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Abstract One-dimensional anisotropic Heisenberg
ferromagnetic spin chain can be described by the fifth-
order nonlinear Schrödinger equation, which is inves-
tigated in this paper. Through the Darboux transfor-
mation, we obtain the Akhmediev breathers (ABs),
Kuznetsov–Ma (KM) solitons and rogue-wave solu-
tions. Effects of the coefficients of the fourth-order
dispersion, γ , and of the fifth-order dispersion, δ, on
the properties of ABs, KM solitons and rogue waves
are discussed: (1) With γ increasing, the AB exhibits
stronger localization in time; (2)The propagation direc-
tions of an AB and a KM soliton change with the pres-
ence of δ; and (3) Enhancement of γ makes the exis-
tence time of the rogue waves shorter, while enhance-
ment of δ increases the existence time of the rogue
waves.
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1 Introduction

Rogue waves are the large amplitude waves in the
ocean which appear unexpectedly [1–3]. Notion of the
roguewaves has been transferred into the realm of plas-
mas [4], Bose–Einstein condensation [5], Heisenberg
ferromagnetic spin chain [6] and optical fibers [7]. The
formation of roguewaves in nonlinear dispersivemedia
can be described within the framework of nonlinear
evolution equations, such as the nonlinear Schrödinger
(NLS) equation [8–10,13], which has the analytic solu-
tions in the forms of certain types of breathers or
solitons on the finite background, i.e., the Akhme-
diev breathers (ABs), Kuznetsov–Ma (KM) solitons
and Peregrine solitons [8–12]. Such solutions allow
the analytic studies into the conditions that support the
emergence of rogue waves [8–12,14,15].

To describe the wave propagation more realistically,
some models with the higher-order effects, such as the
third- and fourth-order dispersion, self-steepening and
symmetric perturbations, have been proposed [16,17].
In this paper, via the Darboux transformation (DT)
[18–21], we will investigate the analytic solutions in
the forms of ABs, KM solitons and rogue waves of the
fifth-order NLS equation as follows [22,23]:

iqt + 1

2

(
qxx + 2|q|2q

)
− iα

(
qxxx + 6|q|2qx

)

+ γ
[
qxxx + 6|q|4q + 2q2q∗

xx

+ 4q|qx |2 + 6q∗(qx )2 + 8|q|2qxx
]

− iδ
[
qxxxxx
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+ 30|q|4qx + 20q∗qxqxx + 10|q|2qxxx
+ 10(q|qx |2)x

]
= 0, (1)

which works as a model corresponding to a one-
dimensional anisotropicHeisenberg ferromagnetic spin
chain, where q(x, t) represents the envelope of the
waves, t and x , respectively, denote the scaled time
and spatial coordinates, the asterisk represents the com-
plex conjugation, and the real parameters α, γ and δ

are, respectively, the coefficients of the third-order dis-
persion qxxx , fourth-order dispersion qxxxx and fifth-
order dispersion qxxxx [22,23]. Infinitely, many con-
versation laws and N -soliton solutions of Eq. (1) have
been obtained [22]. Lax pair and soliton solutions of
Eq. (1) have been derived [23].

Special cases of Eq. (1) have been used to describe
different nonlinear waves, depending on the particular
applicative context (e.g., Bose–Einstein condensation,
plasma physics, nonlinear optics and Heisenberg ferro-
magnetic spin chain): (1)With α = γ = δ = 0, Eq. (1)
can be reduced to the focusing NLS equation for the
wave evolution in different physical systems [24,26];
(2) when α �= 0 and γ = δ = 0, Eq. (1) can be reduced
to the Hirota equation for the propagation of a subpi-
cosecond or femtosecond pulse [10]; (3) for α = δ = 0
and γ �= 0, Eq. (1) can be reduced to a fourth-
order dispersive NLS equation for the one-dimensional
anisotropic Heisenberg ferromagnetic spin chain with
the octuple–dipole interaction [27,28]; and (4) with
α = γ = 0 and δ �= 0, Eq. (1) can be reduced to a
fifth-order NLS equation for the Heisenberg ferromag-
netic spin system [22,28]. Relevant issues can also be
seen in [29–34].

However, to our knowledge, the breather and rogue-
wave solutions of Eq. (1) have not been constructed
through the DT. In Sect. 2, through the DT and limit
process, the breathers and rogue-wave solutions of
Eq. (1) will be derived. In Sect. 3, influence of γ and
δ, the coefficients of the fourth-order dispersion and
fifth-order dispersion, on the ABs, KM solitons and
rogue waves will be discussed. Section 4 will be our
conclusions.

2 Breather and rogue-wave solutions of Eq. (1)
based on the DT

With the 2 × 2 Ablowitz–Kaup–Newell–Segur matrix
[24,25], the Lax pair associated with Eq. (1) can be
given as [23]

Ψx = UΨ, Ψt = VΨ, (2)

where Ψ = (Ψ1, Ψ2)
T is the vector eigenfunction, Ψ1

andΨ2 are the complex functions of x and t , T denotes
the transpose of thematrix, andU andV are expressible
in the form of [23]

U = i

(
λ q∗(x, t)
q(x, t) −λ

)
,

V =
5∑

c=0

iλc
(
Ac B∗

c
Bc −Ac

)
, (3)

with

A0 = −1

2
|q|2 − 3γ |q|4 − iα

(
q∗
x q − qxq

∗)

− γ
(
q∗
xxq − |qx |2 + qxxq

∗)

− iδ
(
q∗
xxxq − q∗

xxqx + qxxq
∗
x − qxxxq

∗)

− 6iδ
(
q∗
x q − qxq

∗) |q|2,
B0 = 2α|q|2q + 6δ|q|4q + i

1

2
qx + 6iγ |q|2qx

+αqxx + 2δq∗
xxq

2 + 4δ|qx |2q + 6δ(qx )
2q∗

+ 8δqxx |q|2 + iγ qxxx + δqxxxx ,

A1 = 2α|q|2 + 6δ|q|4 − 2iγ
(
q∗
x q − qxq

∗)

+ 2δ
(
q∗
xxq − |qx |2 + qxxq

∗) ,

B1 = q + 4γ |q|2q − 2iαqx − 12iδ|q|2qx
+ 2γ qxx − 2iδqxxx ,

A2 = 1 + 4γ |q|2 + 4iδ
(
q∗
x q − qxq

∗) ,

B2 = − 4αq − 8δ|q|2q − 4iγ qx − 4δqxx ,

A3 = − 4α − 8δ|q|2, B3 = −8γ q + 8iδqx ,

A4 = − 8γ, B4 = 16δq, A5 = 16δ, B5 = 0,

where λ is an eigenvalue of Lax Pair (2).
One can check that the compatibility conditionUt −

Vx+UV−VU = 0 is equivalent toEq. (1).Considering
the gauge transformation,

Ψ [1] = D[1]Ψ, (4)

through which we can cast Lax Pair (2) into

Ψ [1]x = U[1]Ψ [1],U[1] = (D[1]x + D[1]U)D[1]−1,

(5a)

Ψ [1]t = V[1]Ψ [1],V[1] = (D[1]t + D[1]V)D[1]−1,

(5b)

where [ j] ( j = 0, 1, 2, . . . N ) represents the j th-
iteration, N is a positive integer,D[1] is a 2×2 matrix,
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Ψ [1] is a 2 × 1 vector eigenfunction, D[1]−1 denotes
the inverse matrix of D[1], U[1] and V[1] are the 2× 2
matrices.

Cross differentiation of Lax Pair (2) leads to

U[1]t − V[1]x + [U[1],V[1]]
= D[1](Ut − Vx + [U,V])D[1]−1, (6)

which implies that in order to keep Lax Pair (2) invari-
ant under Transformation (4), we need to obtain a
matrixD[1] such thatU[1] andV[1], respectively, pos-
sess the same forms as U and V, while q, which works
as the old potential of the Lax-pair representation in U
and V, is mapped into the new one q[1] in U[1] and
V[1].

Hereby, we assume the matrix D[1] in the form of

D[1] =
(

λ 0
0 λ

)
−

(
Ψ1,1 −Ψ ∗

2,1
Ψ2,1 Ψ ∗

1,1

) (
λ1 0
0 λ∗

1

)

×
(

Ψ1,1 −Ψ ∗
2,1

Ψ2,1 Ψ ∗
1,1

)−1

, (7)

where λ1 is an eigenvalue of Lax Pair (2),Ψ1,1 andΨ2,1

are the complex functions of x and t . It can be verified
that if (Ψ1,1, Ψ2,1)

T is an eigenfunction of Lax Pair (2)
with the eigenvalueλ = λ1, then (−Ψ ∗

2,1, Ψ
∗
1,1)

T is also
an eigenfunction of Lax Pair (2) with the eigenvalue
λ = λ∗

1.
Via Expressions (5), the DT for Eq. (1) is given by

q[1] = q + 2
(λ∗

1 − λ1)Ψ
∗
1,1Ψ2,1

Ψ1,1Ψ
∗
1,1 + Ψ2,1Ψ

∗
2,1

. (8)

To construct the breather and rogue-wave solutions
of Eq. (1), we obtain the seed solutions first, as

q(x, t) = e(1+6γ )i t . (9)

The corresponding solutions for Lax Pair (2) at λ = ih
are

ϕ(h) =
((

iμ1eΔ − iμ2e−Δ
)
e− (1+6γ )i t

2(
μ2eΔ − μ1e−Δ

)
e

(1+6γ )i t
2

)
, (10)

where

μ1 = (h − √
h2 − 1)

1
2√

h2 − 1
, μ2 = (h + √

h2 − 1)
1
2√

h2 − 1
,

Δ =
√
h2 − 1x +

{
[8ih3γ + ih(1 + 4γ ) + 16h4δ

+ 4h2(α + 2δ) + 2(α + 3δ)]
√
h2 − 1

}
t.

Substituting Solutions (10) into DT (8), we obtain the
breather solutions of Eq. (1) as follows:

q = e(1+6γ )i t − 4ih
Ψ ∗
1,1Ψ2,1

Ψ1,1Ψ
∗
1,1 + Ψ2,1Ψ

∗
2,1

, (11)

where

Ψ1,1 = (iμ1e
Δ − iμ2e

−Δ)e− (1+6γ )i t
2 ,

Ψ2,1 = (μ2e
Δ − μ1e

−Δ)e
(1+6γ )i t

2 .

Solutions (11) include the ABs (0 < h < 1) and
KM solitons (1 < h). When 0 < h < 1, the AB,
which exhibits the localization in t but periodicity in x ,
can be observed. When 1 < h, the KM soliton appears.
In contrast to the AB, the KM soliton is periodic in t
and localized in x . We note that |q|2(0, 0) = (1+2h)2,
which is the height of peaks of breathers.

Then, we consider what will happen with respect to
a breather when its period goes to the infinity. Based
on Solutions (11) and setting h → 1, we obtain the
rogue-wave solutions of Eq. (1) as

qh→1 = −e(1+6γ )i t G1

F1
, (12)

where

G1 =
{
−3 + 4x2 + 4t2(1 + 36α2 + 24γ + 144γ 2

+ 360αδ + 900δ2) + 8t
[−i(1 + 12γ )

+ 6x(α + 5δ)
] }

,

F1 = 1 + 4x2 + 48t x(α + 5δ) + 4t2(1 + 36α2

+ 24γ + 144γ 2 + 360αδ + 900δ2).

The first-order rogue wave corresponds to a single
wave with localization in t and x . The peak height of
that rogue wave is |q|2(0, 0) = 9. Effects of γ and δ on
the properties of ABs, KM solitons and rogue waves
will be discussed in Sect. 3.

Let (Ψ1,1, Ψ2,1)
T , (Ψ1,2, Ψ2,2)

T ,. . ., (Ψ1,N , Ψ2,N )T

be the N distinct solutions ofLaxPair (2) atλ1, . . . , λN ,
respectively,whereΨ1,k’s andΨ2,k’s (k = 1, 2, . . . , N )

are the functions of x and t , and λk’s are the eigenvalues
of Lax Pair (2). Via the N iteration of Expression (4)
and (5), the N -fold DT for Eq. (1) is

q[N ] = q[0] (13)

+ 2
N∑

k=1

(λ∗
k − λk)Ψ2,k [k − 1]Ψ1,k [k − 1]∗

Ψ1,k [k − 1]Ψ1,k [k − 1]∗ + Ψ2,k [k − 1]Ψ2,k [k − 1]∗ ,

Ψ [N ] = D[N ]D[N − 1] · · ·D[1]Ψ,

with

D[k] =
(

λ 0
0 λ

)
−

(
Ψ1,k[k − 1] −Ψ2,k[k − 1]∗
Ψ2,k[k − 1] Ψ1,k[k − 1]∗

)

×
(

λk 0
0 λ∗

k

) (
Ψ1,k[k − 1] −Ψ2,k[k − 1]∗
Ψ2,k[k − 1] Ψ1,k[k − 1]∗

)−1

,
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Fig. 1 Breathers via
Solutions (11) with
α = 0.01, δ = 0, γ = 0, a
h = 0.2 (the AB) b h = 1.2
(the KM soliton)

Fig. 2 The ABs via
Solutions (11) with
α = 0.01, δ = 0, h = 0.2 a
γ = 0.5 and b γ = 1

(
Ψ1,k[k − 1]
Ψ2,k[k − 1]

)

= (D[k − 1]D[k − 2] · · ·D[1])|λ=λk

(
Ψ1,k

Ψ2,k

)
,

q[0] = q,

(
Ψ1,1[0]
Ψ2,1[0]

)
=

(
Ψ1,1

Ψ2,1

)
. (14)

When N = 2, the 2-fold DT can be expressed as

q[2] = q[1] + 2
(λ∗

1 − λ1)Ψ1,2[1]∗Ψ2,2[1]
Ψ1,2[1]Ψ1,2[1]∗ + Ψ2,2[1]Ψ2,2[1]∗ .

(15)

Since all the eigenvalues in the standard Darboux
scheme are the same, the explicit formulas for Ψ1,2[1]
and Ψ2,2[1] cannot be obtained from the scheme.
Instead, to obtain the second-order rogue-wave solu-
tions of Eq. (1), we solve Lax Pair (2) with the q func-
tion found at the previous step, q = q[1], to obtain
Ψ1,2[1] and Ψ2,2[1],

Ψ1,2[1] = e− (1+6γ )i t
2

A1

3F1
, Ψ2,2[1] = e

(1+6γ )i t
2

A2

3F1
,

(16)

with

A1 = [
3 − 12x − 16x3 + 16x4 + 16t4(−i + 6α

−12iγ + 30δ)(i + 6α + 12iγ + 30δ)3

+ 32t3(i + 6α + 12iγ + 30δ)2

× (i − 3α + 12iγ − 15δ

+ x(−i + 12α − 12iγ + 60δ))

+ 8t (−36x2(α + 5δ) − 3(i + 7α + 20iγ + 55δ)

+ 4x3(i + 12α + 12iγ + 60δ)

− 3x(i + 8α + 28iγ + 80δ)) + 24t2(−1 − 48α2

− 40γ − 336γ 2 + α(2i − 72iγ − 720δ) + 50iδ

+ 120iγ δ − 2400δ2 + 24x2(α + 5δ)(i + 6α

+ 12iγ + 30δ) − 2x(1 + 36α2 + 24γ + 144γ 2

+ 360αδ + 900δ2))
]
,

A2 = [
3 + 12x + 16x3 + 16x4 + 16t4(−i + 6α

− 12iγ + 30δ)(i + 6α + 12iγ + 30δ)3

+ 32t3(i + 6α + 12iγ + 30δ)2

× (−i + 3α − 12iγ + 15δ + x(−i + 12α

− 12iγ + 60δ)) + 8t (36x2(α + 5δ) + 3(i + 7α

+ 20iγ + 55δ) + 4x3(i + 12α + 12iγ + 60δ)
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Fig. 3 The KM solitons via
Solutions (11) with
α = 0.01, δ = 0, h = 1.2 a
γ = 0.02 and b γ = 0.08

Fig. 4 Breathers via
Solutions (11) with
α = 0.01, δ = 0.03, γ = 0,
a h = 0.2 (the AB) b
h = 1.2 (the KM soliton)

− 3x(i + 8α + 28iγ + 80δ)) + 24t2(−1 − 48α2

− 40γ − 336γ 2 + α(2i − 72iγ − 720δ) + 50iδ

+ 120iγ δ − 2400δ2 + 24x2(α + 5δ)

× (i + 6α + 12iγ + 30δ)

+ 2x(1 + 36α2 + 24γ + 144γ 2 + 360αδ

+ 900δ2))
]
.

By virtue of Expressions (15) and (16), we obtain the
second-order rogue-wave solutions of Eq. (1) as

q[2] = e(1+6γ )i t G2

F2
, (17)

where G2 and F2 are given in the Appendix.

3 Discussions

Figure 1 shows the propagation of an AB and a KM
soliton without the presence of γ and δ. In the case
γ �= 0 and δ = 0, the propagation of ABs and KM
solitons is shown in Figs. 2 and 3: As γ increases,
the AB exhibits stronger localization in t, while the
distance between adjacent peaks keeps unchangedwith

Fig. 5 The first-order rogue wave via Solutions (12) with α =
0.01, γ = 0.01 and δ = 0.01

γ increasing, as seen in Fig. 2; for the KM soliton,
as γ increases, the distance between adjacent peaks
decreases, as seen in Fig. 3. In the case γ = 0 and
δ �= 0, the propagation of an AB and a KM soliton
is displayed in Fig. 4. We note that the propagation
directions of the AB and KM soliton change with the
presence of δ.
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Fig. 6 a The same as Fig. 5
except that γ = 0.1; b
Comparison between (a)
(short dashed curve) and
Fig. 5 (solid curve) with
x = 0

(a) (b)

Fig. 7 The same as Fig. 5 except that δ = 0.05

Here, we investigate how γ and δ affect the proper-
ties of rogue waves. With the presence of γ and δ, one
case of the first-order rogue-wave solutions is shown
in Fig. 5. With the increase in γ , properties of the first-
order roguewaves can be shown in Fig. 6a. In Fig. 6b, it
is found that the rogue wave can reach its peak and dis-
appear more quickly with the increase in γ at x = 0. In
other words, increasing the value of γ makes the exis-
tence time of a first-order rogue wave shorter. We note
that t = 0 implies that q(x, t) = −3+4x2

1+4x2
, which means

that γ and δ do not influence the envelope of the waves
q(x, t). With the comparison between Figs. 5 and 7, we
find that increasing δ would lead to an increase in the
existence time of a first-order rogue wave. Increasing
the value of γ makes the existence time of a second-
order roguewave shorter,while increasing δwould lead
to an increase in the existence time of a second-order
rogue wave. For simplicity, we do not include the fig-
ures here.

4 Conclusions

The ABs, KM solitons and rogue waves of the fifth-
order NLS equation, i.e., Eq. (1), which works as a
model corresponding to a one-dimensional anisotropic
Heisenberg ferromagnetic spin chain, have been inves-
tigated. Through DT (8), the ABs, KM solitons and
rogue-wave solutions, i.e., Solutions (11), (12) and (17),
havebeenobtained.Dependenceof the properties of the
ABs, KM solitons and rogue waves on the coefficients
of the fourth-order dispersion, γ , and of the fifth-order
dispersion, δ, has been examined. Figure 1 has shown
the propagation of an AB and a KM soliton without the
presence of γ and δ. In the case γ �= 0 and δ = 0: As γ

increases, theAB exhibits stronger localization in time,
while the distance between the adjacent peaks keeps a
unchanged with γ increasing, as seen in Fig. 2; for a
KM soliton, as γ increases, the distance between the
adjacent peaks decreases, as seen in Fig. 3. The prop-
agation directions of an AB and a KM soliton change
with the presence of δ, as shown in Fig. 4. Figure 5 has
displayed the first-order rogue wave with the presence
of γ and δ. Figure 6 has shown that the enhancement
of γ makes the existence time of the first-order rogue
wave shorter.With the comparison between Figs. 5 and
7, we have found that the enhancement of δ increases
the existence time of the first-order rogue wave.
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Appendix

G2 = (eit (1+6γ )(45 − 180x2 − 144x4

+ 64x6 + 64t6(1 + 36α2

+ 24γ + 144γ 2 + 360αδ + 900δ2)3

+ 384t5(1 + 36α2 + 24γ + 144γ 2

+ 360αδ+900δ2)2(−i(1+12γ )+6x(α+5δ))

+ 24t (−16i x4(1 + 12γ )

+ 24i x2(1+28γ )+3i(5+92γ )+96x5(α+5δ)

− 16x3(13α + 85δ) − 18x(13α + 105δ))

+ 12t2(−768i x3(1 + 12γ )(α + 5δ)

+ 192i x(α(−1 + 36γ ) − 5(5 + 12γ )δ)

+ 16x4(1 + 180α2 + 24γ + 144γ 2 + 1800αδ

+ 4500δ2)−24x2(5+204α2+152γ +1104γ 2

+ 2520αδ + 7500δ2) − 3(13 + 500α2 + 376γ

+ 1616γ 2 + 5320αδ + 7700δ2))

+ 48t4(−11 − 10800α4 − 464γ − 7200γ 2

− 48384γ 3−117504γ 4−250560α3δ+1800δ2

− 129600γ δ2 − 1814400γ 2δ2 − 11070000δ4

− 192i x(1 + 12γ )(α + 5δ)(1 + 36α2 + 24γ

+ 144γ 2+360αδ+900δ2)−2160αδ(1+56γ

+ 528γ 2+3700δ2)−72α2(7+264γ +2160γ 2

+ 29700δ2) + 4x2(1 + 6480α4 + 6912γ 3

+ 20736γ 4 + 129600α3δ + 5400δ2

+ 4050000δ4+864γ 2(1+900δ2)+2160×αδ

× (1+24γ +144γ 2+1500δ2)+48γ (1+2700δ2)

+ 216α2(1 + 24γ + 144γ 2 + 4500δ2)))

+ 192t3(24x3(α+5δ)(1+60α2+24γ +144γ 2

+ 600αδ+1500δ2)−4i x2(1+12γ )(1+108α2

+ 24γ + 144γ 2 + 1080αδ + 2700δ2)

−i(1 + 84γ + 1584γ 2 + 8640γ 3

+ 36α2(5 + 12γ ) + 1080α(3 + 20γ )δ

+ 11700δ2+97200γ δ2)−6x(252α3+4500α2δ

+ 5δ(7 + 264γ + 2160γ 2 + 9900δ2)

+α(11 + 360γ + 2736γ 2 + 26100δ2))))),

F2 = (9 + 108x2 + 48x4 + 64x6 + 48t x((51 − 8x2

+ 48x4)α + 5(75 − 40x2 + 48x4)δ)

+ 2304t5x(α + 5δ)(1 + 36α2 + 24γ + 144γ 2

+360αδ + 900δ2)2 + 64t6(1 + 36α2 + 24γ

+ 144γ 2 + 360αδ + 900δ2)3 + 12t2

×(−24x2(1 + 60α2 + 56γ + 528γ 2

+ 1080αδ + 3900δ2) + 16x4(1 + 180α2 + 24γ

+ 144γ 2 + 1800αδ + 4500δ2)

+ 3(11 + 556α2 + 456γ + 4912γ 2 + 9080αδ

+ 37900δ2)) + 48t4(9 − 5616α4 + 496γ

+ 10080γ 2 + 89856γ 3 + 297216γ 4

− 146880α3δ + 23400δ2 + 388800γ δ2

+ 1296000γ 2δ2 − 7830000δ4 − 2160αδ(−3

− 40γ − 48γ 2 + 2500δ2) − 72α2(−5 − 24γ

+ 432γ 2 + 18900δ2) + 4x2(1 + 6480α4

+ 6912γ 3 + 20736γ 4 + 129600α3δ

+ 5400δ2 + 4050000δ4 + 864γ 2(1 + 900δ2)

+ 2160αδ(1 + 24γ + 144γ 2 + 1500δ2)

+ 48γ (1 + 2700δ2) + 216α2(1 + 24γ + 144γ 2

+ 4500δ2))) + 1152t3x(12(−9 + 20x2)α3

+ 180(−13+20x2)α2δ + α(1 − 72γ − 1008γ 2

− 15300δ2 + 4x2(1 + 24γ +144γ 2 + 4500δ2))

+ 5δ(5 + 24γ − 432γ 2 − 6300δ2

+ x2(4 + 96γ + 576γ 2 + 6000δ2)))).
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