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Abstract In this paper, the nonlinear dynamics of a
cantilevered pipe conveying fluid interacting with two
support walls on both sides is first investigated. The
main goal of this study is to explore how the dynam-
ics of a cantilevered pipe will perform in the presence
of two support walls along the pipe axis. The interact-
ing force is defined as impact in order to simulate the
impacting effects for a pipewith variousflowvelocities.
The impact force is modeled either by a cubic spring
or by a trilinear spring. The nonlinear equations of
motion are discretized via Galerkin’s method, and the
discretized equations are solved by using a fourth-order
Runge–Kuttamethod. Results show that the pipewould
periodically impact the walls when the flow velocity is
just beyond the critical value. When the flow velocity
is sufficiently higher, however, the pipe may behave
different patterns of contacting the walls, such as point
contact and segments contact. Periodic, quasi-periodic
motions, as well as chaotic oscillations are observed in
such a pipe system.
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1 Introduction

Pipes in heat exchangers havehistorically been themost
used components in nuclear power plants and chemical
process plants. They were also the most troublesome
elements in these fields. These industries utilize high
thermal efficiency shell and heat exchanger designs to
avoid failure. Performance requirements often require
the devices to be able to work under high coolant veloc-
ities and to be flexible tubes, which in turn would cause
pipes to experience excessive flow-induced vibrations.
A large number of studies have been made on flow-
induced vibrations due to the corresponding signifi-
cance [1–4]. Focuses of flow-induced vibrations were
put on these fields in understanding the mechanisms of
pipes conveying fluid.

Pipe/support system is often loose-fitting due to
manufacturing considerations that require their clear-
ances to facilitate pipe bundle assembly and to accom-
modate thermal expansion. The numbers and loca-
tions of supports are always chosen to control the
vibration’s stability. When the flow-induced vibration
exceeds the clearance in the supports, the pipe would
collide the inner side of the support devices. According
to the mutual theory of force, a similar effect would
be exerted on the tube. Since destruction may occur
during the vibrations, concentrations have been put on
tube/support systems in the past decades to study the
dynamical behaviors.

Indeed, extensive experimental researches havebeen
conducted to study the nonlinear responses of pipe/
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support systems. Weaver and Schneider [5] conducted
a wind-tunnel study to determine the effect of flat bar
supports on the cross-flow-induced responses of heat
exchanger U-tubes. Various support geometries were
discussed. It was found that the geometry of supports
can affect the dynamics of the tube due to variances in
the contact configurations. Chen et al. [6] conducted
three series of tests to evaluate the effects of tube
to support clearance on the tube’s dynamic charac-
teristics and instability phenomena for tube arrays in
cross-flow. Vivid phenomena have been obtained to
describe the interaction of the tube/support systems [7–
9]. Experimental tests on the dynamical behaviors of
pipe/support systems were also investigated by many
other researchers. The interested reader is referred to
Refs. [1–3].

On the other hand, numerical approaches, such as
finite element method, have been utilized to simulate
the nonlinear responses of the tube/support system.
Roger and Pick [10] adopted the finite element method
to simulate the vibration against the support plate of
a heat exchanger tube. Simulation results obtained a
good accuracy compared with the behavior of a can-
tilevered tube apparatus with two-dimensional sinu-
soidal excitation. Ghayesh et al. [11] have explored
the three-dimensional dynamics of a fluid-conveying
cantilevered pipe fitted with an additional spring and
an end-mass, both theoretically and experimentally.
Two separated researches were combined by them,
and the numerical solutions have shown good agree-
ment with experiment results qualitatively and quanti-
tatively. To understand the post-instability behavior of
a tube array in cross-flow, Wang et al. [12–14] devel-
oped an improved model with the consideration of the
nonlinearity associated with the mean axial extension
of the tube array. The numerical results show that,
when increasing flow velocity just beyond a critical
value, a post-Hopf limit-cycle motion occurs. By using
the proposed model, vibration amplitude can be pre-
dicted for amplitude of the limit-cycle motion. Sauve
and Teper [15] have developed a solution strategy to
solve the nonlinear equation of motion for nonlin-
ear impact problems of tube/support systems. Single-
span, two-span, and multi-span models are described
and compared. Impact force occurs at only several
points along the pipe while not anywhere throughout
the pipe. The solution strategy is developed implic-
itly which is unconditionally stable. One of the salient
features is that time step is variable, which ensures

that solution errors are minimized. Rao et al. [16]
considered friction and damping in their calculations
which would make the results more approximate to
practical. The model includes the effect of clearances
and friction at supports, mass, stiffness, structural
and fluid damping, and damping and mass associated
with the fluid squeeze film phenomenon at supports.
It predicts tube vibration for given excitation, tube
displacements, reactions, and wear rate at tube sup-
ports.

The aforementioned investigations have made great
experimental and numerical results that were useful
for further studies and practical engineering. How-
ever, these researches only concentrated on the prob-
lems of single or several point contacts between the
pipe and support. It means that, for a finite length
pipe/support system, the contact locations lie on several
points along the pipe axis. Hassan et al. [17] conducted
calculations of single-span tube/support andmulti-span
tube/support systems to study the dynamic behavior
due to point contact considering various contacting
geometries. Results have obtained a good agreement
to that made by Sauve and Teper which is the original
work related to point contact. Another study performed
by Hassan et al. [18] provided a means of represent-
ing tube/support contact as a combination of edge and
segmental contact. The contact segment was unknown
anddetermined artificially according to the researcher’s
interests. The selection of the location of the segment
could affect the performance of the tube/support sys-
tem.

In this paper, the nonlinear impact dynamics of a
pipe/support system is studied by considering a vertical
cantilevered pipe conveying fluid subjected to support
walls. The objective of this work is to explore various
interesting dynamics of the fluid-conveying pipe when
segments contacts rather than point impacts occur. It is
expected that the obtained results are helpful in con-
trolling the stability of vibro-impact systems in heat
exchanger devices. The impact force is described as
either a cubic spring or a smoothed trilinear spring force
distributed along the pipe axis. Thus, unlike previous
work, we assume that the contact may occur anywhere
along the pipe at any time compared to Ref. [15]. To the
author’s knowledge, this is the first study ever on such
a system. To verify the effectiveness of the proposed
model, results of the degenerated model are compared
with those predicted by Païdoussis and Semler [21], to
explore the effect of the distributed motion constraints.
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Fig. 1 Schematic of the
pipe/support contact
configurations
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2 Model development

A schematic representation of the system is shown in
Fig. 1a–d. The system consists of a tubular pipe of
length L , flexural rigidity EI, density ρp, mass per unit
length m, and coefficient of Kelvin–Voigt damping a,
conveying fluid of density ρf and mass per unit length
M , with flow velocity U . The support walls are mod-
eled as a cubic spring, which imposes the impact force
continuously on the pipe when part of the pipe has a
lateral displacement. The support walls are also mod-
eled as a smoothed trilinear spring, which allows a gap
between the pipe and walls. In this case, impact force
occurs when the lateral displacement exceeds the gap.

There are several classifications of tube motion for
this system. Thesemotionsmay be classified as impact,
sliding, or combined impact and sliding [19,20]. Fig-
ure 1a shows a point contact. Contact or impact force
occurs at the edge point of the tube tip. In the case of rel-
atively low flow velocities, the vibration or impact pat-
tern can be described by this configuration. Figure 1b–
d shows three possible contacts of line contact during
the pipe’s oscillation. Interesting dynamical phenom-
ena for pipes conveying fluid would occur based on
these different contact configurations.

Full derivations of the equation are presented, using
a modified version of Hamilton’s principle. In the
derivation of the equation, the following assumptions
are included: (1) The fluid is incompressible; (2) the
flow is of constant velocity and free from pulsation;

(3) the pipe behaves like a nonlinear Euler–Bernoulli
beam (the diameter is small compared to the length);
(4) the strain in the pipe is considered small; (5)
shear deformation is neglected; (6) the pipe center-
line is inextensible; (7) taking into account of support
walls, the impact forces are assumed to be imposed
on the centerline of the pipe. Based on these condi-
tions, the equation of motion of a cantilevered tube
conveying fluid was given by Païdoussis and Semler
[21], which was suitable for open system. The equa-
tion is modified here to take into account the con-
tact force term, which is due to the impact between
the pipe and support walls. The resultant equation of
motion in dimensionless form of the pipe is given as
follows:

αη̇′′′′ + η′′′′ + 2u
√

βη̇′

+ η′′ [u2 − γ (1 − ξ)
] + γ η′ + η̈

+ 2u
√

βη̇′η′2 + η′′η′2
[
u2 − 3

2
γ (1 − ξ)

]

− 1

2
γ η′3 + 3η′η′′η′′′ + η′′3

+ η′
∫ ξ

0

{
η̇′2 − 2u

√
βη′η̇′′

−η′η′′′ [u2 − γ (1 − ξ)
] + η′′η′′′′} dξ (1)

− η′′
∫ 1

ξ

∫ ξ

0

{
η̇′2 − 2u

√
βη′η̇′′

−η′η′′′ [u2 − γ (1 − ξ)
] + η′′η′′′′} dξdξ
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− η′′
∫ 1

ξ

(
−γ η′2 + 2u

√
βη′η̇′ + u2η′η′′ + η′′η′′′) dξ

+ f (η) = 0

In Eq. (1), η (ξ, τ ) is the lateral deflection of the
tube. α, β, γ , respectively, represent the coefficient of
Kelvin–Voigt damping, mass ratio of the fluid and sys-
tem, and gravity effect. u denotes the dimensionless
flow velocity of the internal fluid. The dot and prime on
the variables, respectively, denote the derivatives with
respect to time τ and the coordinate of the centerline
of the tube ξ . The three integrals are a description of
kinetic and potential energies, which are needed when
using Hamilton’s principle. The dimensionless vari-
ables are of the following form in transforming between
dimensional variables:

ξ = x

L
, η = w

L
, τ =

√
EI

m + M

t

L2 , u =
√

M

EI
LU,

α =
√

EI

m + M

a

L2 , β = M

m + M
, γ = m + M

EI
L3g

Compared to the equation used in [21], this equation
is an extension of point impact to line impact along
the pipe axis. f (η) in Eq. (1) is the impact force due
to impact of the tube and walls. Various mathematical
models may be used to represent properly the impact
forces. The first approximation used by Paidoussis et
al. [22,23] was to model the restraining forces by a
cubic spring. A more realistic representation was that
used by Paidoussis et al. involving a smoothed trilinear
spring model. Impact force is described as

f (η) = κcη
3 (2)

or

f (η) = κt

(
η − 1

2
(|η + δ| − |η − δ|)

)r

(3)

in which κc and κt are the nondimensional stiffness for
describing the impact force and δ is the nondimensional
gap between the two walls. In this paper, κc = 105

for cubic spring model and κt = 5.6 × 105, r = 3,
and δ = 0.044 for smoothed trilinear spring model are
chosen for calculations, which have been proved to be
in good accordance with experiment results according
to Paidoussis and Li [22].

3 Discretization

The infinite-dimensional model is discretized by the
Galerkin’s technique,with the cantileveredbeameigen-
functions ϕ j (ξ ). These eigenfunctions are used as a
suitable set of base functions with q j (τ ) being the cor-
responding generalized coordinates; thus:

η (ξ, τ ) =
N∑

j=1

ϕ j (ξ) q j (τ ), (4)

where N is the number of modes taken into calcula-
tions. Substituting Eq. (4) into Eq. (1), multiplying by
ϕi (ξ ), and integrating from 0 to 1 leads to

q̈i + ci j q̇ j + ki j q j + αi jklq j qkql + βi jklq j qkq̇l

+ γi jklq j q̇k q̇l + fi
(
q j , qk, ql

) = 0 (5)

where ci j , ki j , αi jkl , βi jkl , and γi jkl are coefficients
computed from the integrals of the eigenfunctions
ϕi (ξ ), analytically or numerically [24,25]. In this paper,
we have calculated these nonlinear terms’ coefficients
via matrix transformation method. All the nonlinear
terms in Eq. (5) may be written in the following form
⎡

⎣
N∑

j=1

L1
(
ϕ j

)
T1

(
q j

)
⎤

⎦

[
N∑

k=1

L2 (ϕk) T2 (qk)

]

×
[

N∑

l=1

L3 (ϕl) T3 (ql)

]

(6)

L1, L2, L3 and T1, T2, T3 are differential operators
related to space domain and time domain, respectively.
If necessary, they can be the original function, first-
order, second-order, third-order, or fourth-order deriv-
atives of the space and time variables. Purpose of this
proposal is to put the space coordinates on the left side
and put the time coordinates on the right side. It may
lead to convenient integration of the nonlinear terms
in Eq. (1). By extending dimensions of the coefficient
matrices

L1×N3
(
ϕ̃ j , ϕ̃k, ϕ̃l

)

= AL
[
L1

(
ϕ j

)]
1×N BL

[
L2 (ϕk)

]
N×N2

×CL
[
L3 (ϕl)

]
N2×N3 (7)

TN3×1
(
q̃ j , q̃k, q̃l

)

= DT
[
T1

(
q j

)]
N3×N2 ET

[
T2 (qk)

]
N2×N

×FT
[
T3 (ql)

]
N×1 (8)

123



Nonlinear impacting oscillations 897

Equation (6) can be written as
[
L1

(
ϕ j

)
T1

(
q j

)]
[L2 (ϕk) T2 (qk)] [L3 (ϕl) T3 (ql)]

= L1×N3
(
ϕ̃ j , ϕ̃k, ϕ̃l

)
TN3×1

(
q̃ j , q̃k, q̃l

)
(9)

in which the sign “∼” on the top of each variable has
the samemeaning as Li and Ti. Left multiplying ϕi and
integrating along the pipe, we would get coefficients of
the nonlinear terms, i.e., αi jkl , βi jkl , and γi jkl . Apply-
ing these quantities to Eq. (5), the nonlinear equations
of motion reduce to the following simple form

q̈ + Cq̇ + Kq + g (q, q̇) + f (q) = 0, (10)

where q = [q1; q2; · · · ; qN ] , q̇ = [q̇1; q̇2; · · · ;
q̇N ], and q̈ = [q̈1; q̈2; · · · ; q̈N ] are the tube’s dis-
placement, velocity, and acceleration vectors, respec-
tively; C, K, g, and f denote the damp matrix (includ-
ing the model damping terms and the gyroscopic force
terms), stiffness matrix, nonlinear terms, and impact
force vector, respectively. Elements expressions of
these matrices and variables are given in “Appendix.”
For the purpose of numerical computation, we define
p = q̇ and z=[q; p]; Eq. (10) is then reduced to its
first-order form:

ż = Az + G (z) + F (z) , (11)

where

A =
[
0 I
−K −C

]
, G =

[
0
−g

]
, andF =

[
0
−f

]

(12)

They are 2N × 2N , 2N × 1, 2N × 1 matrices, respec-
tively. Solutions of q and p consist of the displacement
and velocity at any point ξ along the pipe.

As pointed out by Paidoussis and Li [23], simula-
tion results frommodels with fivemodes and higher are
qualitatively the same both in magnitude and in shape
when the integration step size is sufficiently small, and
thus, a five-mode model (N = 5) will be used in all
the simulations to follow. But, for the specialty of the
impact problem, the N = 5 model may not satisfy the
accuracyof solutions.More extensive calculations have
been done in the next section. Itwas found that N = 5 is
the more preferable. Solutions of Eq. (11) are obtained
by using the fourth-order Runge–Kutta integration
algorithmwith variable step size. The initial conditions
employed are q1(0) = 0.001 and pi (0) = 0. In the
numerical scheme of the effective judgment of impact

force on account of the proposed model in Eq. (3), a
modified unit step function is adapted. In the case of
|η| < δ, no impact occurs, and in the case of |η| > δ,
impact occurs. It physicallymeans that the pipe vibrates
between the two walls without contacting them. If the
absolute value of the lateral displacement is greater
than half of the gap, impact force occurs and direc-
tion of the force is opposite to the displacement. Under
this condition, impact force is obtained by integration
from Eq. (3) during every time step and direction of
the impact force is opposite to that of the displacement.
Numerical resultswill be presented in the formof bifur-
cation diagrams, time traces, and vibration shapes.

4 Results

4.1 Validation of the algorithm

In this subsection, in order to validate the correctness of
the present algorithm, the impactmodel is first degener-
ated from line contact to point contact, which is the case
of a constrained pipe conveying fluid studied by Paï-
doussis and Semler [21]. The point impact in the work
conducted by Païdoussis and Semler [21] is replaced
by a microsegment of the wall supports. In this case,
the length of the walls is set to be microscale, say-
ing its length is δ = 0.001. Thus, the model is quite
like that used in the work by Païdoussis. For compar-
ison purpose, the cubic spring constraint is taken into
calculation and κc = 105 is chosen. The system para-
meters are α = 0.005, β = 0.213, and γ = 26.75,
and the impacting location is ξb = 0.75. The results in
Fig. 2 are in good agreementwith those obtainedbyPaï-
doussis and Semler [21], with relative error 2%. This
demonstrates the validation of the line contact model
which will be used in the following analysis.

4.2 Validation of the N = 5 model

In Sect. 3, it has been mentioned that Paidoussis and
Li [22] had adopted the model number N = 5 in their
numerical computation for the reason of its good agree-
ment with experiment. In this subsection, we will first
discuss the possible choice of N when studying the non-
linear dynamics of the present pipemodel. For that pur-
pose, numerical results are represented in Fig. 3 based
on the trilinear spring model. As shown in Fig. 3, the
system undergoes a change in bifurcation diagramwith
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Fig. 2 Phase portraits and power spectral for N = 2, κc = 105, ξb = 0.75, α = 0.005, β = 0.213, γ = 26.75, and for different values
of flow velocity u

different model number N and it has reached a stable
state when N is chosen to be 5 or greater than that. The
system experiences chaotic motion with flow velocity
9.8 and then becomes periodic with flow velocity 12.3,
under the model number of 5 and 6. From this perspec-
tive, it can be seen that in this paper, N = 5 is a good
choice both in approximation calculation and cutting
the cost of calculation.

4.3 Case I: The impact force is modeled as a cubic
spring

In this case, the impact force, which is described as a
cubic spring, is imposed on the cantilevered pipe con-
veying fluid. Planar motion of impacting dynamics will

be investigated with the same system parameters as
that adopted in the work conducted by Païdoussis and
Selmer [21].

Based on the research of Païdoussis and Selmer [21],
the point impact is modified as line impact along the
pipe. Any part on the pipe may be in contact with the
one or two sides of the walls for the vibration induced
by the fluid flowing in the pipe. Under this considera-
tion, the nonlinear impact force is imposed on through-
out the pipe. Once the amplitude of its lateral displace-
ment satisfies impact condition, reactive forces from
the walls will be exerted on the pipe. In this way, the
pipemay exhibit many contact patterns. Several typical
patterns have been shown in Fig. 1a–d. Figure 4 shows
the bifurcation diagram of the displacement amplitudes
of the tip of the pipe.
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Fig. 3 Bifurcation diagram
for a N = 3, b N = 4, c
N = 5, and d N = 6 with
the smoothed trilinear
impact model and ξ = 1

Fig. 4 Bifurcation diagram for the system with cubic impact
model and ξ = 1

Interesting behaviors of flow-induced vibrationwith
impact effects come out as we can see in Fig. 4. The
impact force is a cubic nonlinear spring approximation.
Impact force occurs once the pipe has a very small
lateral deflection. During the flow-induced vibration,
the pipe suffers nonlinear forces throughout its axis.
Using the cubic spring model, the pipe would undergo
periodic motions when the flow velocity is beyond the
critical value, as can be seen in Fig. 4. The pipe expe-
riences a Hopf bifurcation at u = 8.05. A period-1
oscillation occurs from this point. It is of interest to
note that as shown in Fig. 4, the system jumps from
a period-1 motion to a period-3 motion at u = 12.65.
After a period-3 motion with larger flow velocity at
u = 13.15, the system goes back to a period-1 motion.

Thus, we can obtain the point from Fig. 4 that, the
system is easier to remain periodicwith the cubic spring
impactmodel. The impact force happens anywhere that
has a nonzero lateral displacement, and the nonlinear
impact force has a positive effect on eliminating the
system’s complex behaviors such as chaotic motion.

Thevibration shapes, phase portraits, and time traces
for three different flow velocities are shown in Fig. 5.

The support walls restrain the pipe and hence the
pipe can only vibrate with limited displacement ampli-
tudes. At some particular flow velocities, the system
shows contact patterns of point contact and line con-
tact. The contact is defined as a nonzero contact force,
which is referred to the impact force. The line con-
tact pattern is presented to a light extent for this force.
Impact forces for flow velocity u = 13.9 along the
pipe at a particular time are shown in Fig. 6. The line
contact patterns are demonstrated by the distribution of
nonlinear impact forces.

4.4 Case II: The impact force is modeled as a
smoothed trilinear spring

As pointed out in Sect. 4.3, the impact force occurs
once the pipe has lateral deflection throughout its axis.
In practice, there is always a gap between the pipe axis
and the walls. No impact happens if the amplitude of
displacement is smaller than the gap. Païdoussis and Li
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[21] commented that the cubic spring model is mathe-
matically convenient, but it cannot model the physical
situation perfectly.

In this subsection, therefore, the dynamical behav-
iors of the system will be re-examined by using a
smoothed trilinear spring impact model. In the follow-

Fig. 5 Time traces, phase
portraits, and pipe shapes
under various dimensionless
flow velocities. a Flow
velocity u = 10, b flow
velocity u = 12.8, c flow
velocity u = 13.9
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Fig. 5 continued
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ing calculations, the value of the impact model is the
same as that adopted in Sect. 4.2. Numerical results
have been obtained for the motions of the pipe based
on the trilinear spring model. The bifurcation diagram
for the response of the pipe at ξ = 1 is shown in
Fig. 7.

The gap between the pipe and wall is 0.044. Since
the pipe is constrained by the walls, its amplitude will
not become infinite. As shown in Fig. 7, the vibration
response is periodic in a small range from 8.05 to 8.73.
For flow velocity in this range, the pipe vibrates peri-
odically with constraint or impact forces (see Fig. 8a).
With increasing flow velocity, the amplitude of lateral

deflections becomes larger and strong impacting effect
occurs between the pipe andwalls. Strictly speaking, no
periodic motion can be found in the flow velocity range
8.73 < u < 12.52. The pipewould again undergo peri-
odic motions when the flow velocity reaches to 12.52.
At u = 12.52, the absolute value of the negative dis-
placement of the pipe is smaller than that of the positive
displacement. It is also noted that the absolute value
of the negative displacement is smaller than the gap
between the pipe and the wall. The pipe shape at this
flow velocity is exactly the one when impacting occurs
mainly on one side of the pipe, which is depicted in
Fig. 8b.
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Fig. 7 Bifurcation diagram for the system with trilinear spring
model and ξ = 1

Several other sample results for various flow veloc-
ities are illustrated in Fig. 9 for ξ = 1. At u = 8.5,
the response of the pipe is periodic. For u = 11.5,
the pipe oscillates quasi-periodically due to the strong
effect of impact force. At u = 13, however, the pipe
system becomes periodic again. It is seen in Fig. 9b
that repeatedly impacting behavior happens when the
pipe contacts the walls. The time trace of the pipe at
ξ = 1 indicates that the pipe tip is bouncing forth
and back on the ‘edge’ of the walls. This behavior
in this work may be also defined as an impacting
action.

Figure 10 shows the impact force’ envelop along
the pipe when u = 13. From this figure, it is eas-
ily seen that when the flow velocity is u = 13,
the impact action mainly happens on one side of
the walls. The pipe has lateral deflection on both
sides of course, which can be seen in Fig. 8b, but
for a wide range of ξ , there is no impact force on
the other side since a gap exists between the pipe
and walls. If the vibration amplitude of the pipe
is smaller than the gap, the impact force becomes
zero.

5 Conclusion

In-plane dynamics of a cantilevered pipe conveying
fluid interacting with two support walls on both sides
is first investigated. In the current model, it is assumed
that a pipe conveying fluid is restrained by two sup-
port walls which are modeled as two kind of nonlin-
ear springs. This restraining/impact force is included
in the nonlinear equation of motion. The equation of
motion is integrated numerically, and the dynamical
responses and impacting behaviors are examined. A
degenerated model is introduced first to illustrating
the effectiveness of the model and numerical scheme.
Good agreement is obtained compared to those in
[21].

Other interesting results have been obtained with
impacting force modeled by either a cubic spring or
a smoothed trilinear spring. By using the cubic spring
impact model, nonlinear impact forces are distributed
along the pipe even for very small displacement of
the pipe. Results show that this impact-related force
is one of the principle nonlinearities of the system.
The pipe with cubic spring would undergo periodic
motions even for sufficiently high flow velocities. Both
period-1 and period-3 motions are observed. For the
smoothed trilinear spring model, there is zero value of
impact force when the lateral displacement is smaller
than the gap. This model is more realistic in simulating
the impact behaviors. Effective impact action happens
only for amplitude of displacement exceeds the gap
limit. Results show that the pipe undergoes periodic
oscillations when the flow velocity is just beyond the
critical value of flutter instability. However, complex
behaviors such as quasi-periodic motion would occur
for much higher flow velocities. Chaotic oscillations in
a wide range of flow velocity are possible. It is shown

Fig. 8 Pipe shape under
various flow velocities; a
u = 8.5 and b u = 13
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Fig. 9 Phase portrait and
time traces for various flow
velocities of the smoothed
trilinear impact model and
at ξ = 1; a u = 8.5, b
u = 11.5, and c u = 13
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Fig. 10 Envelop of the impact force acting on the system, with
flow velocity u = 13

that the effect of distributed motion constraints on the
nonlinear dynamics of pipe conveying fluid is signifi-
cant.

This project is a preliminary study of impact/contact
dynamics of pipes conveying fluid subjected to wall
supports. Further exploring of impact models between
pipe bundles and supports will be conducted in the sub-
sequent researches.
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Appendix

In this part, we will give the elements of the matrices
mentioned in Sect. 3. As described above, the nonlinear
terms inEq. (5)maybewritten inEq. (6).As canbe seen
that, the nonlinear terms are the multiplication of three
terms, which are all related to the eigenfuncitons, such
as η′η′′η′′′ and η′′ ∫ 1

ξ

∫ ξ

0 η′η̇′′dξdξ . After applying the
Galerkin’s technique, the multiplication has the form
of (13). After using the transforming scheme, Eq. (6)
would be of that form of Eqs. (7), (8), and (9). Expres-
sions of the elements of matrices in these equations
are given below (taking η′η′′η′′′, for example). As to
the integrals of in some of the nonlinear terms, they
could be applied on the corresponding terms when the
transformation has been completed.

AL = [
ϕ′
1 ϕ′

2 · · · ϕ′
N

]
1×N (13)

BL =

⎡

⎢
⎢
⎢
⎣

ϕ′′
1 ϕ′′

2 · · · ϕ′′
N

ϕ′′
1 ϕ′′

2 · · · ϕ′′
N 0

0
. . .

ϕ′′
1 ϕ′′

2 · · · ϕ′′
N

⎤

⎥
⎥
⎥
⎦

N×N2

(14)

CL =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ′′′
1 ϕ′′′

2 · · · ϕ′′′
N

ϕ′′′
1 ϕ′′′

2 · · · ϕ′′′
N 0

ϕ′′′
1 ϕ′′′

2 · · · ϕ′′′
N

0
. . .

ϕ′′′
1 ϕ′′′

2 · · · ϕ′′′
N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

N2×N3

(15)

DT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q ′
1
q ′
1 0
q ′
1

0
. . .

q ′
1

q ′
2
q ′
2 0
q ′
2

0
. . .

q ′
2

· · ·
q ′
N
q ′
N 0
q ′
N

0
. . .

q ′
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N3×N2

(16)

ET =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q ′′
1 0
q ′′
1

. . .

0 q ′′
1

q ′′
2 0
q ′′
2

. . .

q ′′
2

0 · · · · · ·
q ′′
N 0
q ′′
N

. . .

0 q ′′
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N2×N

(17)

FT =

⎡

⎢
⎢
⎢
⎣

q ′′′
1

q ′′′
2

...

q ′′′
N

⎤

⎥
⎥
⎥
⎦

N×1

(18)

Substituting (13) to (18) into Eq. (9), left multiplying
ϕi (ξ) and integrating along the pipe, we would get the
coefficients of the nonlinear terms.

αi jkl =
∫ 1

0

[
u2 − 3

2
γ (1 − ξ)

]
ϕiϕ

′′
j ϕ

′
kϕ

′
ldξ

− 1

2
γ

∫ 1

0
ϕiϕ

′
jϕ

′
kϕ

′
ldξ + 3

∫ 1

0
ϕiϕ

′
jϕ

′′
k ϕ

′′′
l dξ

+
∫ 1

0
ϕiϕ

′′
j ϕ

′′
k ϕ

′′
l dξ

−
∫ 1

0
ϕiϕ

′
j

∫ ξ

0

[
u2 − γ (1 − ξ)

]
ϕ′
kϕ

′′′
l dξdξ
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+
∫ 1

0
ϕiϕ

′
j

∫ ξ

0
ϕ′′
k ϕ′′′′

l dξdξ

+
∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

∫ ξ

0

[
u2 − γ (1 − ξ)

]

×ϕ′
kϕ

′′′
l dξdξdξ

−
∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

∫ ξ

0
ϕ′′
k ϕ

′′′′
l dξdξdξ

+ γ

∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

ϕ′
kϕ

′
ldξdξ

− u2
∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

ϕ′
kϕ

′′
l dξdξ

−
∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

ϕ′′
k ϕ

′′′
l dξdξ (19)

βi jkl = 2u
√

β

∫ 1

0
ϕiϕ

′
jϕ

′
kϕ

′
ldξ

− 2u
√

β

∫ 1

0
ϕiϕ

′
j

∫ ξ

0
ϕ′
kϕ

′′
l dξdξ

+ 2u
√

β

∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

∫ ξ

0
ϕ′
kϕ

′′
l dξdξdξ

− 2u
√

β

∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

ϕ′
kϕ

′
ldξdξ (20)

γi jkl =
∫ 1

0
ϕiϕ

′
j

∫ ξ

0
ϕ′
kϕ

′
ldξdξ

−
∫ 1

0
ϕiϕ

′′
j

∫ 1

ξ

∫ ξ

0
ϕ′
kϕ

′
ldξdξdξ (21)

Coefficients of the linear terms are defined as follows:

mi j =
∫ 1

0
ϕiϕ jdξ = δi j (22)

ci j = α

∫ 1

0
ϕiϕ

′′′′
j dξ + 2u

√
β

∫ 1

0
ϕiϕ

′
jdξ (23)

ki j =
∫ 1

0
ϕiϕ

′′′′
j dξ +

∫ 1

0

[
u2 − γ (1 − ξ)

]
ϕiϕ

′′
j dξ

+ γ

∫ 1

0
ϕiϕ

′
jdξ (24)

As to elements in f (q), it is obtained by leftmultiplying
ϕi (ξ) and integrating along the pipe. That is:

fi =
∫ 1

0
ϕi f

(
N∑

s=1

ϕsqs

)

dξ . (25)
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