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Abstract In this article, we propose and analyze a
mathematical model of a prey–predator system where
infection spreads among the predators and predator is
subject to harvesting. Dynamical behavior of the sys-
tem is studied, and the consequences of harvesting on
the long-run equilibrium fish biomass are evaluated.
Optimal control theory has been used to determine
the optimal harvesting policy for fish stocks to max-
imize the discounted utility of harvesting over time,
employing a constant time discount rate. Some simu-
lation works are given to verify our analytic results.
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1 Introduction

Mathematical models have recently been heavily used
to describe different ecological systems and their
dynamical behaviors. Interaction between prey and
their predators is one of the ecological problems in
which not only theoretical ecologists but also applied
mathematicians have shown their interests. Also rapid
development of computing techniques enables the sim-
ulation works and model predictions in a quite better
way than the earlier stages. Ecological models are char-
acterized by interactions among all the species present
in the environment. In ecology, predation is one of the
most important interactions among different popula-
tion species. Throughout their works, the researchers
like Das et al. [6], Gao et al. [7], Jana et al. [16], Jana
and Kar [15,17], Kar [18], Kuang and Takeuchi [24],
Song and Guo [29], Venturino [30], Xu and Ma [36],
Yongzhen et al. [37], Zhang et al. [38], and references
therein have obtained many new and interesting results
on the dynamics of prey–predator systems.

Mathematical modeling is a good and important tool
for the study of epidemiological problems. Classical
predator–prey models formed with the help of the sys-
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tem of differential equations take more complex forms
if either one or both of the two species are subject to
infections. There are a number of good works consid-
ering infection within the prey species in predator–prey
interactions. These types of prey–predator models with
infection in prey species can be observed in agricul-
tural pest control, phytoplankton–zooplankton system
where phytoplankton are attacked by some viral infec-
tions, etc. The works of Venturino [31], Shi et al. [28],
Jana and Kar [15,17], and others describe interactions
of a prey– predator system where prey populations are
affected by some diseases. In pest management policy,
some researchers like Bhattacharyya and Bhattacharya
[1], Ghosh et al. [8],Wang and Song [34], andKar et al.
[23] have also used mathematical models to control the
pest by infection and predators. But the infection may
also spread among the predator species with or with-
out affecting prey populations. Hseih and Hsiao [14]
considered a prey–predator model where both the pop-
ulations are attacked by same parasite of disease. But
in reality, it may not be possible that the same parasite
can spread the disease between the prey and their preda-
tor. For example, if we consider the fish population as a
predator population and their live food like earthworms,
sludge worms, water fleas (Daphnia and cyclops),
bloodworms, feeder fish, infusoria (protozoa and dif-
ferent microorganisms) as a prey population, then it
can be easily claimed that the parasites which are the
cause for the infection of the fish population (e.g.,Hen-
neguya salminicola causes disease for salmon fish and
Aeromonas salmonicida causes the disease in marine
and freshwater fish) do not infect those live food of fish.
Thus, it is an explicit example of prey–predator ecolog-
ical system where predators are affected by infection.
Some authors (e.g., [11–13,32,33]) have already inves-
tigated the dynamics of prey–predator system with
predator infections although they avoid the dynamics
of the system subject to effect of harvesting of either
species or both the species. As here we intend to study
a live food-fish system with infection in the fish pop-
ulations, harvesting of fish population must be a com-
mon and important phenomenon. The main reason for
harvesting of fish populations is that both of marine
and fresh water fishes are very popular food to human
beings. The subject of harvesting in predator–prey sys-
tems has recently combined area of research involving
ecologists, economists, mathematicians, and sociolo-
gists. The effect of harvesting at a constant rate on
the predator–prey models has been investigated suc-

cessfully by some researchers like Dai and Tang [5],
Myerscough et al. [25], Xiao and Ruan [35], and refer-
ences therein. Optimal steady-state harvesting on mul-
tispecies fishery system has been investigated by Clark
[3], Hannesson [10], and Ragozin and Brown [27]. Kar
and Chaudhuri [19,20] describe a mathematical model
for non-selective harvesting in a multispecies fishery
system. In his book, Clark [4] describes the optimal
harvesting policies corresponding to different ecologi-
cal systems. In our presentwork,weconsider a live food
(prey) and fish (predator) model and here we use the
word ‘harvesting’ as fishing. Here, we consider only
the selective harvesting of predator species which is
generally done by common fishermen.

Now to describe the system mathematically, let the
biomass of prey species be x(t) and divide the preda-
tor into two classes, namely the susceptible preda-
tor (to whom the infection may be spread) y(t) and
the infected predator z(t). The prey population grows
logistically with intrinsic growth rate r and environ-
mental carrying capacity K . Let the susceptible preda-
tor population consumes prey population with Holling
type I functional response (i.e., the predator do not need
any handling time or saturation time to catch prey) at
a rate a and the conversion rate of the biomass from
the prey populations to the healthy predator is taken as
m. The susceptible predator becomes infected due to
their direct contact with the infected predator, and α

is taken as the product of contact rate with the disease
transmission. Also let the death rate of the susceptible
predator and infected predator be, respectively, d and δ.
The predator species is harvested with harvesting effort
E(t) (E(t) is taken time dependent only when the opti-
mal control policy is discussed). Further, we take q1
and q2 as the catchability coefficients for y(t) and z(t),
respectively. An important assumption for the present
model is that the infected predator z(t) has no catching
power to the prey populations.

With the help of the above assumptions,we construct
our proposed model as follows:
dx

dt
= r x

(
1 − x

K

)
− axy,

dy

dt
= maxy − dy − αyz − q1Ey,

dz

dt
= αyz − δz − q2Ez, (1)

subject to the initial conditions

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. (2)
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The rest of the paper is organized as follows: In the
next section, we describe the dynamical behavior of
the above formulated system. In Sect. 3, we modify
ourmodel system (1), and its dynamical behavior is dis-
cussed in Sect. 4. In Sect. 5, we formulate the optimal
control problem by choosing effort as the control vari-
able, and then, we discuss the numerical procedure to
solve the optimal control problem in Sect. 6. In the last
section we present some of the key findings obtained
throughout the analysis of this work.

2 Analysis of the model system

In this section, we now describe the dynamical behav-
ior of the model system (1). It can be shown that all
the solutions of system (1) have nonnegative solutions
andmathematical details regardingnonnegativity of the
solutions are given in “Appendix 1.” Next, we find all
the possible equilibria of the system and discuss their
stability criteria.

2.1 Equilibria

The possible equilibria of the system (1) are:

(i) The trivial or vanishing equilibrium E01(0, 0, 0),
(ii) The predator-free equilibrium EK1(K , 0, 0),
(iii) The infection-free equilibrium Exy(x1, y1, 0)

where x1 = d1
am , y1 = r(aKm−d1)

a2Km
, d1 = d+q1E

and this equilibrium is feasible if K > d1/(ma),
and

(iv) The interior equilibrium E∗ (x∗, y∗, z∗),
where x∗ = K

αr (αr − aδ1) , y∗ = δ1
α

and z∗ =
max∗−d1

α
with δ1 = δ + q2E , which is feasible pro-

vided αr > aδ1 and K >
(

d1
ma + aδ1

αr

)
= K1 (say).

In the following theorem, we give the local stability
criteria of the system around different equilibria, and
their proofs are given in “Appendix 2.”

Theorem 1 The system (1) is

(i) always unstable around the trivial equilibrium
E01(0, 0, 0),

(ii) locally asymptotically stable around the predator-
free equilibrium EK1 if K < d1/(am).

(iii) locally asymptotically stable around the infected
predator-free equilibrium Exy if K < K2 where

K2 = d1
am /

(
1 − aδ1

αr

)
and

(iv) the interior equilibrium is always locally asymp-
totically stable if it is feasible.

Here, we see that for the model system (1), the para-
meter K (environmental carrying capacity) plays a cru-
cial role on the dynamical behavior of the system. Fea-
sibility of the infection-free equilibrium and interior
equilibrium as well their stability including predator-
free equilibrium depends explicitly on K . It is evident
that if K < d1/(am), then obviously K < K2. Thus,
for K ∈ (d1/(am), K2), the equilibrium Exy is fea-
sible and locally asymptotically stable. With similar
arguments, we can describe the feasibility and stability
of other equilibria. Therefore, we have the following
range of K regarding the feasibility and stability of the
system (1) assuming that K1 > K2.

Range Feasible
equilibrium (s)

LAS equilibrium
(s)

K < d1/(am) E01, EK1 EK1
d1/(am) < K < K2 E01, EK1, Exy Exy
K2 < K < K1 E01, EK1, Exy –
K > K1 E01, EK1, Exy, E∗ E∗

Next, suppose that K1 < K2, in this case, we have
the following range for the feasibility and stability of
the different equilibria:

Range Feasible
equilibrium (s)

LAS equilibrium
(s)

K < d1/(am) E01, EK1 EK1
d1/(am) < K < K1 E01, EK1, Exy Exy
K1 < K < K2 E01, EK1, Exy , E∗ E∗, Exy
K > K2 E01, EK1, Exy , E∗ E∗

The main interesting observations from the above
two tables are that when K2 < K1, then for K ∈
(K2, K1), there is no stable equilibrium, whereas if
K1 < K2, then for K ∈ (K1, K2), there occurs bistabil-
ity of the equilibria E∗ and Exy . Further at the boundary
of each range, bifurcation occurs and it is studied in in
the next subsection.

2.2 Bifurcation analysis

It is observed that for m = d1/(ax∗), the interior equi-
librium E∗ reduces to the infection-free equilibrium
Exy and atm = d1/(aK ) the infection-free equilibrium
Exy reduces to the predator-free equilibrium EK1. Also
it is shown that the equilibrium EK1 is locally asymp-
totically stable for m < d1/(aK ) and Exy is feasible
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for m > d1/(aK ). Therefore, at m = d1/(aK ), the
system (1) undergoes a transcritical bifurcation from
Exy to EK1 . By similar argument, we may conclude
that, around the equilibrium Exy , the system (1) under-
goes a transcritical bifurcation at m = d1/(ax∗) from
the equilibrium E∗. Here, we omit the details of mathe-
matical proof which is available in Guckenheimer and
Holmes [9] and Kar and Mondal [22]. Therefore, we
can treat the infection transmission ratem as one of the
important parameters as it deals with the stability and
bifurcation of different equilibria of system (1).

3 Model with predation power of infected predator

In model system (1), we consider that only the suscep-
tible predators have predation power on the basis of
the assumptions that either infected predators survive
for very small period of time or infection makes them
so weak that they are unable to predate. In this sec-
tion, we assume that, instead of their weakness due to
the infection, infected predators have some predation
power. But, realistically the predation rate of infected
predator should be fewer when compared to that of sus-
ceptible predator. The infected predator should need
some searching period and handling time in the pre-
dation period. Therefore, the functional response for
the infected predator is taken in Holling type II form
to consider the handling time and searching period.
Quite similar assumptions are made by some other
researchers like Yongzhen et al. [37] and references
therein. Therefore, we modify model (1) by consider-
ing aHolling type II functional response for the infected
predator. We consider b and c, respectively, as the cap-
turing rate and the half-saturation constant due to the
handling period and n be the conversion factor con-
tributed to the growth of the infected predator from pre-
dation. Therefore, the system (1) ismodified as follows:

dx

dt
= r x

(
1 − x

K

)
− axy − bxz

c + x
,

dy

dt
= maxy − dy − αyz − q1Ey,

dz

dt
= nbxz

c + x
+ αyz − δz − q2Ez, (3)

subject to the initial conditions

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. (4)

4 Dynamical behavior of the model (3)

In this section, we study the system in (3) with constant
harvesting effort. Like system (1), the system (3) with
initial conditions (4) has all its solution nonnegative
(see “Appendix 1” for mathematical details).

4.1 Equilibria and their stability

The system (3) has following five possible equilibria:

(i) The trivial equilibrium E0(0, 0, 0).
(ii) The boundary equilibrium E1(K , 0, 0).
(iii) The infection-free equilibrium E2(x2, y2, 0),where

x2 = (d1)/(ma) and y2 = r(1 − x2/K )/a with
d1 = d + q1E . This equilibrium is feasible if
K > d1/(am).

(iv) Thehealthypredator-free equilibrium E3(x3, 0, z3)
where z3 = r(c + x3)(1 − x3/K )/b and x3 =
cδ1/(nb − δ1) with δ1 = δ + q2E and this equilib-
rium is feasible if nb > δ1 and K > x3.

(v) Lastly, the interior equilibrium E∗(x∗, y∗, z∗),

where x∗ is the positive root of the following equation

rαx2 + (abKm + crα + aK δ1 − abKn − Krα) x

− K (bd1 + crα − acδ1) = 0,

y∗ = −bnx∗+cδ1+x∗δ1
(c+x∗)α and z∗ = −d1+amx∗

α
. This inte-

rior equilibrium E∗ will be unique and feasible if

a < bd1+crα
cδ1

and x∗ ∈
(

d1
am , cδ1

bn−δ1

)
, i.e., x∗ ∈ (x2, x3)

provided bn > δ1 (i.e., if the reproduction rate of the
infected predator exceeds its mortality). However, if
bn < δ1 (i.e., if the growth of the infected predator from
the prey populations is less than their total death), then
this interior equilibrium E∗ will be feasible if x∗ > x2.
Now let us denote the equilibrium biomass of prey x∗
as ξ . So with more convenient way, it may be described
that E∗ will be both unique and feasible if a < bd1+crα

cδ1
(uniqueness condition) and x2 < ξ < x3 (existence
condition) provided bn > δ1. If bn < δ1, then E3

is infeasible but x3 would be negative. So E∗ is pos-
itive if ξ > ξ1 where ξ1 = max{x2,−x3}. Further at
bn = δ1, E∗ would be feasible if ξ > x2, and in this
case, let us denote x2 as ξ1. Therefore, if bn ≤ δ1,
then E∗ will be both unique and feasible if ξ > ξ1 and
a < bd1+crα

cδ1
.

Next, we discuss local asymptotic stability of the
system (3) around different equilibria. As expected,
around the trivial equilibrium E0 all the species go to
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extinction and all the solutions repel from that point.
Therefore, this trivial equilibrium E0 is unstable. So
we are now interested about the rest of the equilibria.
In the next theorem, we give the stability criteria of the
equilibrium E1(K , 0, 0).

Theorem 2 The predator-free equilibrium E1 of the
system (3) is locally asymptotically stable if K <

min{x2, x3}.
Proof The characteristic equation of the system around
the equilibrium E1 is given by:

(λ + r) (λ + d − aKm + Eq1)

(
λ

− bKn

c + K
+ δ + Eq2

)
= 0.

It is obvious that if K < x2(= d1/(am)) and K <

x3 (= cδ1/{nb − δ1}), then all the eigenvalues at E1 of
(3) are negative and the system will be locally asymp-
totically stable. Hence the theorem.

Note If K < min{x2, x3}, then both the E2 and E3 do
not exist. Hence, the local asymptotic stability of E1

implies the nonexistence E2 and E3.

Theorem 3 The equilibrium E2 is locally asymptoti-
cally stable if E3 does not exist.

Proof Two eigenvalues of the system (3) at the equi-
librium E2 are imaginary with real part − (r x2)/(2K ),
and the third eigenvalue which is of course real is neg-
ative if aKm < d1 (existence condition of E2) and
nb < δ1 (nonexistence condition of E3).

Theorem 4 The susceptible predator-free equilibrium
E3 is locally asymptotically stable if K <

c(bn+δ1)
bn−δ1

and
x3 < (d1 + αz3) /(am).

Proof The characteristic equation of the system at E3

is given by:

(λ + d − amx3 + αz3 + Eq1)

(
λ2

+
(
r

K
− bz3

(c + x3)2

)
x3λ + b2cnx3z3

(c + x3)2

)
= 0.

So all the eigenvalues of the system will be either neg-
ative or having negative real part if r

K > bz3
(c+x3)2

, i.e., if

K <
c(bn+δ1)
bn−δ1

and x3 < (d1 + αz3) /(am). Hence the
theorem.

Next, we describe the dynamical behavior of the system
around its interior equilibrium E∗. Now we state one
sufficient condition for which the system (3) would be
locally asymptotically stable around E∗ (the details are
given in “Appendix 3”). Actually if bn > δ1, then E∗ is
feasible for ξ ∈ (x2, x3), whereas if bn ≤ δ1, then E∗
is feasible for ξ ∈ (ξ1,∞). In the following theorem,
we state the local asymptotic stability condition of the
system (3) around E∗ for bn > δ1.

Theorem 5 Suppose that K <
rα(a+ξ)2

b(amξ−d1)
hold. Then,

(i) if bothofφ (x2) [or, φ(ξ1)]andφ (x3) [or, φ(∞)]
are positive and there is no η ∈ (x2, x3) [or, η ∈
(ξ1,∞)] such that φ(η) ≤ 0, then the system is
always locally asymptotically stable around E∗.

(ii) suppose that φ (x2) .φ (x3) < 0 [or, φ(ξ1).φ(∞)

< 0]. Then, if ξ belongs to that(those) subinter-
val(s) of (x2, x3) [or, (ξ1,∞)]where the function
φ is positive, then the system (3) would be locally
asymptotically stable around the interior equilib-
rium and the point(s) where the function φ van-
ishes are the Hopf bifurcation point(s) of ξ , pro-
vided there is no multiple zeros of φ(x) within the
interval (x2, x3) [or, (ξ1,∞)].

(iii) if bothofφ (x2) [or, φ (ξ1)]andφ (x3) [or, φ (∞)]
are negative, then the system is always unstable
at the interior equilibrium E∗.

In the next theorem, we describe some interesting fea-
tures of some particular parametric values around the
equilibria E1, E2, and E3.

Theorem 6 The system (3) undergoes a transcritical
bifurcation

(i) from E1 to E2 at K = d1/(am) provided nb < δ1
and

(ii) from E2 to E3 at bn = δ1 provided E2 is fea-
sible and �(K ) > 0 where �(K ) = bd1n +
αnrc2

(
1 − cδ1

K (bn−δ1)

)
− δ1 (d1 + amc).

Proof Let bn < δ1 holds. Then, the parametric con-
dition K < d1/(am) is the local asymptotic stability
condition of the system (3) around the predator-free
equilibrium E1 but in this case, E2 does not exist.
On the other hand for K > d1/(am), the equilib-
rium E1 is unstable, but the equilibrium E2 is locally
asymptotically stable. Hence, a change in feasibility
occurs at K = d1/(am). This type of phenomenon is
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known as the transcritical bifurcation (for mathemat-
ical details, see Kar and Jana [21], Kar and Mondal
[22], and Gukenheimer and Holmes [9]). To prove the
second part, let us assume that �(K ) > 0 holds. Now
for nb < δ1, E2 is locally asymptotically stable and
the infection-free equilibrium E3 is unstable. Again
for nb > δ1, E2 is unstable and E3 is locally asymp-
totically stable. Therefore, there will occur a change
in stability from the equilibrium E2 to E3 at bn = δ1
through the transcritical bifurcation.

It is observed that like system (1), the environmental
carrying capacity K has a great influence on system. It
is also interesting to observe that there exists one extra
equilibrium for the system (3) where infected preda-
tors remain in the system but the susceptible preda-
tor goes to extinction and these phenomenon is pos-
sible if the infected predators are able to capture the
prey populations in a sufficient amount and the carry-
ing capacity of the prey is greater than some thresh-
old. However, the local stability of that equilibrium E3

is possible if K ∈
(

cδ1
bn−δ1

,
c(bn+δ1)
bn−δ1

)
and the equilib-

rium biomass of the prey population is less than some
threshold. Actually in physical sense, local stability of
E3 implies the sufficient recruitment of infected preda-
tors and large death rates of the susceptible predators.
Obviously, if E3 becomes locally asymptotically sta-
ble, then E2 never be stable, and this phenomenon
is observed here. But for economic perspective, this
situation is never beneficial as the infected fish has
negligible selling price and we discuss it in the latter
section.

On the contrary, if E2 is locally asymptotically
stable, then the infected predator goes to extinction.
Therefore, as expected, it is observed that when E2 is
locally asymptotically stable, E3 would be infeasible.
Similarly, at the equilibrium E1, both the classes of
the predator populations go to extinction. Therefore,
local asymptotic stability of E1 imply higher death
of predator classes. In these situations, neither classes
of the predator populations can exist and we theoret-
ically proved that if E1 is locally asymptotically sta-
ble, then not only E2 and E3 but also E∗ does not
exist.

Lastly, the unique interior equilibrium E∗ may be
either locally asymptotically stable or unstable, or it
may be stable for some parametric space and unstable
at another parametric space. In the later section, we
verify our theoretical observations numerically.

4.2 Comparison between two models

For obvious reason, we pay more attention to study the
behavior around the interior equilibrium of the system.
In system (1), we see that the equilibrium biomass of
infected predator (z∗) depends on the equilibrium bio-
mass of prey (x∗) although the infected predator has no
direct relation with the prey. This phenomenon occurs
since here we consider both the disease transmission
coefficient and the functional response for predation
rate by healthy predator as linear type. Furthermore,
if K > K1 (i.e., if coexisting equilibrium E∗ is fea-
sible), then equilibrium biomass of healthy predator
y∗ always remains constant, and more importantly, it
is independent of predation rate although equilibrium
biomass of prey x∗ is affected by predation rate (a).
The biomass of healthy predator depends on the infec-
tion rate as well as death rate of infected predator, and
therefore, we may conclude that the infection rate has
more effect than the predation rate of the susceptible
predator. But for model (3), we see that at interior equi-
librium, although the equilibrium biomass of infected
predator z∗ does not directly depend on equilibrium
biomass of healthy predator y∗, but that of susceptible
predator depends on both the infection transmission
and predation rate. Therefore, for model (3), both of
the predation and infection have great effects on the
equilibrium biomass of healthy predator.

4.3 Numerical simulation

Here, we check the validity of our theoretical explana-
tions by numerical simulations. First, we give simula-
tion to the model system (1). For this purpose, we take
the parameters as r = 0.5, K = 10, a = 0.5, m =
0.6, d = 0.4, α = 1.3, q1 = 1.5, E = 0.4, δ =
0.2, q2 = 0.4 in appropriate units. For this set of para-
meters, we see that the system (1) is locally asymp-
totically stable around the equilibria E∗ and Exy (see
Fig. 1).

Next, we give some numerical results to support
our theoretical works of the model system (3). Let
us take the following parameter set P1 = {r, K , a,

b, c, m, d, α, n, δ} = {2.1, 100, 0.91, 0.08, 0.05,
0.95, 0.01, 0.72, 0.95, 0.1, 1}. It should be noted that
for the parameter set P1, we always have bn < δ1 for all
values of q1 and q2. Therefore, the interior equilibrium
will be feasible for ξ > x2. We assume that Ĕ = q1E
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Fig. 1 Bistability of the system (1) around the equilibria E∗
and Exy

0 10 20 30 40 50
0

50

100

x

Time

0 10 20 30 40 50
−20

0

20

y

Time

0 10 20 30 40 50
0

100

200

z

Time

Fig. 2 Solution curves for the parameter set P1 with Ĕ = Ẽ = 0

is the per unit harvesting rate of healthy predator and
Ẽ = q2E is the per unit harvesting rate for the infected
predator. For the parameter set P1 and in the absence of
harvesting, i.e., for Ĕ = Ẽ = 0, the total number of har-
vesting predator populations is zero and the systemwill
be locally asymptotically stable around E3, which is
presented in following Fig. 2. Now if predators are sub-
ject to harvesting, using the parameter set P1 alongwith
Ĕ = Ẽ = 1.5, it is shown that the interior equilibrium
is feasible but unstable (see Fig. 3). But further incre-
ment of healthy predator harvesting effort makes E∗
locally asymptotically stable (see Fig. 4 with Ĕ = 2.5
and Ẽ = 1.5). Moreover, it is also observed that if we
increase the harvesting rate Ẽ of the infected predator,
from 1.5 to 2.5, then the infected predators go to extinc-
tion due to their high death rate and the systembecomes
locally asymptotically stable around E2 (see Fig. 5).
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Fig. 3 Solution curves for the parameter set P1 with Ĕ =
Ẽ = 1.5
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Fig. 4 Solution curves for the parameter set P1 with Ĕ =
2.5, Ẽ = 1.5

Thus, it is observed that increasing total harvesting
of predators in a certain level can transform the stable
equilibrium E3 to the stable equilibrium E∗. However,
if the total harvest of the infected predator increases,
then infected predator goes to extinction.

In Fig. 6, we show the graph of φ(ξ) versus ξ for the
parameter set taken to draw Fig. 3. Obviously, the inte-
rior equilibrium E∗ is feasible if ξ > 2.9034(= x2).
We see that if ξ ∈ (2.9034, 5.4816), then the system
is unstable around E∗, for ξ > 5.4816, the system is
locally asymptotically stable around E∗, and at ξ =
5.4816, the system (3) undergoes a Hopf bifurcation.

Now let us take another parameter set P2 =
{r, K , a, b, c, m, d, α, n, δ} = {3.1, 100, 0.2,
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Fig. 5 Solution curves for the parameter set P1 with Ĕ =
Ẽ = 2.5
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Fig. 6 Variation of φ(ξ) with respect to ξ

0.08, 0.05, 0.95, 0.01, 0.01, 0.9, 0.1}. The parame-
ter set P2 with Ĕ = Ẽ = 0 gives the unstable inte-
rior equilibrium (see Fig. 7). Thus, in the absence of
harvesting, the system may be unstable around the
interior equilibrium point. Next in Fig. 8, it is shown
that the interior equilibrium is asymptotically stable for
the parameter set P2 along with the harvesting efforts
Ĕ = 2 and Ẽ = 0.1. Further, in Fig. 9, it is shown that
if harvesting effort for the infected predator Ẽ increases
from 0.1 to 0.25, then the system will be infection free
and it is locally asymptotically stable there.

Now we would like to describe what would hap-
pen if bn > δ1. In this case, the interior equilib-
rium E∗ of the system (3) exists if ξ ∈ (x2, x3(=
cδ1/(δ1−bn))). Again, ifwe take another parameter set

0 1000 2000 3000 4000 5000
0

50

100

x

Time

0 1000 2000 3000 4000 5000
0

50

100

y

Time

0 1000 2000 3000 4000 5000
0

50

z

Time

Fig. 7 Interior equilibrium is unstable for the parameter set P2
with Ĕ = Ẽ = 0
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Fig. 8 Interior equilibrium is asymptotically stable for the para-
meter set P2 with Ĕ = 2, Ẽ = 0.1

P3 = {r, K , a, b, c, m, d, α, n, δ, E, q1, q2} =
{1.5, 100, 0.91, 3.2, 1.25, 0.95, 0.01, 0.72, 0.95,
0.1, 1, 2.5, 2.5}, a very simple calculations show that
the system has a unique interior equilibrium if ξ ∈
(2.90341, 7.38636). In Fig. 10, we show the curve of
φ(ξ) with respect to ξ . From the figure, it is observed
that for ξ ∈ (2.90341, 2.942), the system is locally
asymptotically stable around E∗, whereas in the inter-
val ξ ∈ (2.942, 7.38636), the system (3) is unstable
and at ξ = 2.942, the system (3) undergoes a Hopf
bifurcation.

Figure 11 shows the equilibrium phase portrait of
the system (3) for different b [obviously for b = 0, it
represents system (1)].
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Fig. 9 Infection-free equilibrium is asymptotically stable for the
parameter set P2 with Ĕ = 2, Ẽ = 0.25
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Fig. 10 φ(ξ) versus ξ for the parameter set P3

Due to unavailability of real-world data, our numer-
ical simulation is based on some simulated values of
parameters. However, we choose our parameter set in
such a way that it can be compared with realistic sys-
tem. Moreover, as we study only the qualitative behav-
ior of the system, our simulationworkwill remain quite
same for real-world data.

5 The optimal control problem: effect of
harvesting

In commercial exploitation of renewable resources,
the main objective of the exploitation of renewable
resources is to determine the optimal trade-off between
the present and future harvests. Since here we consider
predator populations as the fish populations, the opti-
mal net profit is to be determined from the fishing. In
this section, we study the optimal harvesting policy by
considering the profit earned by harvesting, focusing
on quadratic costs and conservation of fish population.
Here, it is assumed that price is a function which is
inversely proportional to the available biomass of fish
(predator), i.e., the price function decreases when bio-
mass of fish increases (see [2]). Let c̆ be the constant
harvesting cost per unit effort, and p1 and p2 be, respec-
tively, the constant price per unit biomass of the suscep-
tible and infected predator. Thus, to maximize the total
discounted net revenues from the fishery, the optimal
control problem can be formulated as:

J (E) =
t1∫

t0

e−εt [ (p1 − v1q1Ey) q1Ey

+ (p2 − v2q2Ez) q2Ez − c̆E
]
dt, (5)

Fig. 11 Phase portrait of
the system by varying the
parameter b
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subject to the system of differential Eqs. (3) and the
initial conditions (4). v1 and v2 are economic constants,
and ε is the instantaneous discount rate.

Now if we look at the socioeconomic context, we
observe that the infected predator has generally less
demand and are sold in reduced price. In fact, it would
not be any wrong if we assume that the selling price
for infected predator p2 = 0. So we modify the total
discounted net revenues from (5) as follows:

J (E) =
t1∫

t0

e−εt [ (p1 − v1q1Ey) q1Ey

− v2q2Ezq2Ez − c̆E
]
dt, (6)

subject to the system of differential equations (3) with
the initial conditions (4).

Here, the control E is bounded in 0 ≤ E ≤ Emax,
and our object is to find an optimal control Eo such that

J (Eo) = max
E∈U J (E)

where U is the control set defined by

U = {E : E is measurable and 0

≤ E ≤ Emax, for all t}.
Here, the convexity of the objective functional with
respect to the control variable E along with the com-
pactness of the range values of the state variables can
be combined to give the existence of the optimal con-
trol Eo. Now the optimal control can be found by using
Pontryagin’s maximum principle ([26]). To optimize
the objective functional J (E), we construct the Hamil-
tonian H of the system as follows:

H = (p1 − v1q1Ey) q1Ey − v2q
2
2 E

2z2

− c̆E + λ1

(
r x

(
1 − x

K

)
− axy − bxz

c + x

)

+ λ2 (maxy − dy − αyz − q1Ey)

+ λ3

(
nbxz

c + x
+ αyz − δz − q2Ez

)
.

Here, the variables λ1, λ2, and λ3 are adjoint variables,
and the transversality conditions are:

λi (t1) = 0, i = 1, 2, 3 (7)

First, we use the optimality condition ∂H/∂E = 0 to
obtain the optimal effort which is as follows:

Eε = p1q1y − c̆ − q1λ2y − q2λ3z

2
(
v1q21 y

2 + v2q22 z
2
) .

The adjoint equations are

dλ1
dt

= ελ1 − ∂H

∂x

=
(
ay + bcz

(c + x)2
− r

(
1 − 2x

K

)
+ ε

)
λ1

−mayλ2 − bcnz

(c + x)2
λ3,

dλ2
dt

= ελ2 − ∂H

∂y

= 2v1q
2
1 E

2y − p1q1E + xaλ1

− (max−d − ε − αz − q1E) λ2 − αzλ3,
dλ3
dt

= ελ3 − ∂H

∂z

= 2v2q
2
2 E

2z +
(

bx

c + x

)
λ1 + αyλ2

−
(

nbx

c + x
+ αy − δ − q2E − ε

)
λ3. (8)

Therefore, we have the following theorem regarding
the optimal value of the harvesting effort

Theorem 7 There exists anoptimal control Eε (explicit
value of Eε has already presented) corresponding to
optimal solutions for the state variables such as xε, yε
and zε which optimize the objective functional J over
the region U. Moreover, there exist adjoint variables
λ1, λ2, and λ3 which satisfy the first-order differential
equations given in (8)with the transversality conditions
given in (7), where at the optimal harvesting level, the
values of the state variables x, y and z are, respec-
tively, xε, yε and zε .

6 Numerical simulation to the optimal control
problem

In this section, we numerically illustrate the solutions
obtained for optimal control problem. First, we use
fourth-order Runge–Kutta forward iterative method to
solve the state variables of the Eq. (3) with initial con-
ditions (4), and then, we solve the Eq. (8) for the adjoint
variables by backward fourth-order Runge–Kutta itera-
tivemethodwith the final value conditions (7). For sim-
ulationworks,we have taken the time interval forwhich
the effort is applied optimally is 1000 units. Next, we
have taken the biomass of the prey, susceptible preda-
tor, and infected predator, respectively, as 50, 10, and
5 units and the bounds of the effort E as zero and 0.01,
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Fig. 12 Figures for the state variables with controls
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Fig. 13 Variation of the effort E with respect to time

i.e., 0 ≤ E ≤ 0.01. InFig. 12,we show the results of the
state variables when optimal harvesting is done. Next
in Fig. 13, we show the variation for the optimal effort
E , and it is observed that initially for about one-fourth
of total time duration, the effort E assumes it highest
possible value, then it reduces, and at last the final value
of that control E becomes zero. In the next Fig. 14, we
show the graphs for adjoint variables λ1, λ2, and λ3,
respectively, when the harvesting is done according to
optimal control policy. It is interesting to observe that
all the adjoint variables are monotone with respect to
time (λ1 and λ2 are monotonicaly decreasing, whereas
λ3 monotonicaly increasing) and final values are zero,
as expected.
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Fig. 14 Graph for the adjoint variables

7 Concluding remarks

In this paper, we have studied a prey–predator type eco-
logical model where the predator species are attacked
by some infection and subject to harvesting. In partic-
ular, our model can be considered as a live food-fish
model where the live food is taken as the prey and
the fish are predators with infection spreading among
fishes. In the literature review, it can be found that
there are several articles on theoretical studies on prey–
predator type ecological systems with predator infec-
tions, but it is very rare to observe harvesting phe-
nomenon there. Venturino [32] and Haque et al. [13]
describes some predator–prey models with infection
in predator populations, but they do not present any
effect on harvesting phenomenon. On the other hand,
Chakraborty et al. [2] studied a prey–predator type eco-
logical model with harvesting, but they do not consider
any infection in their model.

We describe the dynamical behavior of the system
for both the cases when the infected predators have no
predation power and have some predation power. For
the constant effort case, it is observed that the environ-
mental carrying capacity K has a huge impact on the
stability of the model system around different equilib-
ria. But the harvesting should be time dependent and
so we consider effort as the control variable to solve
the optimal control problem.

Fishing is required for the fishermen to improve their
economic conditions, but it may not be always eco-
nomically beneficial for them. The selling price of the
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infected fish obviously is negligible in comparisonwith
the price of healthy fish. Also the infected fish cannot
be separated from healthy fish in the time of catching
because there is no isolation between healthy fish and
infected fish. Therefore, huge amount of infected fish
not only damages the balance in ecology of water but
also directly affects the fishermen’s economic condi-
tion. According to our best knowledge, there are not so
many model-based works on optimal harvesting policy
for harvesting of fish populations by considering the
loss occurring due to the infected fish harvesting. In
this paper, we take a sound approach on considering
the economic loss of fishermen due to the unwilling
harvesting of infected predator species.

Weuse numeric analysis due to the complexity of the
analytical solutions.With the help of simulationworks,
we describe the whole system and its dynamical status.
It may also be noted that the simulations presented in
the present work should be considered from a qualita-
tive, rather than a quantitative point of view. However,
if the real-world data are available, then through our
analysis, we can describe these complex types of eco-
logical systems presented here.
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Appendix 1

We can write the system (3) with the initial conditions
given in (4) as follows:

x = x(0) exp

t∫

0

{r(1 − x/K )

−αy − bz/(c + x)}dt (≥ 0),

y = y(0) exp

t∫

0

{max−d − αx − q1E}dt (≥ 0),

z = z(0) exp

t∫

0

{nbx/(c + x) + αy − δ

− q2E}dt (≥ 0). (9)

So it can be concluded that all the solutions of the sys-
tem (3) with nonnegative initial conditions are non-

negative. Again the result obtained in (9) remains
unchanged for b = 0. Since for b = 0, the system
(3) reduces to (1), we may also conclude that the sys-
tem (1) with initial conditions (2) has all its solutions
nonnegative.

Appendix 2

The characteristic equation of the system (1) at the triv-
ial equilibrium E01 is given by

(λ − r) (λ + d + Eq1) (λ + δ + Eq2) = 0

with an eigenvalue r > 0. Hence, the system (1) is
unstable around E01.

Again, the characteristic equation of the system (1)
around EK1 is

(λ + r) (λ + d1 − aKm) (λ + δ + Eq2) = 0.

The above characteristic equation shows that if d1 >

aKm, i.e., if K < d1/(am), then all the roots of that
equation are negative. Therefore, wemay conclude that
for K < d1/(am), the system (1) is locally asymptot-
ically stable at EK1. Next, the characteristic equation
of the system (1) at Exy is(

λ2 + r x1

K
λ + a2mx1y1

)(
λ + δ1 − αy1

)
= 0.

From the above characteristic equation, it can be easily
concluded that if δ1 > αy1, then all the eigenvalues
have negative real parts and so the system becomes
locally asymptotically stable.

Lastly, the characteristic equation of the system (1)
at the interior equilibrium E∗(x∗, y∗, z∗) can bewritten
as

λ3 + r x∗
K

λ2 +
(
a2mx∗y∗ + y∗z∗α2

)
λ

+ r x∗y∗z∗α2

K
= 0.

Applying the Routh–Hurwitz criteria, we may say that
all the roots of the above characteristic equation have
negative real parts, and therefore, the system is locally
asymptotically stable around E∗.

Appendix 3

The characteristic equation of the system at the equi-
librium E∗(x∗, y∗, z∗) is
λ3 + b1λ

2 + b2λ + b3 = 0,
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where, b1 =
(
rξ
K − bξ z∗(ξ)

(c+ξ)2

)
, b2 =

(
a2mξ y∗(ξ)

+ b2cnξ z∗(ξ)

(c+ξ)3
+ y∗(ξ)z∗(ξ)α2

)
and b3

= αξ y∗(ξ)z∗(ξ)
(
abcK (m−n)+r(c+ξ)2α+bKd1

)
(K (c+ξ)2)

.

From the above expressions, it is clear that both b2
and b3 are always positive. Therefore, using Routh–
Hurwitz criteria, we may conclude that the system
will be locally asymptotically stable if b1 > 0 and

b1b2 − b3 > 0, i.e., if K <
rα(a+ξ)2

b(amξ−d1)
and the follow-

ing condition holds
⎡
⎣b2cnξ z∗(ξ)

(
r(c+ξ)2

K − bz∗(ξ)
)

(c + ξ)5

+ a2mξ y∗(ξ)

(
r

K
− bz∗(ξ)

(c + ξ)2

)

− ab(c(m − n) + mξ)y∗(ξ)z∗(ξ)α

(c + ξ)2

⎤
⎦ > 0.

That is, if φ(ξ) > 0 where

φ(ξ) = c0ξ
6 + c1ξ

5 + c2ξ
4 + c3ξ

3 + c4ξ
2 + c5ξ + c6,

c0 = a2mr (−bn + δ1)

K

c1 = a2m (bn(abKm + bKmα − 4crα) − (abKm + bKmα − 5crα)δ1)

Kα

c2 = 1

Kα
am

(
− bK (a + α)d1 (bn − δ1) + c

(
bn

(
2a2bKm + brα

+ a(bK (3m − n) − 6cr)α) + a(−3abKm + (bK (−4m + n)

+ 10cr)α)δ1

))

c3 = − 1

Kα
c

(
bd1

(
bn

(
2a2Km + aK (3m − n)α

+ rα) + aK (−3am + (−4m + n)α)δ1)

+ am(bn
(−a2bcKm − 2bcrα

+ a
(
b2Km + bcK (−3m + 2n)α + 4c2rα

)) + ac(3abKm

+ (6bKm − 3bKn − 10cr)α)δ1)

)

c4 = − 1

Kα
c

(
bd1

(
bn

(
a2cKm + 2crα

+ aK (−2bm + 3cmα − 2cnα)) − 3acK (am + 2mα − nα)δ1)

+ ac2m (bn(−br + a(bK (−m + n) + cr))α

+ a(abKm + (bK (4m − 3n) − 5cr)α)δ1)

)

c5 = 1

Kα

(
− b3cKnd21 + a2c4m(bK (−m + n)

+ cr)αδ1 + bc3d1(bn(aK (−m + n) − r)α

+ aK (am + 4mα − 3nα)δ1)

)
c6 + abc4(m − n)d1δ1.

Let for ξ = η we have b1b2 − b3 = 0, and thus at this
parametric condition, the system (3) has a pair of purely
imaginary eigenvalues. Thus, for ξ = η, the system

undergoes a bifurcation around its interior equilibrium
E∗, and our aim is to show that this type of bifurcation is
Hopf bifurcation. Obviously at ξ = η, b1b2 − b3 = 0.
Next to show that the transversality condition holds
good for this system, we assume that at ξ = η, the
eigenvalues are of the form λ1 and λ2,3 = μ± iω. Now
differentiating the characteristic equation with respect
to ξ , we get

3λ2
dλ

dξ
+ 2b1λ

dλ

dξ
+ b2

dλ

dξ
+ λ2

db1
dξ

+ λ
db2
dξ

+ db3
dξ

= 0. (10)

Since one value of λ is μ + iω, then substituting λ =
μ + iω in (B1) and separating real and imaginary part,
we have

L
dμ

dξ
− N

dω

dξ
= �1,

L
dμ

dξ
+ N

dω

dξ
= �2. (11)

Now solving (B2) for dμ/dξ , it is easy to show that

dμ

dξ
= L�1 + N�2

L2 + N 2 |ξ=η �= 0.

Hence, we have for ξ = η, μ = 0 and dμ

dξ
|ξ=η �= 0.

Thus, the transversality condition for the Hopf bifurca-
tion is satisfied.
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