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Abstract This paper focuses on the local bifurca-
tion characteristics of an aircraft cracked rotor system
mainly for the 2:1 and 3:1 super-harmonic resonances
induced by the maneuver load. The motion equations
of the system are formulated with the consideration
of the nonlinear stiffness of the Duffing type and the
breathing of a transverse crack on the shaft, as well as
the maneuver load induced by the climbing and div-
ing flight of the aircraft. By using the multiple scales
method, themotion equations are analytically solved to
obtain the bifurcation equations for 2:1 and 3:1 super-
harmonic resonances, respectively. Furthermore, the
two-state variable singularity method is employed to
analyze the local bifurcation characteristics of the sys-
tem affected by crack coefficient and maneuver load.
For each case, two curves of hysteresis set dividing
K − G parameter plane into three regions are demon-
strated. Accordingly, bifurcation modes for different
parameter combinations from the three regions and the
two curves are obtained. The approach in this paper
will provide an effective and convenient way to ana-
lyze the bifurcation characteristics of dynamical sys-
tems. The results in this paper will contribute to a bet-
ter understanding of the effect of the maneuver load on
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1 Introduction

Crack fault, which is one of the most serious dam-
age in aircraft engines and other rotating machines,
has been paid more and more attention in the last four
decades [1]. Wauer [2], Gasch [3] and Dimarogonas
[4] have reviewed the dynamical behavior of rotor sys-
temswith transverse cracks, wheremany complex non-
linear dynamic phenomena are shown. Based on the
switching crack model (also known as hinge model)
[3] and the response-dependent breathing crack model
[5,6], the critical speed was investigated to detect
the nonlinear dynamics of various cracked rotor sys-
tems, that is influenced by the crack breathing and the
rotor imbalance orientation [7], and the stabilities of
periodic movements [8–10] and nonlinear responses
[11] in cracked rotor systems were also discussed.
In addition, the harmonic balance method [12], the
alternate frequency/time domain approach [13] and
some experimental methods [14,15] were developed
to gain an insight into the dynamical characteristics
of cracked rotors, respectively. Throughout these stud-
ies, it was shown that the 2× and 3× super-harmonic
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frequency responses can be viewed as distinct signals
for crack fault detections. Accordingly, the diagnos-
tic tools for the changes in evolution of the nonlin-
ear behavior at the super-harmonic frequency compo-
nents are proposed to gain crack detection strategies
[16–22]. However, to our knowledge, analytical inves-
tigations for the super-harmonic resonances affected
by system parameters and their local bifurcation char-
acteristics have been rarely seen in the current refer-
ences.

The gravity, which plays an important role called
weight dominance in the crack breathing, is a con-
stant in general rotor systems [23,24]. In an aircraft
rotor system, however, the maneuver load playing
the same role as the gravity may change from 0 to
highly 10 times of the gravity during the maneuver-
ing flight [25,26]. Therefore, it will make great effect
on the nonlinear dynamics and bifurcations of the
rotor system. Lin et al. [27] investigated the dynam-
ics of a rotor system maneuvering with either a con-
stant flight speed or a constant acceleration, wherein it
has been shown that the climbing angle, acceleration
and other flight parameters make significant influence
on the parameter range for bifurcation, quasi-periodic
response and chaotic response as well as system sta-
bility. Hou et al. [28,29] discussed the occurrence of
the subharmonic resonance in an aircraft rotor system
due to the effect of the maneuver load from hover-
ing flight, which indicates that the subharmonic res-
onance may induce a rub-impact phenomena in the
proposed rotor system. Yang et al. [30] found three dif-
ferent ways for the vibration response going to chaos
in a cracked rotor system during hovering flight, that
are quasi-periodic, intermittence and period-3 bifur-
cation. Moreover, the dynamic response of a cracked
rotor-bearing systemunder time-dependent basemove-
ments was studied by Han and Chu [31], and the
effects of various base angular motions, frequency and
amplitude of base excitations, and crack depths on
the system dynamic behaviors were discussed. How-
ever, the dynamical effects of the maneuver load on
the super-harmonic resonances in aircraft rotor system
with early crack fault and their local bifurcation char-
acteristics have not been discussed in the above litera-
ture.

This problem is subjected to combined paramet-
ric and external excitations. Many researches work-
ing on this subject have been carried out. The pri-
mary resonance dynamics of a weak nonlinear sys-

tem subjected to parametric and external excitations
was investigated in [32], where it was found that sta-
ble multimodal responses may exist in the first-order
asymptotic solution, even though only one mode was
involved in the resonance and no internal resonance
condition was present. For a nonlinear parametrically
self-excited systemunder harmonic external excitation,
the vibration amplitudes and the width of synchroniza-
tion areas close to the first and second free vibration fre-
quency were demonstrated in [33]. A nonlinear oscil-
lator with a bias parameter that breaks the symmetry
of the motion was considered in [34], wherein it was
found that the dynamics and stability of the system
under external and parametric excitations significantly
depended on the bias parameter. Nonlinear phenom-
ena including various types of bifurcations [35], reso-
nant hysteresis [36] and routes to chaos [35–37] were
found in different dynamic systems driven by com-
bined parametric and external excitations. Besides, the
dynamic analysis of controlling chaos in a one degree-
of-freedom systemwith quadratic and cubic nonlinear-
ities subjected to external and parametric excitations
with incommensurate frequencies was carried out in
[38].

According to the previous investigations, the pri-
mary resonance of cracked rotor systems has been
deeply discussed [7,32], and it has been shown that the
2:1 and 3:1 super-harmonic resonances are represen-
tative phenomena in cracked rotor systems [16]. Thus,
the objective of this paper is mainly to detect the local
bifurcation characteristics for the 2:1 and 3:1 super-
harmonic resonances of an aircraft cracked rotor sys-
tem considering themaneuver load, which is a dynamic
system subjected to not only parametric and harmonic
external excitations, but also inertial excitation. In the
motion equations of the system, themaneuver load is in
the vertical direction only, which breaks the symmetry
of the motion. The multiple scales method is used to
obtain the bifurcation equations of the system, which
enables us to analyze the response characteristics of the
system affected by the maneuver load combined with
the crack breathing. Moreover, the two-state variable
singularity method is employed to analyze the bifurca-
tion characteristics of the system affected by the para-
meter combination between the maneuver load and the
crack coefficient, and different bifurcation modes are
demonstrated accordingly.

The remaining parts of the paper are organized as
follows. In Sect. 2, the equations of motion of the
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system are formulated with the consideration of the
nonlinear stiffness of the Duffing type and the breath-
ing of a transverse crack on the shaft, as well as the
maneuver load induced by a climbing and diving flight
model. In Sect. 3, the bifurcation equations for 2:1 and
3:1 super-harmonic resonances are obtained by utiliz-
ing the multiple scales method to solve the motion
equations analytically, respectively. Accordingly, the
response characteristics of the system affected by the
crack coefficient and the maneuver load are analyzed.
In addition, the numerical computations are also carried
out by using the fourth-order Runge–Kutta method to
verify the correctness of the above-mentioned theoreti-
cal results. In Sect. 4, the local bifurcation characteris-
tics of the system affected by the crack coefficient and
the maneuver load are analyzed by using the two-state
variable singularity method for both 2:1 and 3:1 super-
harmonic resonance cases. For each case, two curves
of hysteresis set dividing K − G parameter plane into
three regions are demonstrated. Different bifurcation
modes for different parameter combinations from the
three regions and the two curves are obtained accord-
ingly. Finally, in Sect. 5, the principle results of this
study and conclusions are summarized.

2 Mathematical modeling

2.1 Rotor system model

A symmetrical rotor systemmodel considering the non-
linear stiffness ofDuffing type [39–41] and a transverse
crack on the shaft is presented in this paper as shown
in Fig. 1, where m and e are the mass and the eccen-
tricity of the disk, k and α are, respectively, the linear
and nonlinear coefficients of the shaft stiffness,ω is the
rotation speed. The motion equations of the system are
presented by

mÿ + cẏ + ky − Fy + αy3 = meω2 cosωt + Gy,

(1a)

mz̈ + cż + kz − Fz + αz3 = meω2 sinωt + Gz,

(1b)

inwhich, c = 2ξmω is the damping of the shaft, Fy and
Fz are the forces representing the effects of the crack,
Gy and Gz are the additional exciting forces caused by
themaneuvering flight of the aircraft, i.e., themaneuver
load.

o
o′

,  ,  k cα

Fig. 1 Schematic diagram of a cracked rotor system

mω

v y
z

o

ClimbingDiving

Trajectory

Fig. 2 Climbing–diving flight model

2.2 Maneuvering flight model

Figure 2 shows themaneuvering flightmodel discussed
in this paper, where it is assumed that the angular veloc-
ity ωm and the speed v of the aircraft are constants in
the climbing and diving flight, and o is the gravity cen-
ter of the aircraft corresponding to Fig. 1. Then, Gy

and Gz can be obtained as follows

Gy = mωmv = Gmg, (2a)

Gz = 0, (2b)

where the G value represents how many times larger
than the gravity acceleration.

2.3 Breathing crack model

The cross section of the cracked shaft is shown in Fig. 3,
where it is supposed that the initial orientation of the
crack coincides with y-axis. Fy and Fz can be denoted
by [7,16]

Fy = f (ωt) �k
(
y cos2 ωt + z sinωt cosωt

)
, (3a)

Fz = f (ωt) �k
(
y sinωt cosωt + z sin2 ωt

)
, (3b)

where�k is the crack stiffness that represents the effect
of the crack depth on the stiffness of the shaft, f (ωt)
reflects the breathing of the crack. Supposing that the
breathing of the crack depends on the direction of the
maneuver load, then we have
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Fig. 3 Schematic diagram of the cross section of the cracked
shaft

f (ωt) = 1 + cosωt

2
. (4)

2.4 Equations of motion

Substituting (2) and (3) into (1), noting (4), the equa-
tions of motion of the system are obtained as follows

mÿ + cẏ + ky

− �k

2
(1 + cosωt)

(
y cos2 ωt + z sinωt cosωt

)

+αy3 = meω2 cosωt + Gmg, (5a)

mz̈ + cż + kz

− �k

2
(1 + cosωt)

(
y sinωt cosωt + z sin2 ωt

)

+αz3 = meω2 sinωt. (5b)

Letting Y = y
δ
, Z = z

δ
, τ = ωt , s = ω

ωc0
, K = �k

k ,

E = e
δ
, where δ = mg

k , ωc0 =
√

k
m , the dimensionless

equations of Eq. (5) can be obtained as follows

Y ′′ + 2ξY ′ + 1

s2
Y

− K

2s2
(1 + cos τ)

(
Y cos2 τ + Z sin τ cos τ

)

+ K1Y
3 = E cos τ + G

s2
, (6a)

Z ′′ + 2ξ Z ′ + 1

s2
Z

− K

2s2
(1 + cos τ)

(
Y sin τ cos τ + Z sin2 τ

)

+ K1Z
3 = E sin τ, (6b)

where K1 = αδ2

mω2 .
The basic system parameters are shown as follows

[28,42]

m = 32.1 kg, k = 2.5 × 107 N m−1,

α = 3.8 × 1014 N m−3,

ξ = 0.02, e = 10µm, K = 0.1, G = 5. (7)

3 Response analysis

3.1 Equations transforming

Considering the condition of weak damping, shallow
crack and weak support nonlinearity, letting q1 = Y ,
q2 = Z , ω1 = 1

s , εa1 = 2ξ , εa2 = K
8s2

, εa3 = K1,

G1 = G
s2
, where ε is a small parameter, then (7) can be

transformed as

q ′′
1 + ω2

1q1 = −εa1q
′
1+εa2 ((2 + 3 cos τ +2 cos 2τ

+ cos 3τ) q1 + (sin τ + 2 sin 2τ + sin 3τ) q2)

− εa3q
3
1 + E cos τ + G1, (8a)

q ′′
2 + ω2

1q2 = −εa1q
′
2 + εa2 ((2 + cos τ − 2 cos 2τ

− cos 3τ) q2 + (sin τ + 2 sin 2τ + sin 3τ) q1)

− εa3q
3
2 + E sin τ. (8b)

Equation (8) can be analytically solved by using
the multiple scales method [43,44] to investigate the
2:1 and 3:1 super-harmonic resonances and the corre-
sponding local bifurcation characteristics of the sys-
tem. The solving processes are given in the following
two sections.

3.2 Equations solving for 2:1 super-harmonic
resonance

Letting T1 = τ and T2 = ετ , supposing that the tuning
parameter σ satisfies

ω2
1 = 22 − εσ = 4 − εσ. (9)

Supposing the solutions of Eq. (8) are as follows

q1 = u11 + εu12, (10a)

q2 = u21 + εu22. (10b)

Substituting (10) into Eq. (8) and equating the coeffi-
cients of ε0 and ε1 to zero, it can be obtained that

ε0 :

D2
1u11 + 4u11 = E cos τ + G1, (11a)

D2
1u21 + 4u21 = E sin τ ; (11b)
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ε1 :
D2
1u12 + 2D1D2u11 + 4u12 − σu11 = −a1D1u11

+ a2 (2 + 3 cos τ + 2 cos 2τ + cos 3τ) u11

+ a2 (sin τ + 2 sin 2τ + sin 3τ) u21 − a3u
3
11, (12a)

D2
1u22 + 2D1D2u21 + 4u22 − σu21 = −a1D1u21

+ a2 (2 + cos τ − 2 cos 2τ − cos 3τ) u21

+ a2 (sin τ + 2 sin 2τ + sin 3τ) u11 − a3u
3
21, (12b)

where D1 = ∂
∂T1

, D2 = ∂
∂T2

.
The general solutions of Eq. (11) are supposed to be

u11 (T1, T2) = A (T2) cos (2T1 + φ1 (T2))

+C1 cos T1 + G2, (13a)

u21 (T1, T2) = B (T2) sin (2T1 + φ2 (T2))

+C2 sin T1, (13b)

where C1 = C2 = E
3 , G2 = G1

4 .
Substituting (13) into Eq. (12), then, according to

the conditions of eliminating the secular terms, it can
be obtained that

A′ = −1

8
(4a1A + 4a2C1 sin φ1

+ 4a2G2 sin φ1 − 3a3C
2
1G2 sin φ1

)
, (14a)

Aφ′
1 = −1

4
σ A + 1

16

(
3a3A

3 + 6a3AC
2
1

+ 12a3AG
2
2 − 8a2A − 8a2C1 cosφ1

− 8a2G2 cosφ1 + 6a3C
2
1G2 cosφ1

)
, (14b)

B ′ = −1

4
(2a1B + a2C1 sin φ2 + a2C2 sin φ2

+ 2a2G2 sin φ2) , (14c)

Bφ′
2 = −1

4
σ B + 1

16

(
3a3B

3 + 6a3C
2
2 B − 8a2B

− 4a2C1 cosφ2 − 4a2C2 cosφ2

− 8a2G2 cosφ2) , (14d)

where ()′ = d
dT2

().
Equating the right sides of Eq. (14) to zero, then

eliminating φ1 and φ2, the bifurcation equations of the
system can be obtained as follows

16a21 A
2

(−4a2C1 − 4a2G2 + 3a3C2
1G2

)2

+ A2
(
3a3A2 + 6a3C2

1 − 8a2 − 4σ + 12a3G2
2

)2

4
(−4a2C1 − 4a2G2 + 3a3C2

1G2
)2

−1 = 0, (15a)

4a21B
2

a22 (C1 + C2 + 2G2)
2

+ B2
(
3a3B2 + 6a3C2

2 − 8a2 − 4σ
)2

16a22 (C1 + C2 + 2G2)
2

−1 = 0, (15b)

or

9a23 Ā
3 + 12a3

(
3a3C

2
1 − 4a2 − 2σ + 6a3G

2
2

)
Ā2

+
(
64a21+4

(
3a3C

2
1 − 4a2−2σ +6a3G

2
2

)2)
Ā

− 4
(
4a2C1+4a2G2−3a3C

2
1G2

)2 = 0, (16a)

9a23 B̄
3 + 12a3

(
3a3C

2
2 − 4a2 − 2σ

)
B̄2

+
(
64a21 + 4

(
3a3C

2
2 − 4a2 − 2σ

)2)
B̄

− 4 (2a2 (C1 + C2) + 4a2G2)
2 = 0, (16b)

where Ā = A2, B̄ = B2.
From (16), the maneuver load G2 makes signifi-

cant effects on the coefficients of Ā2, Ā1 and Ā0 due
to its coupling with the nonlinear stiffness parameter
a3 and its coupling with the crack parameter a2 (see
16a). Moreover, the coupling between the crack and
the maneuver load also makes an effect on the coeffi-
cient of B̄0 for the bifurcation equation of the horizontal
direction (see 16b). Based on (16), the response char-
acteristics as well as the bifurcation characteristics of
the system for 2:1 super-harmonic resonance can be
investigated analytically.

3.3 Equations solving for 3:1 super-harmonic
resonance

Letting T1 = τ and T2 = ετ , supposing that the tuning
parameter σ satisfies

ω2
1 = 32 − εσ = 9 − εσ. (17)

Supposing the solutions of Eq. (8) are as follows

q1 = u11 + εu12, (18a)

q2 = u21 + εu22. (18b)

Substituting (18) into Eq. (8) and equating the coeffi-
cients of ε0 and ε1 to zero, it can be obtained that
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ε0 :
D2
1u11 + 9u11 = E cos τ + G1, (19a)

D2
1u21 + 9u21 = E sin τ ; (19b)

ε1 :
D2
1u12 + 2D1D2u11 + 9u12 − σu11 = −a1D1u11

+ a2 (2 + 3 cos τ + 2 cos 2τ + cos 3τ) u11

+ a2 (sin τ + 2 sin 2τ + sin 3τ) u21 − a3u
3
11, (20a)

D2
1u22 + 2D1D2u21 + 9u22 − σu21 = −a1D1u21

+ a2 (2 + cos τ − 2 cos 2τ − cos 3τ) u21

+ a2 (sin τ + 2 sin 2τ + sin 3τ) u11 − a3u
3
21, (20b)

where D1 = ∂
∂T1

, D2 = ∂
∂T2

.

The general solutions of Eq. (19) are supposed to be

u11 (T1, T2) = A (T2) cos (3T1 + φ1 (T2))

+C1 cos T1 + G2, (21a)

u21 (T1, T2) = B (T2) sin (3T1 + φ2 (T2))

+C2 sin T1, (21b)

where C1 = C2 = E
8 , G2 = G1

9 .
Substituting (21) into Eq. (20), then according to

the conditions of eliminating the secular terms, it can
be obtained that

A′ = − 1

24

(
12a1A + 4a2C1 sin φ1

− 4a2C2 sin φ1 + 4a2G2 sin φ1 − a3C
3
1 sin φ1

)
,

(22a)

Aφ′
1 = −1

6
σ A + 1

24

(
3a3A

3 + 6a3C
2
1 A + 12a3G

2
2A

− 8a2A − 4a2C1 cosφ1 + 4a2C2 cosφ1

− 4a2G2 cosφ1 + a3C
3
1 cosφ1

)
, (22b)

B ′ = − 1

24

(
12a1B + 4a2C1 sin φ2 − 4a2C2 sin φ2

+ 4a2G2 sin φ2 + a3C
3
2 sin φ2

)
, (22c)

Bφ′
2 = −1

6
σ B + 1

24

(
3a3B

3 + 6a3C
2
2 B − 8a2B

− 4a2C1 cosφ2 + 4a2C2 cosφ2

− 4a2G2 cosφ2 − a3C
3
2 cosφ2

)
, (22d)

where ()′ = d
dT2

().
Equating the right sides of Eq. (22) to zero, then

eliminating φ1 and φ2, the bifurcation equations of the
system can be obtained as follows

144a21 A
2

(−4a2C1 + 4a2C2 − 4a2G2 + a3C3
1

)2

+ A2
(
3a3A2 + 6a3C2

1 − 8a2 − 4σ + 12a3G2
2

)2
(−4a2C1 + 4a2C2 − 4a2G2 + a3C3

1

)2
− 1 = 0, (23a)

144a21B
2

(−4a2C2 + 4a2C1 + 4a2G2 + a3C3
2

)2

+ B2
(
3a3B2 + 6a3C2

2 − 8a2 − 4σ
)2

(−4a2C2 + 4a2C1 + 4a2G2 + a3C3
2

)2
− 1 = 0, (23b)

or

9a23 Ā
3 + 12a3

(
3a3C

2
1 − 4a2 − 2σ + 6a3G

2
2

)
Ā2

+
(
144a21 + 4

(
3a3C

2
1 − 4a2 − 2σ + 6a3G

2
2

)2)
Ā

−
(
a3C

3
1 − 4a2 (C1 − C2) − 4a2G2

)2 = 0, (24a)

9a23 B̄
3 + 12a3

(
3a3C

2
2 − 4a2 − 2σ

)
B̄2

+
(
144a21 + 4

(
3a3C

2
2 − 4a2 − 2σ

)2)
B̄

−
(
a3C

3
2 + 4a2 (C1 − C2) + 4a2G2

)2 = 0, (24b)

where Ā = A2, B̄ = B2.
From (24), the maneuver load G2 makes significant

effects on the coefficients of Ā2, Ā1 and Ā0 due to
its coupling with the nonlinear stiffness parameter a3
and its coupling with the crack parameter a2 (see 24a),
which is similar to (16). Besides, the coupling between
the crack and the maneuver load also makes an effect
on the coefficient of B̄0 for the bifurcation equation
of the horizontal direction (see 24b). Based on (24),
the response characteristics as well as the bifurcation
characteristics of the system for 3:1 super-harmonic
resonance can be investigated analytically.

3.4 Response analysis for 2:1 and 3:1 super-harmonic
resonances

In this section, the response characteristics of the sys-
tem for both 2:1 and 3:1 super-harmonic resonances
affected by the crack coefficient and the maneuver load
are analyzed according to the corresponded bifurcation
Eqs. (16) and (24).
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Fig. 4 Super-harmonic
responses for G = 2. a For
2:1 super-harmonic
resonance. b For 3:1
super-harmonic resonance
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Fig. 5 Super-harmonic
responses for G = 5. a For
2:1 super-harmonic
resonance. b For 3:1
super-harmonic resonance
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The 2:1 and 3:1 super-harmonic responses of the
system for both q1 and q2 affected by the crack coef-
ficient under different maneuver load magnitudes are
shown in Figs. 4 and 5, which are forG = 2 represent-
ing a smaller maneuver load situation and for G = 5
representing a larger one. As shown in Fig. 4, the reso-
nance peak amplitudes for both q1 and q2 increase, and
the corresponded resonance frequencies decrease with
the increase of the crack coefficient or the crack depth,
which is very familiar to us from references [5,9,12].
But in Fig. 5, as the crack coefficient increases, it is
shown that the resonance frequencies corresponding
to the resonance peak amplitudes for both q1 and q2
increase, since the resonance response curves show
a hard spring characteristic when the crack coeffi-
cient becomes larger. Moreover, the super-harmonic
response characteristics of q1 and q2 for both 2:1 and
3:1 super-harmonic resonances are very similar to each
other for both in Figs. 4 and 5.

Noted that there are some differences between the
frequency responses of the system in thevertical and the
horizontal directions for the same parameters, which

means that the resonances frequencies in the vertical
and the horizontal directions are not the same. This
phenomenon is due to the asymmetry of the maneuver
load, since themaneuver load is in the vertical direction
only (see Eqs. 6a, 6b). The differences between the
vertical and the horizontal responses affected by the
maneuver load can also be found inEqs. (16a) and (16b)
for 2:1 super-harmonic resonance and in Eqs. (24a) and
(24b) for 3:1 super-harmonic resonance. The larger the
maneuver load is, the larger the difference becomes (see
Figs. 4, 5). This asymmetry maneuver load-induced
phenomenon has also been discussed in [45].

Figures 6 and 7 show the 2:1 and3:1 super-harmonic
responses of the system for both q1 and q2 affected
by the maneuver load under different crack coefficient
magnitudes, which are, respectively, for K = 0.05
representing a smaller crack depth situation and for
K = 0.1 representing a larger one. As shown in Fig. 6,
the resonance peak amplitudes for both q1 and q2
increase, and the corresponding resonance frequencies
also increase with the increase of the maneuver load.
In particular, for q1, the maneuver load makes an sig-
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Fig. 6 Super-harmonic
responses for K = 0.05. a
For 2:1 super-harmonic
resonance. b For 3:1
super-harmonic resonance
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Fig. 7 Super-harmonic
responses for K = 0.1. a
For 2:1 super-harmonic
resonance. b For 3:1
super-harmonic resonance

(a)

420 440 460 480 500 520
0

2

4

6

8

ω (rad/s)

am
pl

itu
de

 (A
 o

r B
)

A
B

G=2

G=8

G=5

(b)

280 300 320 340
0

1

2

3

4

5

6

7

ω (rad/s)

am
pl

itu
de

 (A
 o

r B
)

A
B

G=8

G=5

G=2

nificant effect in increasing the resonance frequencies
for both the 2:1 and 3:1 super-harmonic resonances. In
Fig. 7, the increase of the resonance frequencies corre-
sponding to the resonance peak amplitudes as well as
a hard spring characteristic of the resonance response
curve is shown for q2 when the maneuver load gets
larger, but there is not an apparent hard spring char-
acteristic shown for the resonance response curves of
q1. Moreover, the effects of the maneuver load on the
super-harmonic response characteristics of 2:1 and 3:1
super-harmonic resonances are very similar to each
other for both q1 and q2 according to Figs. 6 and 7.

3.5 Numerical verification

In this section, we would like to carry out direct numer-
ical computations for Eq. (8) to verify the correctness
of the theoretical results obtained in the previous sec-
tion. Firstly, the calculation formulas of the theoretical
responses for both 2:1 and 3:1 super-harmonic reso-
nances are given to obtain the theoretical results accord-

ingly. Then, the fourth-order Runge–Kutta method is
employed to demonstrate the numerical results of the
computations. Finally, the theoretical results are com-
paredwith the numerical results in the formof diagrams
for time response and frequency response, respectively.

From (13), the theoretical calculation formulas of q1
and q2 for 2:1 super-harmonic resonance are given by

q1 = A cos (2τ + φ1) + C1 cos τ + G2

= A (cos 2τ cosφ1 − sin 2τ sin φ1)

+C1 cos τ + G2, (25a)

q2 = B sin (2τ + φ2) + C2 sin τ

= B (sin 2τ cosφ2 + cos 2τ sin φ2)

+C2 sin τ, (25b)

where C1 = C2 = E
3 , G2 = G1

4 , and

sin φ1 = 4a1A

−4a2C1 − 4a2G2 + 3a3C2
1G2

,

cosφ1 = − A
(
3a3A2+6a3C2

1−8a2−4σ +12a3G2
2

)

2
(−4a2C1 − 4a2G2 + 3a3C2

1G2
) ;
(26a)
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sin φ2 = − 2a1B

a2 (C1 + C2 + 2G2)
,

cosφ2 = B
(
3a3B2 + 6a3C2

2 − 8a2 − 4σ
)

4a2 (C1 + C2 + 2G2)
. (26b)

And from (21), the theoretical calculation formulas
ofq1 andq2 for 3:1 super-harmonic resonance are given
by

q1 = A cos (3τ + φ1) + C1 cos τ + G2

= A (cos 3τ cosφ1 − sin 3τ sin φ1)

+C1 cos τ + G2, (27a)

q2 = B sin (3τ + φ2) + C2 sin τ

= B (sin 3τ cosφ2 + cos 3τ sin φ2)

+C2 sin τ, (27b)

where C1 = C2 = E
8 , G2 = G1

9 , and

sin φ1 = 12a1A

−4a2C1 + 4a2C2 − 4a2G2 + a3C3
1

,

cosφ1 = − A
(
3a3A2+6a3C2

1−8a2 − 4σ +12a3G2
2

)

−4a2C1+4a2C2−4a2G2+a3C3
1

;
(28a)

sin φ2 = − 12a1B

−4a2C2+4a2C1+4a2G2+a3C3
2

,

cosφ2 = B
(
3a3B2 + 6a3C2

2 − 8a2 − 4σ
)

−4a2C2 + 4a2C1 + 4a2G2 + a3C3
2

. (28b)

Then, according to (25) and (27), the theoretical
responses of q1 and q2 for both 2:1 and 3:1 super-
harmonic resonances can be obtained.

Figure 8 shows the comparisons of the time responses
of q1 and q2 between theoretical and numerical results
forG = 5 and K = 0.1 under different rotation speeds.
Figure 8a, b are, respectively, for 2:1 and 3:1 super-
harmonic resonances of q1. Figure 8c, d are, respec-
tively, for the double solutions of q2 in the hysteresis
region of rotation speed for 2:1 super-harmonic reso-
nance, and Fig. 8e, f are for that of 3:1 super-harmonic
resonance. It shows a small phase difference between
the theoretical and the numerical results in Fig. 8a, b, c,
e, while in Fig. 8d, f, the phase difference is not appar-
ent, but the amplitude difference takes the main part.

The frequency responses of theoretical and numeri-
cal results are also compared in Fig. 8 to give an insight
into the global error of the theoretical response of the
system with respect to the numerical one for the same
parameters. The corresponding results for 2:1 and 3:1
super-harmonic resonances are shown in Fig. 9, where

the responses are represented by the effective value,
denoted as

E(qn) = 1

T

T∫

0

qn(t)dt . (29)

Figure 9a shows the comparisons of the frequency
responses of q1 and q2 between theoretical and numer-
ical results for 2:1 super-harmonic resonance, and
Fig. 9b shows that for 3:1 super-harmonic reso-
nance. Throughout the two subfigures, some differ-
ences between the theoretical results and the corre-
sponding numerical results can be observed especially
for the resonance peak values and the corresponded
rotation speeds. And the differences for q1 are more
apparent than that for q2 for both 2:1 and 3:1 super-
harmonic resonances. But from the overall point of
view, the theoretical results of the frequency response
curves reach a good agreement with the numerical
results qualitatively.

4 Bifurcation analysis

In this section,we investigate the local bifurcation char-
acteristics of the system for both 2:1 and 3:1 super-
harmonic resonances due to the variation of themaneu-
ver load aswell as the effect of the crackdepth.The two-
state variable singularity method [46–48] is employed
in an engineering way to demonstrate different bifur-
cation modes of the discussed rotor system. Herein, we
take an unfolding directly from the bifurcation equa-
tions. The unfolding is not an universal unfolding,
but a so-called engineering unfolding. Actually, this
approach is not so rigorous in the mathematical sense,
but it has a great significance for engineering applica-
tions. Moreover, we take the maneuver load and the
crack coefficient directly as the unfolding parameters
and take the rotation speed directly as the bifurcation
parameter. So that the bifurcation characteristics of the
system affected by the parameterswe caremost in engi-
neering designs can be reflected directly and exactly.

4.1 Bifurcation analysis for 2:1 super-harmonic
resonance

By substituting σ = 4− k
mω2 , a1 = 2ξ , a2 = k

8mω2 K ,

a3 = αδ2

mω2 , G2 = k
4mω2G into Eq. (16) and taking

λ = ω2, α1 = k
m , α2 = k

8m , α3 = αδ2

m , α4 = k
4m ,
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Fig. 8 Comparisons of the
time responses between
theoretical and numerical
results for G = 5 and
K = 0.1. a For
ω = 472 rad/s. b For
ω = 314 rad/s. c, d For
ω = 448 rad/s. e, f For
ω = 296 rad/s
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ε1 = α2K , ε2 = α4G, β = 4λ − α1, the following
equations can be obtained

9α2
3λ

4 Ā3 + 12α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3ε
2
2

)
λ2 Ā2+

(
256ξ2λ6+4

((
3C2

1α3 − 4ε1

− 2β
)
λ2 + 6α3ε

2
2

)2 )
Ā − 4

(
4C1ε1 − 4ε1ε2

+ 3C2
1α3ε2

)2
λ4 = 0, (30a)

9α2
3 B̄

3 + 12α3

(
3C2

2α3 − 4ε1 − 2β
)
B̄2

+
(
256ξ2λ2 + 4

(
3C2

2α3 − 4ε1 − 2β
)2)

B̄

− 16 ((C1 + C2) ε1 − 2ε1ε2)
2 = 0. (30b)

Taking λ as the bifurcation parameter and taking ε1
and ε2 as the unfolding parameters, the left side of Eq.
(30) can be viewed as an engineering unfolding of the
discussed bifurcation system, which is denoted as
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Fig. 9 Comparisons of the
frequency responses
between theoretical and
numerical results for G = 5
and K = 0.1. a For 2:1
super-harmonic resonance.
b For 3:1 super-harmonic
resonance
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F1 = 9α2
3λ

4 Ā3 + 12α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3ε
2
2

)
λ2 Ā2 +

(
256ξ2λ6 + 4

((
3C2

1α3

− 4ε1 − 2β
)
λ2 + 6α3ε

2
2

)2)
Ā − 4

(
4C1ε1

− 4ε1ε2 + 3C2
1α3ε2

)2
λ4, (31a)

F2 = 9α2
3 B̄

3 + 12α3

(
3C2

2α3 − 4ε1 − 2β
)
B̄2

+
(
256ξ2λ2 + 4

(
3C2

2α3 − 4ε1 − 2β
)2)

B̄

− 16 ((C1 + C2) ε1 − 2ε1ε2)
2 . (31b)

Furthermore, the derivatives of F1 and F2 can be
obtained as follows
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F1 Ā = 27α2
3λ

4 Ā2 + 24α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3ε
2
2

)
λ2 Ā + 256ξ2λ6

+ 4
((

3C2
1α3 − 4ε1−2β

)
λ2+6α3ε

2
2

)2
,

(32a)

F1 Ā Ā = 54α2
3λ

4 Ā + 24α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3ε
2
2

)
λ2, (32b)

F2B̄ = 27α2
3 B̄

2 + 24α3

(
3C2

2α3 − 4ε1 − 2β
)
B̄

+ 256ξ2λ2 + 4
(
3C2

2α3 − 4ε1 − 2β
)2

, (32c)

F2B̄ B̄ = 54α2
3 B̄ + 24α3

(
3C2

2α3 − 4ε1 − 2β
)

, (32d)

F1λ = 36α2
3λ

3 Ā3 + 48α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

− 2λ3 + 3α3ε
2
2

)
λ Ā2 + 8

(
192ξ2λ4

+
((

3C2
1α3 − 4ε1 − 2β

)
λ2

+ 6α3ε
2
2

) ((
3C2

1α3 − 4ε1 − 8
)

λ

+ 2
(
3C2

1α3 − 4ε1 − 2β
)))

λ Ā − 16 (4C1ε1

− 4ε1ε2 + 3C2
1α3ε2

)2
λ3, (32e)

F2λ = −96α3 B̄
2

+
(
512ξ2λ2 − 64

(
3C2

2α3 − 4ε1 − 2β
))

B̄,

(32f)

F1B̄ = F2 Ā = F1 Ā B̄ = F2 Ā B̄ = 0. (32g)

According to the two-state variable singularity method
[46], the calculation formulas of the transition sets for
Eq. (30) are as follows:

Bifurcation set:

B=
{

(ε1, ε2) ∈ R2 : ∃ (
Ā, B̄, λ

)
s.t.F1=0,

F2 = 0, F1 Ā F2B̄ − F1B̄ F2 Ā = 0, F1 Ā F2λ

−F1λF2 Ā = 0
}
. (33)

Hysteresis set:

H =
{
(ε1, ε2) ∈ R2 : ∃ (

Ā, B̄, λ
)
s.t. F1 = 0, F2 = 0,

F1 Ā F2B̄ − F1B̄ F2 Ā = 0, F1 Ā Ā
′ − F1B̄ B̄

′ = 0,

F1 Ā f2 − F2 Ā f1 = 0, Z ′ �= 0, Z ′ = (
Ā′, B̄′) ,

f1 =
(
F1 Ā Ā Ā

′2 + 2F1 Ā B̄ Ā
′ B̄′ + F1B̄ B̄ B̄

′2) ,

f2 =
(
F2 Ā Ā Ā

′2 + 2F2 Ā B̄ Ā
′ B̄′ + F2B̄ B̄ B̄

′2)}
. (34)
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Fig. 10 Transition sets in K−G parameter plane (two hysteresis
sets)

Double limit set:

DL =
{
(ε1, ε2) ∈ R2 : ∃ (Z1, Z2, λ) s.t. F1 = 0,

F2 = 0, F1 Ā F2B̄ − F1B̄ F2 Ā = 0, Z1 �= Z2,

Z = (
Ā, B̄

) }
. (35)

Accordingly, the transition sets for 2:1 super-harmonic
resonance can be obtained by numerical calculations.
Two curves of hysteresis set in K −G parameter plane
are demonstrated and shown in Fig. 10, by which, the
parameter plane is divided into three regions. It indi-
cates that different parameter combinations from dif-
ferent regions make different bifurcation characteris-
tics for the frequency response of the system. Differ-
ent bifurcation modes for different parameter combi-
nations from the three regions and the two curves are
shown in Fig. 11. In Fig. 11a, both of the frequency
response curves for q1 and q2 have a hysteresis char-
acteristic. In Fig. 11c, however, only the frequency
response curve for q2 has a hysteresis characteristic, but
that for q1 has no hysteresis characteristic. In Fig. 11e,
however, both of the frequency response curves for
q1 and q2 do not show hysteresis characteristic. Fig-
ure 11b, d show the critical cases of the hysteresis
phenomena for the frequency responses of q1 and q2,
respectively.

4.2 Bifurcation analysis for 3:1 super-harmonic
resonance

By substituting σ = 9 − k
mω2 , a1 = 2ξ , a2 = k

8mω2 K ,

a3 = αδ2

mω2 , G2 = k
9mω2G into Eq. (24) and taking

λ = ω2, α1 = k
m , α2 = k

8m , α3 = αδ2

m , α4 = k
9m ,
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Fig. 11 Different
bifurcation modes for
parameter combinations
from different regions or
curves in Fig. 10. a For
K = 0.14 and G = 4 from
region I. b For K = 0.104
and G = 5 from curve H1. c
For K = 0.08 and G = 6
from region II. d For
K = 0.053 and G = 7 from
curve H2. e For K = 0.04
and G = 8 from region III
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ε1 = α2K , ε2 = α4G, β = 9λ − α1, the following
equations can be obtained

9α2
3λ

4 Ā3 + 12α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3G
2
2

)
λ2 Ā2 +

(
576ξ2λ6

+ 4
((

3C2
1α3 − 4ε1 − 2β

)
λ2 + 6α3ε

2
2

)2)
Ā

−
(
C3
1α3 − 4 (C1 − C2) ε1 + 4ε1ε2

)2
λ4 = 0,

(36a)

9α2
3 B̄

3 + 12α3

(
3C2

2α3 − 4ε1 − 2β
)
B̄2

+
(
576ξ2λ2 + 4

(
3C2

2α3 − 4ε1 − 2β
)2)

B̄

−
(
C3
2α3 + 4 (C1 − C2) ε1 − 4ε1ε2

)2 = 0. (36b)

Taking λ as the bifurcation parameter and taking
ε1 and ε2 as the unfolding parameters, the left side of
Eq. (36) can be viewed as an engineering unfolding
of the discussed bifurcation system, which is denoted
as
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F1 = 9α2
3λ

4 Ā3 + 12α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3G
2
2

)
λ2 Ā2 +

(
576ξ2λ6 + 4

((
3C2

1α3

− 4ε1 − 2β) λ2 + 6α3ε
2
2

)2)
Ā

−
((

C3
1α3 − 4 (C1 − C2) ε1

)
λ + 4ε1ε2

)2
λ2,

(37a)

F2 = 9α2
3λ

2 B̄3 + 12α3

(
3C2

2α3 − 4ε1 − 2β
)

λ2 B̄2

+
(
576ξ2λ2 + 4

(
3C2

2α3 − 4ε1 − 2β
)2)

λ2 B̄

−
((

C3
2α3 + 4 (C1 − C2) ε1

)
λ − 4ε1ε2

)2
.

(37b)

Furthermore, the derivatives of F1 and F2 can be
obtained as follows

F1 Ā = 27α2
3λ

4 Ā2 + 24α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3ε
2
2

)
λ2 Ā + 576ξ2λ6

+ 4
((
3C2

1α3−4ε1 − 2β
)

λ2+6α3ε
2
2

)2
, (38a)

F1 Ā Ā = 54α2
3λ

4 Ā + 24α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6α3ε
2
2

)
λ2, (38b)

F2B̄ = 27α2
3λ

2 B̄2 + 24α3

(
3C2

2α3 − 4ε1 − 2β
)

λ2 B̄

+
(
576ξ2λ2 + 4

(
3C2

2α3 − 4ε1 − 2β
)2)

λ2, (38c)

F2B̄ B̄ = 54α2
3λ

2 B̄ + 24α3

(
3C2

2α3 − 4ε1 − 2β
)

λ2,

(38d)

F1λ = 36α2
3λ

3 Ā3 + 48α3

((
3C2

1α3 − 4ε1 − 2β
)

λ2

− 2λ3 + 3α3ε
2
2

)
λ Ā2

+ 8
(
432ξ2λ4 +

((
3C2

1α3 − 4ε1 − 2β
)

λ2

+ 6 α3ε
2
2

) ((
3C2

1α3 − 4ε1 − 8
)

λ

+ 2
(
3C2

1α3 − 4ε1 − 2β
)))

λ Ā

− 2
((

C3
1α3 − 4 (C1 − C2) ε1

)
λ + 4ε1ε2

)2
λ

+ 8 (C1 − C2) ε1λ
2, (38e)

F2λ = 18α2
3λB̄

3 + 24α3

(
3C2

2α3 − 4ε1 − 2β
)

λB̄2

+ 2

(
576ξ2λ2 + 4

(
3C2

2α3 − 4ε1 − 2β
)2)

λB̄
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Fig. 12 Transition sets in K−G parameter plane (two hysteresis
sets)

+
(
1152ξ2λ − 144

(
3C2

2α3 − 4ε1 − 2β
))

λ2 B̄

− 2
(
C3
2α3 + 4 (C1 − C2) ε1

) ((
C3
2α3

+ 4 (C1 − C2) ε1) λ − 4ε1ε2) . (38f)

F1B̄ = F2 Ā = F1 Ā B̄ = F2 Ā B̄ = 0. (38g)

Similar to the analysis for 2:1 super-harmonic reso-
nance in the previous section, the transition sets for 3:1
super-harmonic resonance can be obtained by numer-
ical calculations according to the calculation formu-
las (33)–(35). As shown in Fig. 12, two curves of
hysteresis set in K − G parameter plane are demon-
strated, by which, the parameter plane is divided into
three regions. Accordingly, different parameter combi-
nations from different regions makes different bifurca-
tion characteristics for the frequency response of the
system. Different bifurcation modes for different para-
meter combinations from the three regions and the two
curves are shown in Fig. 13. In Fig. 13a, both of the
frequency response curves for q1 and q2 have a hys-
teresis characteristic. In Fig. 13c, however, only the
frequency response curve for q2 has a hysteresis char-
acteristic, while that for q1 has no hysteresis charac-
teristic. In Fig. 13e, both of the frequency response
curves for q1 and q2 do not show hysteresis character-
istic. Figure 13b, d show the critical cases of hysteresis
phenomenon for the frequency responses of q1 and q2,
respectively. These results are very similar to that for
2:1 super-harmonic resonance in the previous section.

5 Conclusions

In this paper, the response characteristics as well as the
local bifurcation characteristics of an aircraft cracked
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Fig. 13 Different
bifurcation modes for
parameter combinations
from different regions or
curves in Fig. 12. a For
K = 0.14 and G = 4 from
region I. b For K = 0.105
and G = 5 from curve H1. c
For K = 0.08 and G = 6
from region II. d For
K = 0.055 and G = 7 from
curve H2. e For K = 0.04
and G = 8 from region III
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rotor system for the 2:1 and 3:1 super-harmonic reso-
nances have been investigated analytically. The equa-
tions of motion of the system have been formulated
considering not only the nonlinear stiffness of Duffing
type and the breathing of a transverse crack on the shaft,
but also themaneuver load induced by the climbing and
diving flight of the aircraft. By means of solving the
motion equations by using the multiple scales method,
the bifurcation equations for both 2:1 and 3:1 super-
harmonic resonances have been obtained, respectively.

Accordingly, the responded response characteristics
and local bifurcation characteristics of the system
affected by the crack coefficient and the maneuver load
have been analyzed.

In the case of smaller maneuver load, it has been
shown that the resonance peak amplitudes for both ver-
tical and horizontal responses increase, and the cor-
responded resonance frequencies decrease with the
increase of the crack coefficient, which is the basic
property of general rotor systems with crack faults
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[5,9,12]. In the case of larger maneuver load, however,
the resonance response curves show a hard spring char-
acteristic when the crack coefficient becomes larger,
and as a result, the corresponded resonance frequen-
cies increase with the increase of the crack coefficient.
This phenomenon has not been reported in the previ-
ous studies. Moreover, for a certain crack coefficient,
the effect of the maneuver load on increasing the super-
harmonic resonance frequencies of the responses in the
vertical direction is much more dramatic than that in
the horizontal direction, while that effect on the hys-
teresis characteristic in the horizontal direction is more
significant than that in the vertical direction. In addi-
tion, these theoretical results have been verified through
numerical computations.

Furthermore, the two-state variable singularity
method has been employed for the bifurcation analysis,
through which, it has been demonstrated that two hys-
teresis set curves dividing K −G parameter plane into
three regions for each case of the two super-harmonic
resonances.Accordingly, different parameter combina-
tions from different regions make different bifurcation
characteristics for the frequency response of the sys-
tem. The approach in this paper will provide an effec-
tive and convenientway to analyze the bifurcation char-
acteristics of dynamical systems, and the results will
contribute to a better understanding of the effect of the
maneuver load on the response and bifurcation charac-
teristics of aircraft cracked rotor systems.
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