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Abstract By introducing the periodic parameter-
switching scheme to the Lorenz oscillator, a switched
dynamic model is established. In order to investigate
the mechanism of the behaviors of the switched sys-
tem, the Poincaré map of the whole system is defined
by suitable local sections and local maps. Different
types of periodic oscillations and their transitions to
chaos in the system can be observed. Based on the con-
ditions when the Floquet multiplies of corresponding
fixed point associated with the periodic solution pass
the unit circle, some bifurcation curves are obtained
in the plane of bifurcation parameters, dividing the
parameters plane into several regions corresponding to
different kinds of oscillations. Meanwhile, bifurcation
scenarios, such as fold bifurcation, pitchfork bifurca-
tion and period-doubling bifurcation, are determined in
the switched system.
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1 Introduction

Among the numerous chaotic systems, the Lorenz
model [1], expressed as,

ẋ = α(y − x), ẏ = x(δ − z) − y, ż = xy − βz, (1.1)

with α, β, δ > 0, is themost classical and paradigmatic
chaotic system due to a historical reason that it was the
first model of chaotic behavior. This simple nonlinear
model has received much interest, and a lot of results
have been reported [2–4]. It is found that three equilib-
ria, two ofwhich are symmetricwith the transformation
(x, y, z) −→ (−x,−y, z), may exist in the system and
the trajectory of the system cycling around two sym-
metric foci may form a chaotic attractor, namely the
famous butterfly effect [5]. However, from a practical
design point of view, many more chaotic systems with
the simpler structures were established, such as Chua’s
circuit [6], Chen system [7], Lü system [8] and the
Lorenz system family [9].

How to control these systems to meet the need, such
as to stabilize the oscillations or to control chaos includ-
ing eliminating or utilizing chaos, is theoretically a
very attractive yet technically quite challenging task
in nonlinear dynamics [10,11]. For the Lorenz system,
many controllers were designed with multiple control
inputs or state variable feedbacks [12–17]. In Ref. [12],
a simple feedback controller to reduce and even elim-
inate the chaotic behavior in a controlled Lorenz was
investigated. In Refs. [13] and [14], two hyperchaotic
Lorenz systems by adding extra variables into Lorenz
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system were constructed and the evolution processes
of the system were analyzed. In Refs. [15] and [16], a
hyperchaotic Lorenz system with the structure of two
time scales was constructed and the bursting phenom-
ena as well as the associated bifurcation mechanisms
were presented. In Ref. [17], a Lorenz system involv-
ing complex variables was established and the differ-
ences between the behavioral features of the Lorenz
system with complex variables and the Lorenz sys-
tem with real variables were described. In contrast,
in this paper, we consider the scheme that is to use a
time-varying, or more preciously, periodically switch-
ing parameter associated with the Lorenz oscillator to
study the dynamics of the switched Lorenz oscillator.

Generally, switching from one subsystem to another
often occurs on a set of borders associated with cer-
tain critical state variable or related to a fixed time for
the occurrence of alteration [18,19]. When the trajec-
tory crosses the borders, the system is redefined, which
means the dynamics may alternate between different
types of oscillations determined by subsystems, caus-
ing non-smooth phenomena at the switching points. It
is noted that the switching may obviously lead to com-
plicated behaviors. However, to our knowledge, little
research work related to the switched Lorenz system
has been reported [20].Manyproblems for the switched
systems such as the dynamical evolution with the vari-
ation of the parameters and the bifurcations associated
with the switches as well as the mechanism of com-
plexity still need further research.

In the following sections, first, the two Lorenz sys-
tems that switches between each other based on the
parameters altered periodically are described, and then
the analyzed methods for symmetric and asymmetric
periodic switching oscillators aswell as related bifurca-
tion mechanism are explained. Subsequently, the two-
parameter bifurcation sets of the switched system and
themechanisms of several typical dynamical behaviors
are presented.

2 The model of switched system

Let us consider the time switched system

dX

dt
= f1(X, λ1)IB(t) + f2(X, λ2)IBc (t), (2.1)

where

(a)

(b)

Fig. 1 a Trajectory partition; b the switching scheme

IB (t) =
{
1, t ∈ B,

0, t ∈ Bc,
B =

∞⋃
i=0

[
i(T1 + T2), (i + 1)T1 + iT2

]
,

and X = (x, y, z)T are dynamic state. λ1, λ2 ∈ R
r

are the parameter depending on f1 and f2, respec-
tively. r is integer. Bc is the complementary set
of the set B. fk is the vector field with fk =
(α(y − x), x(δk − z) − y, xy − βk z)T , k ∈ {1, 2}.
When t ∈ B, subsystem Ẋ = f1(X, λ1), named SW1,
is active, when t ∈ Bc subsystem Ẋ = f2(X, λ2),

namedSW2, is active. Thus, a trajectory of the switched
system (2.1) can be partitioned, as depicted for a par-
ticular case in Fig. 1a, based on the switching scheme
described in Fig. 1b.

Given an initial point X0, the switched system is
governed by SW1. After a period of time T1, SW2 is
activated for another relative fixed period of time, T2,
which implies that at t = T1 + T2, the switched system
may turn back to SW1 until the next T1 is satisfied
and the motion then continues as above. Therefore, the
trajectory of switched system can be divided into two
parts, one is governed by SW1, expressed as

X(t) = �(t,X2i , α, β1, δ1), t ∈ B, (2.2)

the other is determined by SW2, i.e.,

X(t) = �(t,X2i+1, α, β2, δ2), t ∈ Bc, (2.3)

where X2i ,X2i+1, i = 0, 1, 2 . . . are the starting
points of the two subsystems, respectively.

3 Analyzed method

Since the system (2.1) is a time switched system, two
switching hyperplanes are conveniently given by (see
Fig. 2)
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Fig. 2 Local hyperplanes and local mappings

∑
1

=
∞⋃
i=0

{
(X, t) ∈ R3 × R+ | t = (i + 1)T1 + iT2

}
,

∑
2

=
∞⋃
i=0

{
(X, t) ∈ R2 × R+ | t = (i + 1)(T1 + T2)

}
.

(3.1)

According to the switching scheme and the def-
inition of the solution of (2.1), points

{
X2i+1, i =

0, 1, 2, . . .
}
are on the hyperplane

∑
1, while points{

X2i , i = 1, 2, . . .
}
are on the hyperplane

∑
2. Mean-

while, on the hyperplanes, two local mappings are con-
veniently defined as (see Fig. 2)

P1 :
∑
1

−→
∑
2

: X2i−1 �−→ X2i

= �(T2,X2i−1, α, β2, δ2),

P2 :
∑
2

−→
∑
1

: X2i �−→ X2i+1

= �(T1,X2i , α, β1, δ1). (3.2)

where i = 1, 2, . . . . Thus, the periodic behavior of
limit cycle (labeled � in Fig. 2) of the switched system
(2.1) can be expressed as follow{

�(T2,X∗, α, β2, δ2) − X
′ = 0,

�(T1,X
′
, α, β1, δ1) − X

∗ = 0,
(3.3)

where the point X
′
is on the hyperplane

∑
2. Assume

that the hyperplane
∑

1 is the Poincaré section, the
Poincaré mapping P from

∑
1 to

∑
1 can be expressed

as

P(X2i−1) = �
(
T1, �

(
T2,X2i−1, α, β2, δ2

)
, α, β2, δ2

)
.

(3.4)

Essentially, the periodic solution of the switched sys-
tem (2.1) is equivalent to the existence of the fixed point
of the Poincaré mapping P , namely

X
∗ − P(X∗) = 0. (3.5)

The fixed point X∗ is corresponding to the periodic
solution of the switched system (2.1) with period T =
T1 + T2, which is called period 1 solution. Similarly,
if X∗ = Pk(X∗) and X

∗ �= Pm(X∗),m = 1, 2, . . . ,
k−1, the switched system (2.1) has a period k solution.

Since the subsystems of the switched system (2.1)
is invariant with respect to the transformation 	 :
(x, y, z)T �→ (−x,−y, z)T , the solutions of the
switched system (2.1) may reflect certain spatial invari-
ance. Assuming matrix R is the transformation matrix
corresponding to this transformation, a simple classifi-
cation of the solutions of the system can be defined.

(i) A solution � of the switched system (2.1) is called
symmetric if R(�) = �.

(ii) Two solutions �1, �2 of the switched system (2.1)
are called R-conjugate if they satisfy �2 = R(�1).

The symmetric limit cycles can be located by solving
the following equation

F(X∗) := R
(
P(X∗)

) − P
(
R(X∗)

) = 0. (3.6)

The solution X
∗ can be obtained using a multiple-

shootingmethod [21],which solves the iterative scheme

X
k+1 = X

k − (
DF(Xk)

)−1
F

(
X
k), (3.7)

where

DF(Xk) = R
(
DP(Xk)

) − DP
(
R(Xk)

)
. (3.8)

From (3.4), it follows that

DP = D� ◦ D�. (3.9)

The Jacobian matrix D�, D� can be computed by the
following variational equations

d

dt
(D�) = f1X(t)D�, (3.10)

d

dt
(D�) = f2X(t)D�, (3.11)

with the initial condition D�|t=0 = I, D�|t=T1 = I ,
respectively.Where f1X, f2X are the Jacobianmatrices
of f1, f2. I is an identity matrix. Note that f1X, f2X
are evaluated along the trajectory, and hence are time-
varying matrices. Therefore the symmetric periodic
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solution of the system (2.1) can be obtained, the stabil-
ity and the corresponding bifurcations of which can be
determined by the associated characteristic equation,
written in the form

det(DP − μI ) = 0, (3.12)

whereμ = (μ1, μ2, μ3) is the eigenvalue. For the peri-
odic solution of the switched system, period-doubling
bifurcation may occur when μ1 = −1, while fold or
pitchfork bifurcation may take place once μ1 = 1 (see
Ref. [21], Theorem 7.9 and Ref. [22]). Meanwhile, the
Lyapunov exponent λ = (λ1, λ2, λ3) can be calculated
by

λ = lim
N→∞

1

N

N−1∑
k=0

log|DP(Xk)| (3.13)

where Xk = Pk(X0) (see Ref. [23]). For stable cycles,
λi , i = 1, 2, 3 are all negative; for chaotic attractors,
there is a Lyapunov exponent λi which is positive.

4 Bifurcations of cycles

In this section, we analyze the bifurcation of the sym-
metric periodic solution changing the parameters β2

and δ2 and fixing the parameters α = 5.0, β1 =
1.0, δ1 = 10.0, T1 = T2 = 1.0. For different initial
conditions may influence the structure of the attrac-
tors of the switched system, all the tests presented
in this paper have been done for the initial condition
X0 = (−3.7,−3.7, 10.0).

In Fig. 3a we present two-parameter bifurcation
diagram for parameters β2 ∈ [2.3, 18.0] and δ2 ∈
[12.0, 16.0] (the rank of the values of δ2 for which
we have detected the existence of symmetric periodic
solutions for the studied values of β2). In Fig. 3b, c, we
show two largest Lyapunov exponent diagrams, one
for δ2 = 15.5, and another one for β2 = 12.0. Since
a positive value of the maximum Lyaponuv exponent
is associated with a chaotic behavior, while the nega-
tive is related to stable limit cycles, from the bifurca-
tion diagram Fig. 3a, in conjunction with Fig. 3b, c, the
parameter regions I I I, I V, V I I, V I I I are the chaotic
regions bounded by regular regions I, I I, V, V I .

The symmetric period 2 solution, shown in Fig. 4a,
exists in the region I . One can see that the vector fields
of the switched system (2.1) may alternate among four
stable focuses governed by the two subsystem, respec-
tively, forming the stable symmetric period 2 solution

Fig. 3 a Two-parameter bifurcation diagram in the (β2, δ2)

plane;b and c the largest Lyapunov exponent for particular values

[24]. With the change of the parameters β2, δ2, for the
symmetric periodic solution, fold and pitchfork bifur-
cations are possible, as shown in Fig. 3a. Crossing the
bifurcation curve ofG1 orG2 from the region I , the sta-
ble symmetric period 2 solution becomes unstable and
suddenly change to chaotic oscillation via fold bifurca-
tion. The typical phase portraits are presented in Fig. 4.
Crossing the curve of PF from the bottom up, the sym-
metry of the symmetric period 2 solution will be break,
then a pair of stable R-conjugate period 2 solutions
(see Fig. 5b) are obtained in region I I via pitchfork
bifurcation.

With the increase of β2, the pair of stable R-
conjugate period 2 solutions may undergo pitchfork
bifurcation at PF, evolving to a symmetric period 2
solution and finally leading to chaos via fold bifurca-
tion at G2. While with the increase in the parameter δ2,
the pair of stable R-conjugate period 2 solutions may
become unstable at I2, resulting a pair of R-conjugate
period 4 oscillations and finally evolving to chaos via
period-doubling bifurcation, respectively. The typical
phase portraits are presented in Fig. 5.

In the region V , a pair of stable R-conjugate period
1 solutions, shown in Fig. 6a, are obtained. Also, the
pair of stable R-conjugate period 1 may undergo fold
and period-doubling bifurcation, denoted as G3 and
I1 respectively on the bifurcation diagrams in Fig. 3a.
Crossing the bifurcation curve of G3 from the left to
right, the two R-conjugate period 1 solutions may meet
with each other and disappear at G3, leaving the only
chaotic solution in the region V I I I . The typical phase
portraits are presented in Fig. 6.
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Fig. 4 A symmetric period
2 solution to chaos for
δ2 = 13.5. a β2 = 7.10;
b β2 = 6.75
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Fig. 5 A pair of
R-conjugate period 2
solution to chaos for
δ2 = 15.5, respectively.
a β2 = 6.9; b β2 = 9.6; c
β2 = 11.2; d β2 = 11.6
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Fig. 6 A fixed period 1
solution to chaos for
δ2 = 13.5. a β2 = 5.46;
b β2 = 5.72
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Crossing the bifurcation curve of I1 from the bot-
tom up, the two R-conjugate period 1 solutions may
become unstable at I1, leading to a pair of stable R-
conjugate period 2 solution, while when further cross-
ing the curve of I2 from the bottom up, the two stable
R-conjugate period 2 solution change to a pair of sta-

ble R-conjugate period 4 solution, and may evolve to
chaos, respectively in region V I I . Finally, the two R-
conjugate chaotic solution may expand to interact with
each other and disappear, forming an enlarged chaotic
solution. The typical phase portraits are presented in
Fig. 7.
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Fig. 7 A pair of
R-conjugate period 1
solutions to chaos for
δ2 = 14.5, respectively.
a β2 = 2.6; b β2 = 3.05;
c β2 = 3.4; d β2 = 4.3
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5 Conclusions

Based on the periodic switching scheme, a periodic
parameters-switching Lorenz system is established,
which may exhibit very complex behaviors such as
symmetric and asymmetric periodic oscillations. The
trajectory of these solution may be divided into parts
governed by the two subsystems respectively, which
leading to non-smoothness of the periodic orbits. By
introducing the Poincaré map related to all parts of the
trajectory, the linearized model of the switched sys-
tem is constructed. Using bifurcation analysis to the
linearized model, two-parameter bifurcation diagrams
are obtained, dividing the parameters plane into a set of
narrow regions associated with the existence of (sym-
metric and asymmetric) periodic solutions and chaotic
oscillations. We identified basic bifurcation mecha-
nisms leading to transition from regular oscillation to
chaos.

There is a question that we are interested in left
unsolved in this paper. Is there a curve to distinguish the
two R-conjugate chaotic solutions from the enlarged
chaotic solutions? This problem seems quite difficult
and quite complex. Scientists interested in nonlinear
dynamics can pay attention to this problem.
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