq. (10) becomes

�q�q = −rq , (11)

where �q is the Jacobian of Eq. (9) with respect to
q, rq is the residual of Eq. (9) with Ao replaced by
q, and �q = −�−1

q rq is the increment of q. One
can update q by qo + �q, where qo is an initial
guess ofA.When the normof rq is less than a preset
tolerance, the solution of Eq. (4) is u = CT

s qo.

2.2 Modified IHB method

Amodified IHBmethod is introduced here, where rq is
obtained by the FFT and Newton’s method is replaced
by a quasi-Newton method called Broyden’s method.
The associated linear differential equation of Eq. (4) is

ω2u′′ + 2ωξu′ + αu − F cos pτ = 0. (12)

Substituting u = CT
s A into Eq. (12) and usingGalerkin

procedure for the resulting equation yield

1

π

∫ 2π

0
Cs(ω

2CT ′′
s + 2ωξCT ′

s + αCT
s )dιA − rF

= 0(2n+1)×1, (13)

where rF is the (2n + 1)-dimensional vector whose
(p + 1)th entry is F . The Jacobian of Eq. (13) is used
as an initial guess of�q . It can be calculated as follows:

Bq,0 = 1

π

∫ 2π

0
Cs(ω

2CT ′′
s + 2ωξCT ′

s + αCT
s )dι

= ω2

⎛
⎝ 0 01×n 01×n

0n×1 C1
n×n 0n×n

0n×1 0n×n S1n×n

⎞
⎠

+ 2ωξ

⎛
⎝ 0 01×n 01×n

0n×1 0n×n C2
n×n

0n×1 S2n×n 0n×n

⎞
⎠

+α

⎛
⎝ 1/2 01×n 01×n

0n×1 En×n 0n×n

0n×1 0n×n En×n

⎞
⎠ , (14)

where

C1
n×n = S1n×n =

⎛
⎜⎝
12 0

. . .

0 n2

⎞
⎟⎠ ,

C2
n×n = −S2n×n =

⎛
⎜⎝
1 0

. . .

0 n

⎞
⎟⎠ , (15)

andEn×n is the n-dimensional identitymatrix.With the
last expression in Eq. (14), the Jacobian of the associ-
ated linear equation of Eq. (4) can be automatically
generated. The solution of Eq. (13) q0 = B−1

q,0rF is
used as an initial guess of q. The solution of Eq. (12)
is CT

s q0.
If the nonlinearity in Eq. (4) is weak, i.e., ε is small,

the solution of Eq. (4) can be iteratively obtained from
that of Eq. (12). If the nonlinearity in Eq. (4) is strong,
i.e., ε is large, the solution of Eq. (4) can be obtained
from that of Eq. (12) by gradually incrementing the
nonlinear stiffness coefficient from ε0 = 0 to ε with
a step size �ε. The final iterated solution q(h), where
h is the step number to recover the nonlinear stiffness
coefficient, and the final approximated Jacobian B(h)

q

of Eq. (4) with an intermediate parameter ε(h) = h ·
�ε are used as initial guesses of the solution and the
approximated Jacobian of Eq. (4) with the parameter
ε(h+1), respectively. The procedure of themodified IHB
method to solve Eq. (4) with some ε(h) is shown below.

1. Calculating the residual of Eq. (9) by the FFT. In
the kth iteration, the approximated Jacobian and the
solution are Bq,k and qk , respectively. The residual
of Eq. (9) is

rqk = 1

π

∫ 2π

0
Cs fo(CT

s qk, ι)dι. (16)

A fast and easy alternative to obtain the residual in
Eq. (16) is via the FFT. The period of fo(CT

s qk, τ )

is T = 2π , and 2N points, where N > n, that are
equally distributed in [0, 2π) are selected as dis-
cretized points: τi = i 2π2N , where i = 0, . . . , 2N−1.
Values of fo(CT

s qk, τ ) at τi are fo(CT
s qk, τi ). The

DFT of fo(CT
s qk, τi ) is

Fo(qk, K ) = 1

2N

2N−1∑
i=0

fo(CT
s qk, τi )

· e− j2πKi/(2N ), (17)

where K = 0, . . . , 2N − 1; Fo(qk, K ) is a com-
plex number and can be written as Fo(qk, K ) =
F (qk ,K )
Re + j F (qk ,K )

Im , where F (qk ,K )
Re and F (qk ,K )

Im are
real numbers. Coefficients of cos K τ and sin K τ are

Cos(qk ,K ) =
√(

F (qk ,K )
Re

)2 +
(
F (qk ,K )
Im

)2
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× cos

(
tan−1

(
F (qk ,K )
Im

F (qk ,K )
Re

))
, (18)

Sin(qk ,K ) =
√(

F (qk ,K )
Re

)2 +
(
F (qk ,K )
Im

)2

× sin

(
tan−1

(
F (qk ,K )
Im

F (qk ,K )
Re

))
, (19)

respectively.Consequently, rqk canbe approximated
by

rqk =
[
Cos(qk ,0) Cos(qk ,1) · · · Cos(qk ,n) Sin(qk ,1)

· · · Sin(qk ,n)
]T

. (20)

2. Updating the approximated Jacobian and the solu-
tionusingBroyden’smethod.The incremental equa-
tion in Eq. (11) using Broyden’s method is

qk+1 − qk = −B−1
q,krqk . (21)

The residual in the (k + 1)th iteration rqk+1 can
be obtained by using Eqs. (17)–(20) again with qk
replaced by qk+1, which is obtained from Eq. (21).
The approximated Jacobian in the (k+1)th iteration
is updated by

Bq,k+1 = Bq,k +
(
yk − Bq,ksk

)
sTk

sTk sk
, (22)

where sk = qk+1 − qk and yk = rqk+1 − rqk . When
the norm of rqk+1 is less than a preset tolerance,
the solution of Eq. (4) is CT

s qk+1. Accuracy of the
solution from the modified IHB method given by
the tolerance, which is selected to be 10−6 here,
is the same as that from the original IHB method.
Solutions of Duffing’s equation from the modified
IHB method and Runge–Kutta method are shown
in Fig. 1, and they are in excellent agreement. The
calculation time using the original IHB method is
0.25 s, and that using the modified IHB method is
0.003s,which is almost one hundredth of the former.

2.3 Arc-length method for the modified IHB method

To obtain an amplitude–frequency response curve of
Eq. (4), a path of the steady-state solution versus the
varying excitation frequencyω f = pω needs to be cal-
culated. To avoid non-convergence at a sharp peak of an

Fig. 1 Solutions of Duffing’s equation with n = 20, N =
64, ξ = 0.02, α = 1, ε = 1, ω f = 0.4, and F = 0.1 from
the modified IHB method and Runge–Kutta method

amplitude–frequency response curve, either the selec-
tive coefficient method [23] or the arc-length method
with the path-following technique [8] can be used. In
the modified IHB method, since the Jacobian of non-
linear algebraic equations with a current excitation fre-
quency is approximated via iterations from its initial
guess, which is the Jacobian of the nonlinear equations
with a previous excitation frequency, constitution of the
solution of the current equations is the same as that of
the previous equations. Hence, the arc-length method
with the path-following technique is a suitable method,
andx = [qTω]T is chosen as the newvariable. The aug-
menting equation of the arc-lengthmethod is definedby

g(x) − η = 0, (23)

where g is a path function and η is a path parameter. A
combination of Eqs. (9) and (23) forms a complete set
of equations:

⎧⎪⎪⎨
⎪⎪⎩

1
π

∫ 2π
0 Cs(ω

2CT ′′
s q + 2ωξCT ′

s q
+ (α + εCT

s qC
T
s q)CT

s q + F cos pι)dι

= 0(2n+1)×1

g([qT ω]T ) − η = 0

. (24)

A path of the steady-state solution can be traced by
actively incrementing η. The incremental equation of
Eq. (24) with some η is

�x�x =
{

�q �ω

dg/dxT

}
�x = −

{
rx

g(x) − η

}
, (25)

where �x = [�qT �ω]T and �x is the Jacobian
of Eq. (24); �ω can be obtained via the FFT from
Eqs. (17)–(20) with fo(CT

s qk, τ ) and rqk replaced by
2ωoCT ′′

s q + 2ξCT ′
s q and �ω, respectively. When the

solution of Eq. (24) with that path parameter η and the
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approximated Jacobian with respect to q, i.e., Bq , are
obtained, η is updated by η + �η, and

x0 = xp + xd�η, (26)

where xp is the solution of Eq. (24) with the previ-
ous η and xd = (xp − xb)/

∥∥xp − xb
∥∥, in which xb

is the solution of Eq. (24) with η being that before
the previous one, is the unit vector for predicting the
direction of change of the solution of Eq. (24) with the
updated η and is used as an initial guess of the new
variable x of Eq. (24) with the updated η. If the path
function is g(x) = xTd (x−xp), the derivative of g with
respect to x is dg/dxT = xTd . An initial guess of the
Jacobian of Eq. (24) with the updated η is chosen to
be

Bx,0 =
{
Bq,0 Bω,0

xTd

}
, (27)

where Bq,0 = Bq is an initial guess of �q and Bω,0 =
�ω. In updating Bx,k using Broyden’s method in the
kth iteration, all the entries of Bx,k can be changed.
However, the last row of Bx,k is a constant vector xTd ,
and invariant, which is proved below.

Replacing �x in Eq. (25) by Bx,k and x by xk in the
resulting equations yields

Bx,k�x =
(
Bq,k�q Bω,k�x

xTd �x

)
= −rk, (28)

where rk = [rTxk g(xk) − η]T is the residual of Eq.
(25) at xk . The last row in Eq. (28) is

xTd �x = −g(xk) + η. (29)

The residual of Eq. (25) in the (k + 1)th iteration at
xk+1 = xk + �x is rk+1 = [rTxk+1

g(xk+1) − η]T . The
last entry of rk+1 is

g(xk+1) − η = g(xk + �x) − η. (30)

Using g(x) = xTd (x − xp) in Eq. (30) yields

g(xk + �x) − η = xTd (xk − xp) − η + xTd �x. (31)

Substituting Eq. (29) into Eq. (31) yields

xTd (xk−xp)−η+xTd �x=g(xk)−η−g(xk)+η = 0,

(32)

which means that rk+1 = [rTxk+1
0]T . Using yk =

rk+1 − rk and sk = �x in Eq. (22) to update Bx,k

yields

Bx,k+1 = Bx,k +
(
rk+1 − rk − Bx,k�x

)
�xT

�xT�x

= Bx,k + rk+1�xT

�xT�x
,

= Bx,k + [rTxk+1
, 0]T�xT

�xT�x

= Bx,k + [�x · rTxk+1
, 0]T

�xT�x
, (33)

which means that the last row of Bx,k+1 is equal to that
ofBx,k . Hence, the last row ofBx,k for any k is equal to
that of Bx,0, which is xTd , and the invariance property
of the last row of Bx,k is proved.

2.4 Stability of periodic solutions

Stability of a steady-state solution from the modi-
fied IHB method can be evaluated by Floquet theory.
Assume uss is the steady-state solution that satisfies
Eq. (4) and δu is a small perturbation around uss . Using
u = uss + δu in Eq. (4) yields

ω2δu′′ + 2ωξδu′ +
(
α + 3εu2ss

)
δu

= − fo(uss, τ ) = 0. (34)

Transforming Eq. (34) to a state-space form with a
state-space variable V = [δu, δu′]T yields

V′ =
(

δu′
δu′′

)
=

(
0 1

− (α+3εu2ss )
ω2 − 2ξ

ω

) (
δu
δu′

)

= �(τ )V, (35)

where �(τ ) is a periodic matrix with respect to τ ,
whose period is 2π . Stability of Eq. (34) can be eval-
uated by calculating eigenvalues of the transformation
matrix Q that transforms V at τ = 2nπ to that at
τ = 2(n + 1)π . The transformation matrix Q can be
calculated using Hsu’s method [16] in the form

Q =
NQ∏
iQ=1

exp(�τ · �(iQ · �τ)), (36)

where NQ is the number of equal divisions of the period
and �τ = 2π/NQ is the length of one division. If
all of the eigenvalues of Q is inside a unit circle, the
steady-state solution is stable; otherwise, the solution
is unstable. Furthermore, if the unstable solution yields
an eigenvalue that is less than −1, a period-doubling
bifurcation occurs and there are stable subharmonic
responses [8]. When there are two complex conjugate
eigenvalues that escape from the unit circle, a Hopf
bifurcation occurs. An amplitude–frequency response
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A modified incremental harmonic balance method 987

Fig. 2 Amplitude–
frequency response curve
of Duffing’s equation with
n = 20, N = 64, ξ =
0.02, α = 1, ε = 1, and
F = 0.1, where stability
of the solution is indicated

curve of Duffing’s equation calculated using the arc-
length method with the path-following technique is
shown in Fig. 2, and stability of the solution is indi-
cated.

3 Bifurcations of Mathieu–Duffing equation
studied by the modified IHB method

Mathieu–Duffing equation represents a parametrically
excited nonlinear system:

ü + 2ξ̂ u̇ − (α̂ + β sin�t)u + γ u3 = 0, (37)

where ξ̂ = 0.125 is the damping ratio, α̂ = 1 is a linear
stiffness coefficient, β is the amplitude of the paramet-
ric excitation, � = 2 is the frequency of the excitation,
and γ = 1 is a nonlinear stiffness coefficient. Bifur-
cations occur when β varies, and the modified IHB
method can be used to study it. The dimensionless time
variable is τ = ωt ; substituting the expression into Eq.
(37) yields

ω2u′′ + 2ωξ̂u′ − (α̂ + β sin pτ)u + γ u3 = 0, (38)

where p = �/ω indicates the number of period-
doubling bifurcations. If p = 1, 2, 4, . . . are selected
in Eq. (38), period-1, 2, 4, … solutions can be calcu-
lated. The period-p solution can be solved by the mod-
ified IHB method with a controlled amplitude that is a
Fourier coefficient of the solution of Eq. (38). Making
harmonic balance for Eq. (38) with u = CT

s A yields

1

π

∫ 2π

0
Cs

(
ω2CT ′′

s + 2ωξ̂CT ′
s − (

α̂ + β sin pι

− γCT
s AC

T
s A

)
CT
s

)
Adι = 0(2n+1)×1. (39)

The incremental equation of Eq. (39) is

�A�A + �β�β = −rXo , (40)

where �A is the Jacobian of Eq. (39) with respect
to A, �β = − 1

π

∫ 2π
0 Cs(sin pιA)CT

s dι is the Jaco-
bian of Eq. (39) with respect to β, and rXo is the
residual of Eq. (39) with [AT β]T replaced by
a trial solution Xo = [AT

o βo]T . Let the ampli-
tude of the nthc cosine term of Fourier series of u,
which is the (nc + 1)th entry of A, be the controlled
amplitude. The solution of A in Eq. (39) is q =[
a0 · · · anc−1 β anc+1 · · · an b1 · · · bn

]T , and
Eq. (40) becomes

�q�q = −rq , (41)

where �q is the Jacobian of Eq. (39) with respect to q,
which is�A with its nthc column replaced by�β ,�q is
the increment of q, and rq is the residual of Eq. (39) at
q. With some trials, the solution of Fourier coefficients
with β0 = 3.6 is

A0 = [0.7881 −1.3956 0.2686 0.1121

−0.0260 0.0026 −0.0008 −0.0001

0.0001 0, 1.9884 −0.1693 0.0472

−0.0175 −0.0042 0.0021 −0.0003 0 0]

when n = 9. In the procedure to find A0, the initial
guess of �q can be obtained from the Jacobian of lin-
ear algebraic equations given in Sect. 2.2. Themodified
IHB method can be used to obtain the bifurcation dia-
gram of Mathieu–Duffing equation.

When β increases from β0 = 3.6, solutions of
Mathieu–Duffing equation are stable period-1 solu-
tions, as shown in Fig. 3. The second entry of A1 =
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Fig. 3 Period-1 solution of Mathieu–Duffing equation with
β = 4.1906

Fig. 4 Period-2 solution of Mathieu–Duffing equation with
β = 4.8390

Fig. 5 Period-4 solution of Mathieu–Duffing equation with
β = 5.2508

[
a(1)
0 a(1)

1 · · · a(1)
n b(1)

1 · · · b(1)
n

]T
, which is the

vector of Fourier coefficients of a period-1 solution,
is used as the controlled amplitude, i.e., nc = 1. The
controlled amplitude is increased with a step size of
0.0005, until the period-1 solution is unstable at the crit-
ical point β1 = 4.825. Let the solution of Eq. (39) at β1

be A1 =
[
a(1)∗
0 a(1)∗

1 · · · a(1)∗
n b(1)∗

1 · · · b(1)∗
n

]T
.

The vector of Fourier coefficients of a period-2 solu-

tion is A2 =
[
a(2)
0 a(2)

1 · · · a(2)
2n b(2)

1 · · · b(2)
2n

]T
.

Fig. 6 Bifurcation diagram of Mathieu–Duffing equation

The initial guess of A2 is given by a
(2)
0 = a(1)∗

0 , a(2)
2 j =

a(1)∗
j , b(2)

2 j = b(1)∗
j , where j = 1, . . . , n, and a(2)

2 j−1 =
0, b(2)

2 j−1 = 0, where j = 1, . . . , n. The controlled

amplitude for bifurcation solutions is a(2)
1 , and it is

increased with a step size of 0.0001, until the period-
2 solution is unstable at the critical point β2 = 5.194.
With the same procedure, the critical point correspond-
ing to the unstable period-4 solution is β4 = 5.253.
Period-2 and period-4 solutions are shown in Figs. 4
and 5, respectively. The bifurcation diagram of u(τ =
0) versus β is shown in Fig. 6.

4 Conclusion

The modified IHB method includes approximation of
Fourier coefficients of the residual of nonlinear differ-
ential equations by the FFT, which is carried out in
Eqs. (17)–(20), and use of Broyden’s method with the
Jacobian of the associated linear algebraic equations
as an initial guess of that of the nonlinear algebraic
equations. It is first illustrated by solving Duffing’s
equation; solutions from the modified IHB method
and Runge–Kutta method are in excellent agreement.
The calculation time for the modified IHB method is
almost two orders of magnitude smaller than that for
the original IHBmethod. By showing that the Jacobian
of the path function in Broyden’s method is invari-
ant, an amplitude–frequency response curve of Duff-
ing’s equation is calculated using the arc-lengthmethod
with the path-following technique. The modified IHB
method can also be used to solve for subharmonic
responses, which is illustrated by studying bifurcations
of Mathieu–Duffing equation. The most cumbersome
part of the original IHB method is to make harmonic
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balance of nonlinear differential equations and obtain
the Jacobian of the corresponding nonlinear algebraic
equations. The modified IHB method provides an easy
procedure to make harmonic balance and approximate
the Jacobian, which gives the same accuracy as that
of the original IHB method, and one does not need to
devote much effort to deriving an algorithm of a spe-
cific problem.
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