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Abstract In this paper, we investigated non-smooth
bifurcation control of a piecewise-linear continuous
systemwith a canonical form for the first time.We pre-
sented the conditions under which the system has only
one stable or unstable equilibrium point. Furthermore,
we eliminated some non-smooth bifurcations of the
system, by designing two controllers, such as simulta-
neous feedback controller and switched feedback con-
troller. Simultaneous feedback controller is linear, and
switched feedback controller is piecewise-linear,which
have all a simple structure and available control proper-
ties. Numerical simulations showed that these methods
were effective.

Keywords Continuous system · Non-smooth
bifurcation · Bifurcation control

1 Introduction

Piecewise-linear continuous systems are the natural
extension to linear systems in order to capture nonlin-
ear systems. They have rich dynamical behaviors such
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as limit cycles, homoclinic and heteroclinic orbits, and
stranger attractor, which is almost same to that of gen-
eral nonlinear systems.Generally,we study the bifurca-
tion of piecewise smooth continuous systems by using
the piecewise-linearized representation. We consider
a planar piecewise-linear continuous system with the
special form:

Ẋ = f (X) =
{
JL X + C1 for x ≤ 0
JR X + C1 for x > 0

, (1)

where X =
[
x
y

]
, JL =

[
l11 a12
l21 a22

]
, JR =

[
r11 a12
r21 a22

]
,

C1 =
[
c1
c2

]
. It is noted that switching boundary func-

tion h(x) = x = 0 separates the space R2 into three
domains:v− ={(x, y) |h(x)<0 },�={(x, y) |h(x)=0 }
and v+ = {(x, y) |h(x) > 0 }, where � is a switching
boundary. System (1) has eight parameters,which leads
to the complexity in analyzing it.

The existence of a canonical form with fewer para-
meters helps us to descript the dynamical behavior of
this system. For example, canonical forms of a system
can be useful to analyze its properties and sometimes
to derive theoretical proofs of asymptotic stability [1].
For piecewise-linear continuous systems, some authors
initially derived piecewise-linear canonical represen-
tations to facilitate the design of nonlinear electrical
circuits and their analysis [2]. Recently, various equiv-
alent state space representations and transformations
have been proposed to fulfill different theoretical aims.
Canonical forms have been used as a tool for the
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analysis and classification of so called discontinuity-
induced bifurcation phenomena [3], which is also
called non-smooth bifurcation. Moreover, canonical
forms of piecewise-linear systems have been talked in
[4–6]. By using a linear change of variables, system (1)
can be transformed into the canonical form (Liénard’s
form) [7]:

Ẋ = f (X) =
{
AL X + C for x ≤ 0
ARX + C for x > 0

, (2)

where X =
[
x
y

]
, AL =

[
t 1
−d 0

]
, AR =

[
T 1
−D 0

]
,

C =
[
0
a

]
. Similarly, h(x) = 0 still separates the space

R2 into three domains: v−, � and v+, and system (2)
has only five parameters. Suppose that t, T, d and D
are unequal to zero.

It has been noted that piecewise smooth continu-
ous (PWSC) systems can exhibit a unique class of
bifurcation phenomena, called non-smooth bifurca-
tions expect for classical bifurcations such as folds
and Hopf bifurcations. Leine gave a definition of non-
smoothbifurcation andpresented thatmultiple crossing
bifurcations can occur in PWSC systems [8–10]. Espe-
cially for piecewise-linear continuous system (1), it can
be transformed into a canonical formwith four parame-
ters when it has a limit cycle, and its Hopf bifurcations
have been investigated [11,12]. Xu studied homoclinic
orbits and homoclinic bifurcations of system (2) [13].

As the development of the bifurcation, bifurcation
control as an emerging research filed has become chal-
lenging and stimulating. It involves designing a con-
trol input for a system to result in desired modification
to the system’s bifurcation behavior. Typical bifurca-
tion control objectives include delaying the onset of an
inherent bifurcation [14], introducing a new bifurca-
tion at a preferable parameter value [15], changing the
parameter value of an existing bifurcation point [16],
modifying the shape or type of a bifurcation chain [17],
etc. Bifurcation is often considered as undesirable and
should be eliminated. Although some authors inves-
tigated the bifurcation control, their object is mainly
classical bifurcation. At the same time, non-smooth
bifurcation is theoretically not well developed, and few
authors took care of non-smooth bifurcation control for
non-smooth systems. Especially no author investigated
the non-smooth bifurcation control of system (2). On

the other hand, bifurcation and chaos usually occur as
“twins,” and chaos control of non-smooth systems has
been investigated by many authors [17–20], which also
encourages us to study non-smooth bifurcation control
of non-smooth systems. Hassouneh derived a sufficient
condition for non-bifurcation with persistent stability
for piecewise smooth discrete-time systems by Lya-
punov and linear matrix inequality (LMI) techniques
[21]. In this paper, we will furthermore expand the way
to study the bifurcation control of system (2). The orga-
nization of this paper is as follows:

In Sect. 2, we will design two controllers: simulta-
neous feedback controller and switched feedback con-
troller, which eliminate non-smooth bifurcations of
system (2). In Sect. 3, numerical simulations show that
these methods are effective. Finally, the conclusion is
drawn.

2 Non-smooth bifurcation control of system (2)

In this section, in order to eliminate non-smooth bifur-
cations of system (2), we will firstly give the conditions
under which system (2) has non-smooth bifurcation
with persistent stability or instability for any a ∈ R.
Let E− = ( a

d − ta
d

)
and E+ = (

a
D − Ta

D

)
. It is noted

that system (2) has one equilibrium point E− or E+ for
dD > 0, while it either has two equilibria E− and E+
or has no equilibrium point for dD < 0.

Theorem 1 System (2) has an asymptotically stable
equilibrium point for any a ∈ R if

(1) d > 0, t < 0;
(2) D > 0, T < 0;
(3) there exist a1 > 0, a2 < 0, a3 > 0 satisfied with
4a2(a1t − a2d) − (a1 + a2t − a3d)2 > 0, 4a2(a1T −
a2D)−(a1+a2T −a3D)2 > 0, a2 > t

d a1, a2 > T
D a1

and a1a3 − a22 > 0.

Proof Ifd > 0 and D > 0, i.e.,dD > 0, system (2) has
only one equilibrium point for a ∈ R. In the following,
we study the stability of this equilibrium point by two
cases.

(i) a ≤ 0
System (2) has an equilibriumpoint E− =( a

d − ta
d

)
.

Let z1 = x− a
d and z2 = y+ ta

d , system (2) is rewritten
to
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Ż = f (Z) =
{
AL Z for z1 ≤ − a

d
AR Z + C1a for z1 > − a

d
, (3)

where Z =
[
z1
z2

]
,C1 =

[ T−t
d

d−D
d

]
. Let the Lyapunov

function:

v(Z) = ZT PZ ,

where P =
[
a1 a2
a2 a3

]
> 0 for a1 > 0, a3 > 0, a1a3 −

a22 > 0. For z1 ≤ − a
d , we have

v̇(t) = v̇L(t) = Ż T P Z + ZT P Ż

= ZT
(
AT
L P + PAL

)
Z , (4)

For z1 > − a
d , we have

v̇(t) = v̇R(t) = Ż T P Z + ZT P Ż

= ZT
(
AT
R P + PAR

)
Z + aCT

1 PZ + aZT PC1

= (Z − α)T
(
AT
R P + PAR

)
(Z − α)

+ αT
(
AT
R P + PAR

)
α, (5)

where α = −a(AT
R P + PAR)−1PC1. The conditions

of Theorem 1 show that a1t − a2d < 0, 4a2(a1t −
a2d)−(a1+a2t−a3d)2 > 0, 4a2(a1T −a2D)−(a1+
a2T−a3D)2 > 0, a1T−a2D < 0, i.e., AT

L P+PAL <

0 and AT
R P+PAR < 0. In what follows, wewill prove

that v̇(t) is negative definite if AT
L P + PAL < 0 and

AT
R P + PAR < 0.

If AT
L P + PAL < 0, v̇ = v̇L < 0 for ∀Z �= (

0 0
)T

from (4). It remains to show that v̇ = v̇R < 0. Due
to the continuity of v and system (2), v̇ is continu-
ous for all Z , which induces to v̇R < 0 at the border{
z1 = − a

d

}
. If d2v̇R

dZ2 = AT
R P + PAR < 0 from (5),

v̇R is strictly convex. For any Z , Y , and θ ∈ (0, 1),
v̇R(θ Z+(1−θ)Y ) > θv̇R(Z)+(1−θ)v̇R(Y ). Next,we
will show that v̇R < 0 for any z1 > − a

d by contradic-
tion. Suppose there is a Y > − a

d such that v̇R(Y ) ≥ 0,
then v̇R is positive along the line segment connecting 0
and Y : v̇R(θ0+(1−θ)Y ) > θv̇R(0)+(1−θ)v̇R(Y ) ≥
0. But there is a Z∗ with z∗1 = − a

d along the line,
where v̇R(Z∗) < 0, which is a contradiction. Then
v̇(t) = v̇R < 0 for z1 > − a

d . And v̇ = v̇L < 0 for
z1 ≤ − a

d . Hence v̇(t) < 0, i.e., E− is asymptotically
stable for a ≤ 0.

(ii) a > 0

System (2) has an equilibriumpoint E+ =(
a
D − Ta

D

)
.

Similarly we can prove that E+ is asymptotically sta-
ble for a > 0 if the conditions of Theorem 1 hold. The
proof is finished. �	
Theorem 2 System (2) has an unstable equilibrium
point for any a ∈ R if

(1) d > 0, t > 0;
(2) D > 0, T > 0;
(3) there exist a1 > 0, a2 > 0, a3 > 0 satisfied with
4a2(a1t − a2d) − (a1 + a2t − a3d)2 > 0, 4a2(a1T −
a2D)− (a1 + a2T − a3D)2 > 0, a2 < t

d a1, a2 < T
D a1

and a1a3 − a22 > 0.

We only give the proof for a > 0. The same way
can be the case for a ≤ 0. For a > 0, system (2) has
an equilibrium point E+ = (

a
D − Ta

D

)
.

Let z1 = x − a
D and z2 = y + Ta

D , system (2) is
rewritten to

Ż = f (Z) =
{
AL Z + C2a for z1 ≤ − a

D
AR Z for z1 > − a

D
,

where Z =
[
z1
z2

]
,C2 =

[ t−T
D

D−d
D

]
. Let the Lyapunov

function:

v(Z) = ZT PZ ,

where P =
[
a1 a2
a2 a3

]
> 0. For z1 > − a

D , we have

v̇(t) = v̇R(t) = Ż T P Z + ZT P Ż

= ZT
(
AT
R P + PAR

)
Z .

For z1 ≤ − a
D , we also have

v̇(t) = v̇L(t) = Ż T P Z + ZT P Ż

= ZT
(
AT
L P + PAL

)
Z + aCT

2 PZ + aZT PC2

= (Z − α)T
(
AT
L P + PAL

)
(Z − α)

+ αT
(
AT
L P + PAL

)
α,

where α = −a
(
AT
L P + PAL

)−1
PC2. Similarly the

conditions of Theorem 2 present that that AT
L P +

PAL > 0 and AT
R P + PAR > 0. In what fol-

lows, we will show that v̇(t) is positive definite if
AT
L P + PAL > 0 and AT

R P + PAR > 0.

If AT
R P+PAR > 0, v̇ = v̇R > 0 for ∀Z �= (

0 0
)T

.
Due to the continuity of v and system (2), v̇ is contin-
uous for all Z , which induces to v̇L > 0 at the bor-
der

{
z1 = − a

D

}
. Similarly d2v̇L

dZ2 = AT
L P + PAL > 0
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implies that v̇L is strictly concave, i.e., v̇L(θ Z + (1 −
θ)Y ) < θv̇L(Z) + (1− θ)v̇L(Y ) for any Z ,Y and θ ∈
(0, 1). Suppose there is a Y < − a

D such that v̇L(Y ) ≤
0, then v̇L(θ0+(1−θ)Y ) < θv̇L(0)+(1−θ)v̇L(Y ) ≤ 0
for the line segment connecting 0 and Y . But there is
a Z∗ with z∗1 = − a

D such that v̇L(Z∗) > 0, which is
a contradiction. Then v̇(t) = v̇L > 0 for z1 < − a

D .
Hence v̇(t) > 0, i.e., E+ is unstable for a > 0.

It is noted that when the conditions of Theorem 1
and Theorem 2 hold, system (2) has no bifurcation for
parameter a. For this, we will design the controllers by
two ways in what follows:

(1) Simultaneous feedback control design
We add a static linear state feedback to system (2),

where the controller is same both sides of the switching
boundary:

Ẋ = f (X) + g(X)=
{
AL X + C +UX for x ≤ 0
ARX + C +UX for x > 0

,

(6)

where U =
[
t1 1
−d1 0

]
and the controller

g(X) = UX. (7)

Theorem 3 We design t1, d1 such that

(1) d + d1 > 0, t + t1 < 0;
(2) D + d1 > 0, T + t1 < 0;
(3) there exist a1 > 0, a2 < 0, a3 > 0 satisfied with
4a2(a1(t+t1)−a2(d+d1))−(a1+a2(t+t1)−a3(d+
d1))2 > 0, a2 > t+t1

d+d1
a1, a2 > T+t1

D+d1
a1, 4a2(a1(T +

t1)−a2(D+d1))−(a1+a2(T+t1)−a3(D+d1))2 > 0,
and a1a3 − a22 > 0, then the controlled system (6) has
non-bifurcation with persistent stability for any a ∈ R.

Proof System (6) is rewritten as

Ẋ = f (X) + g(X)=
{

(AL +U )X + C for x ≤ 0
(AR +U )X + C for x > 0

,

where AL + U =
[
t + t1 1
−(d + d1) 0

]
and AR + U =[

T + t1 1
−(D + d1) 0

]
. According to Theorem 1, the con-

clusion can be obtained. �	
Theorem 4 We design t1, d1 such that

(1) d + d1 > 0, t + t1 > 0;

(2) D + d1 > 0, T + t1 > 0;
(3) there exist a1 > 0, a2 > 0, a3 > 0 satisfied with

a2 < t+t1

d+d1
a1, a2 < T+t1

D+d1
a1, 4a2(a1(t + t1) − a2(d +

d1))−(a1+a2(t+t1)−a3(d+d1))2 > 0, 4a2(a1(T +
t1)−a2(D+d1))−(a1+a2(T+t1)−a3(D+d1))2 > 0,
and a1a3 − a22 > 0, then the controlled system (6)
has non-bifurcation with persistent instability for any
a ∈ R.

The proof is referred to Theorem 2.

(2) Switched feedback control design
Now we consider the closed-loop system by static

piecewise-linear state feedback, where the controller is
not same both sides of the switching boundary:

Ẋ = f (X)+g(X)=
{
AL X + C +U1X for x ≤ 0
ARX + C +U2X for x > 0

,

(8)

where U1 =
[
t1 1
−d1 0

]
, U2 =

[
T1 1
−D1 0

]
and the con-

troller

g(X) =
{
U1X for x ≤ 0
U2X for x > 0

. (9)

Theorem 5 We design t1, d1, T1, D1 such that

(1) d + d1 > 0, t + t1 < 0;
(2) D + D1 > 0, T + T1 < 0;
(3) there exist a1 > 0, a2 < 0, a3 > 0 satisfied with
a2 > t+t1

d+d1
a1, a2 > T+T1

D+D1
a1, 4a2(a1(t + t1)− a2(d +

d1))−(a1+a2(t+t1)−a3(d+d1))2 > 0, 4a2(a1(T +
T1)−a2(D+D1))−(a1+a2(T+T1)−a3(D+D1))

2 >

0, and a1a3 − a22 > 0, then the controlled system (8)
has non-bifurcation with persistent stability for any
a ∈ R.

The proof is referred to Theorem 1.

Theorem 6 We design t1, d1, T1, D1 such that

(1) d + d1 > 0, t + t1 > 0;
(2) D + D1 > 0, T + T1 > 0;
(3) there exist a1 > 0, a2 > 0, a3 > 0 satisfied with
a2 < t+t1

d+d1
a1, a2 > T+T1

D+D1
a1, 4a2(a1(t + t1)− a2(d +

d1))−(a1+a2(t+t1)−a3(d+d1))2 > 0, 4a2(a1(T +
T1)−a2(D+D1))−(a1+a2(T+T1)−a3(D+D1))

2 >

0, and a1a3 − a22 > 0, then the controlled system (8)
has non-bifurcation with persistent instability for any
a ∈ R.
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The proof is referred to Theorem 2.
In order to verify the correctness of these methods,

we will present some numerical simulations.

3 Numerical simulations

In this section, we firstly present the definition about
non-smooth bifurcation.

Definition 1 (Non-smooth Bifurcation) [10]. Let xμ

be an equilibrium point, depending on μ ∈ R, of a
non-smooth continuous system ẋ = f (x, μ) which
has a finite number of switching boundaries � j , j =
1, . . . , k. Let xμ = x� for μ = μ� be an equilibrium
point located on one ormore switching boundaries, i.e.,
x� ∈ �1 ∩ �2 · · · ∩ �l , 1 ≤ l ≤ k. Let (x�,μ�) be
a bifurcation point. A bifurcation point (x�,μ�) is a
non-smooth bifurcation point if the generalized Jaco-
bian J (x�,μ�) is set-valued and if there exists an i
such that 0 ∈ Re(λi ), λ = eig(J (x�,μ�)).

Note that J (x�,μ�) is a generalized Jacobian
matrix. According to Definition 1, we will give some
non-smooth bifurcations of system (2) when the para-
meter a varies. At a = 0, the system has one equi-
librium point E0 = ( 0 0 ). For it lies in the switching
boundary�, E0 is a boundary equilibriumpoint,whose
generalized Jacobian matrix is

J (E0) = q AL + (1 − q)AR (q ∈ [0, 1]) . (10)

The generalized characteristic polynomial is

Pq(λ) = λ2−[qt + (1 − q)T ] λ+qd+(1−q)D = 0.

(11)

Lemma 1 A non-smooth bifurcation of E0 occurs at
a = 0 if at least one of the following conditions holds:

(1) dD < 0;
(2) tT < 0, d > t

T D;

Proof According to definition 1, a non-smooth bifurca-
tion occurs if the generalized characteristic polynomial
(11) at least has zero root or a pair of pure imaginary
for certain q ∈ [0, 1]. when dD < 0, there must exist
q = D

D−d ∈ [0, 1] ensuring that (11) has zero root.

If tT < 0, there must exist q = T
T−t ∈ [0, 1] such

that qt + (1− q)T = 0. Furthermore, if d > t
T D, i.e.,

dT−t D
T > 0, then dT−t D

T
T

T−t > 0, i.e., qd+(1−q)D >

0, which implies that (11) has a pair of pure imaginary.
The proof is finished. �	

Proposition 1 A non-smooth turning point bifurcation
of E0 occurs at a = 0 for dD < 0 and tT > 0.

Proof By Lemma 1, a non-smooth bifurcation of E0

occurs at a = 0 for dD < 0. That dD < 0 and tT > 0
means that d < 0, D > 0, T > 0, t > 0, d < 0, D >

0, T < 0, t < 0, d > 0, D < 0, T > 0, t > 0
and d > 0, D < 0, T < 0, t < 0. We only give
the proof for d < 0, D > 0, T > 0, t > 0. Similar
conclusions can also be drawn for other cases. For d <

0, D > 0, system (2) has no equilibrium point for a <

0, one boundary equilibrium point E0 at a = 0, and
two equilibria E− and E+ for a > 0. Furthermore, E−
is a saddle point and E+ is an unstable focus or node for
d < 0, D > 0, T > 0, t > 0. Then it is a non-smooth
turning point bifurcation. The proof is finished. �	

For example, we take d = −1 < 0, D = 3 >

0, T = 5 > 0, t = 4 > 0 and a ∈ [−1, 1]. Fig-
ure 1a indicates the non-smooth bifurcation structure,
where unstable equilibriumpoints are described by dot-
ted lines. We will describe stable equilibrium points by
solid lines later. The path of the set-valued eigenvalues
crosses the imaginary axis through the origin indicated
in Fig. 1b.

Firstly we will eliminate the non-smooth turning
point bifurcation of system (2), where the controlled
system is persistently stable. We add the controller (7)
to system (2) and obtain a controlled system (6). We
take t1 = −6, d1 = 4. At this time, d + d1 = 3 > 0,
t+t1 = −2 < 0, D+d1 = 7 > 0,T+t1 = −1 < 0 are
satisfied with the first and second conditions of Theo-
rem 3. There are a1 = 8, a2 = −1, a3 = 1.5 such
that the third condition of Theorem 3 holds. For any
a ∈ R, the controlled system (6) is asymptotically sta-
ble and system (6) has no bifurcation, which is depicted
in Fig. 2a. Numerical conclusion shows that we can
eliminate the turning point bifurcation of system (2) by
the controller (7), where the equilibrium point is sta-
ble for any a. We add the controller (9) to system (2)
and take t1 = −5, d1 = 7, T1 = −6, D1 = 0, i.e.,
d + d1 = 6 > 0, t + t1 = −1 < 0, D + D1 = 3 > 0,
T + T1 = −1 < 0, which is satisfied with the
first and second conditions of Theorem 5. There exist
a1 = 8, a2 = −1, a3 = 1.8 satisfied with the third
condition of Theorem5. Thus no bifurcation exists, and
the equilibrium point is asymptotically stable for any
a ∈ R in the controlled system (8). Figure 2b shows the
corresponsive bifurcation diagram. Numerical conclu-
sion also shows that we can eliminate the bifurcation of
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Fig. 1 Take
d = −1 < 0, D = 3 >

0, T = 5 > 0, t = 4 > 0
and a ∈ [−1, 1], a
bifurcation diagram of
system (2), b path of
set-valued eigenvalues of
J (E0)

-2 0 2 4 6
-1

-0.5

0

0.5

1

Re(λ)

Im
( λ
)

(a) (b)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

a

x

Fig. 2 Bifurcation diagram
for d = −1, D = 3, T =
5, t = 4, a ∈ [−1, 1],
a controlled system (6) at
t1 = −6, d1 = 4,
b controlled system (8) at
t1 = −5, d1 = 7, T1 =
−6, D1 = 0.

-1 -0.5 0 0.5 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

a

x

-1 -0.5 0 0.5 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

a

x

(a) (b) 

system (2) by the controller (9), where the equilibrium
point is also stable for any a.

Secondly we will eliminate the non-smooth turning
point bifurcation of system (2), where the controlled
system is persistently unstable. For the controlled sys-
tem (6), we take t1 = −3, d1 = 4. At this time,
d + d1 = 3> 0, t + t1 = 1> 0, D + d1 = 7> 0,
T + t1 = 2> 0. There are a1 = 4, a2 = 1, a3 = 1.1
such that the conditions of Theorem 4 hold. Hence no
bifurcation exists in system (6) with unstable equi-
librium point for any a ∈ R. The bifurcation dia-
gram is depicted in Fig. 3a, which shows that we
can eliminate the turning point bifurcation of system
(2) by the controller (7), and the equilibrium point
is unstable for any a. For the controlled system (8),
we take t1 = −3, d1 = 7, T1 = −4, D1 = 0, and
a1 = 8, a2 = 1, a3 = 1.8, which are satisfied with the
conditions of Theorem 6. The controlled system (8) has
no bifurcation and has unstable equilibrium point for

any a ∈ R. Numerical conclusion also shows that the
controller (9) is effective depicted in Fig. 3b.

Proposition 2 A non-smooth transcritical bifurcation

of E0 occurs at a = 0 for tT < 0, 0 < D < T 2

4 , 0 <

d < t2
4 , while a non-smooth Hopf bifurcation appears

for tT < 0, D > 0, d > 0 except tT < 0, 0<D< T 2

4 ,

0 < d < t2
4 .

Proof For d > 0, D > 0 and tT < 0, we have
d > t

T D. By Lemma1, a non-smooth bifurcation of

E0 may occur at a = 0. If t < 0, T > 0, 0 < d < t2
4 ,

0 < D < T 2

4 , system (2) has a stable node E− for
a < 0, one boundary equilibrium point E0 at a = 0,
and anunstable node E+ fora > 0.There does not exist
the periodic motion for only one equilibrium point in
the interior of every periodic motion is a topological
center or a focus [11]. The bifurcation at a = 0 is a
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Fig. 3 Bifurcation diagram
for d = −1, D = 3, T =
5, t = 4, a ∈ [−1, 1],
a controlled system (6) at
t1 = −3, d1 = 4,
b controlled system (8) at
t1 = −3, d1 = 7, T1 =
−4, D1 = 0.
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Fig. 4 Take
T = 5 > 0, t = −4 < 0,
0 < D = 3 < T 2

4 ,

0 < d = 1 < t2
4 and

a ∈ [−1, 1], a bifurcation
diagram of system (2),
b path of set-valued
eigenvalues of J (E0)
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non-smooth transcritical bifurcation. The similar con-
clusion canbeobtained for t > 0, T < 0, 0 < D < T 2

4 ,

0 < d < t2
4 . Hence a non-smooth transcritical bifurca-

tion of E0 occurs at a = 0 for tT < 0, 0 < D < T 2

4 ,

0 < d < t2
4 . If t < 0, T > 0, D > T 2

4 , d > t2
4 ,

system (2) has a stable focus E− for a < 0, one bound-
ary equilibrium point E0 at a = 0, and an unstable
focus E+ for a > 0. There exists a periodic motion
which is stable for t√

4d−t2
+ T√

4D−T 2 < 0 and unsta-

ble for t√
4d−t2

+ T√
4D−T 2 > 0 [11], and the bifurca-

tion is a non-smooth Hopf bifurcation. Similarly non-
smooth Hopf bifurcations can also be found at a = 0
for other cases: (1) t > 0, T < 0, D > T 2

4 , d > t2
4 ,

(2) tT < 0, D < T 2

4 , d > t2
4 , (3) tT < 0, D > T 2

4 ,

d < t2
4 . Thus one non-smooth Hopf bifurcation maybe

occur for tT < 0, D > 0, d > 0 except tT < 0,
0 < D < T 2

4 , 0 < d < t2
4 . �	

We take T = 5, t = −4, D = 3, d = 1 and
a ∈ [−1, 1], system (2) has a non-smooth transcriti-

cal bifurcation shown in Fig. 4a, whose path of the set-
valued eigenvalues is presented in Fig. 4b.We can elim-
inate the non-smooth transcritical bifurcation, where
the controlled system is persistently stable. For the
controlled system (6), we design t1 = −6, d1 = 0,
a1 = 4, a2 = −1, a3 = 2. By Theorem 3, the con-
trolled system (6) has one asymptotically stable equi-
librium point and has no bifurcation for any a ∈ R pre-
sented in Fig. 5a. Then we investigate the bifurcation
control of system (2) by the controller (9). At the same
time, we take t1 = 0, d1 = 0, T1 = −13, D1 = −1,
a1 = 2, a2 = −1, a3 = 2, which is satisfied with all
conditions of Theorem 5. Hence no bifurcation exists
and the equilibrium point is asymptotically stable in the
controlled system (8) for any a ∈ R. The bifurcation
diagram is depicted in Fig. 5b. Numerical simulation
presents that the controllers (7) and (9) are effective.
Similarly we also can eliminate the non-smooth tran-
scritical bifurcation, where the controlled system has
only persistently unstable equilibrium point. We take
t1 = 5, d1 = 0, a1 = 2, a2 = 1, a3 = 1.5 satisfied
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Fig. 5 Bifurcation diagram
for T = 5, t = −4, D = 3,
d = 1, a ∈ [−1, 1], a
controlled system (6) at
t1 = −6, d1 = 0, b
controlled system (8) at
t1 = 0, d1 = 0, T1 =
−13, D1 = −1
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Fig. 6 Bifurcation diagram
for T = 5, t = −4, D = 3,
d = 1, a ∈ [−1, 1], a
controlled system (6) at
t1 = 5, d1 = 0, b controlled
system (8) at t1 = 8, d1 =
0, T1 = 3, D1 = −1
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with Theorem 4. The controlled system (6) has one
unstable equilibrium point and has no bifurcation for
any a ∈ R in Fig. 6a. We take t1 = 8, d1 = 0, T1 =
3, D1 = −1, a1 = 2, a2 = 1, a3 = 2 satisfied with
Theorem 6. The controlled system (8) has also one
unstable equilibrium point and has no bifurcation for
any a ∈ R in Fig. 6b.

We take t = −4, T = 2, D = 2, d = 5 and
a ∈ [−1, 1], and system (2) has a limit cycle depicted in
Fig. 7a. We can eliminate the non-smooth Hopf bifur-
cation by two different controllers (7) and (9), and
the controlled system has stable equilibrium point. For
example, we design t1 = −3, d1 = 0 and there are
a1 = 3, a2 = −1, a3 = 2 such that all conditions of
Theorem 3 hold. System (6) has only one asymptoti-
cally stable equilibrium point and has no bifurcation,
where the limit cycle disappears shown in Fig. 8a. We
can also take t1 = 0, d1 = −4, T1 = −10, D1 = 0,
and there occur a1 = 2, a2 = −1, a3 = 2 satis-

fied with the conditions of Theorem 5. At the same
time, the limit cycle disappears, one equilibrium point
is asymptotically stable for any a ∈ R, and no bifurca-
tion exists in the controlled system (8), whose bifurca-
tion diagram is given in Fig. 8b. We can also elim-
inate the bifurcation by controllers (7) and (9), and
the controlled system has unstable equilibrium point.
For example, we take t1 = 5, d1 = 0, a1 = 7, a2 =
1, a3 = 1.5. System (6) has one unstable equilibrium
point and has no bifurcation by Theorem 4, where the
limit cycle disappears shown in Fig. 9a. When we take
t1 = 8, d1 = −4, T1 = 6, D1 = 0, a1 = 2, a2 =
1, a3 = 2, the limit cycle and non-smooth Hopf bifur-
cation disappear and there only exists one unstable
equilibrium point in the controlled system (8) by The-
orem 6, whose bifurcation diagram is given in Fig. 9b.
These numerical simulations show that controllers (7)
and (9) are effective on the study of the bifurcation,
control.

123



Non-smooth bifurcation control of non-smooth systems 781

Fig. 7 Take
t = −4, T = 2, D = 2,
d = 5, a a limit cycle of
system (2) at a = 0.1,
b path of set-valued
eigenvalues of J (E0)

for a ∈ [−1, 1]
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Fig. 8 Bifurcation diagram
for t = −4, T = 2, D = 2,
d = 5, a ∈ [−1, 1],
a controlled system (6) at
t1 = −3, d1 = 0,
b controlled system (8) at
t1 = 8, d1 = −4, T1 =
6, D1 = 0
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Fig. 9 Bifurcation diagram
for t = −4, T = 2, D = 2,
d = 5, a ∈ [−1, 1],
a controlled system (6) at
t1 = 5, d1 = 0, b controlled
system (8) at t1 = 0, d1 =
−4, T1 = −10, D1 = 0

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

a

x

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

a

x

(a) (b) 

4 Conclusion

Generally we investigate bifurcations of the piecewise
smooth continuous system by its linearized system. A
canonical form with fewer parameters helps us to ana-
lyze the dynamics of the system. Hence in this paper,

we mainly studied nonlinear dynamics for a piecewise-
linear continuous system (2) with a canonical form. For
bifurcation is often considered as undesirable and few
authors take care of non-smooth bifurcation control, we
design two controllers to eliminate non-smooth bifur-
cations of system (2). Main conclusions are:
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(1) In order to eliminate non-smooth bifurcations of
system (2), we firstly give two conditions under
which it has only one stable or unstable equilibrium
point for any a, which is not investigated by other
authors.

(2) We design simultaneous feedback control and
switched feedback control and eliminate non-
smooth bifurcations of system (2). At this time,
the controlled system has one stable or unsta-
ble equilibrium point for any a ∈ R. Moreover
they are either liner or piecewise-linear, whose
topological structures are simple and easy to be
realized in some applications. Numerical exam-
ples demonstrate that proposed control techniques
are effective. In this paper, we only investigate
non-smooth bifurcation control of two-dimension
piecewise-linear continuous system. Actually, we
also can apply similar controllers to n-dimension
piecewise—smooth continuous systems and elim-
inate their non-smooth bifurcations.
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