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Abstract The use of nonlinear energy sink as a
passive control device is extended here to a nonlin-
ear elastic string, in internal resonance conditions,
excited by an external harmonic force. The Multiple
Scale/Harmonic Balance Method is directly applied to
the partial differential equations ruling the dynamics
of the system. The internal resonance condition of the
string involves a rich response containing essentially
both the resonant, directly excited, mode and a super-
harmonic one. Numerical results on a case study are
presented.

Keywords Nonlinear energy sink · Infinite
dimensional system · Internal resonance ·
Multiple Scale/Harmonic Balance Method

1 Introduction

Nonlinear energy sink (NES) is an essentially nonlin-
ear oscillator which is used as passive control device.
Its main feature, due to the lack of linear stiffness, is the
capability of getting tuned to the primary structure in a
wide range of frequencies, representing a considerable
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asset to the passive control performance, and overtak-
ing the intrinsic limitations of more common devices
such as tuned mass damper [1–3]. An extensive study
on the use of NES is given in [4], where analytical,
numerical and experimental verification on the char-
acteristics of such a device is provided. There and in
many other papers, the analytical studies are carried
out by means of the application of the Complexifica-
tion Averaging Method (CX-A, see [5]). Under this
framework, in [6], a main linear oscillator excited by
a harmonic force and equipped with NES is studied;
in [7], an internally resonant two-d.o.f. system is con-
sidered as primary structure, still under the applica-
tion of harmonic excitation; in [8,9], the use of NES
is extended to aeroelastic problems, in order to sup-
press or reduce oscillations induced by wind. Discus-
sion on energy pumping between linear and essentially
nonlinear oscillators such as NES is given in [10,11],
while extension of the use of NES to control non-
ideal main structures are presented in [12,13]. NES
attached to continuum primary linear structures, such
as beams or plates, is considered in [14–19]. The possi-
ble occurrence of multiple coexisting solutions, some-
times thwarting the beneficial effects of the NES as
control device in single-d.o.f. systems, is discussed in
[20,21].

Other analytical studies of oscillators endowed with
NES make use of the combination of the Multiple
Scale Method and the Harmonic Balance (referred as
MSHBM): the case of multi-d.o.f. dynamical systems
under harmonic external force is considered in [22]; a
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two-d.o.f. nonlinear airfoil under wind effects is ana-
lyzed in [23]; the chatter in the turning process is stud-
ied in [24]; lateral vibrations of a rotor are evaluated in
[25]. In [26], a nonlinear elastic string under harmonic
force is considered when a NES is attached at a cer-
tain position of the span, and the internally nonresonant
case is analyzed, being the string supported at one end
by a mass-spring system which detunes the first few
natural frequencies. There, as well as in [22,23], the
lacking of internal resonance causes the dynamics of
the principal structure to be described by just one active
mode, while all the other modes turn out to be passive.
Moreover, in [26], the perturbation scheme is applied
in direct approach, i.e., the Multiple Scale Method is
directly imposed on the partial differential equations,
as done (for systems without NES) in [27–31].

In this paper, the analysis of [26] is extended to inter-
nally resonant taut strings. The same model of [26] is
used, except for the right boundary condition, where
a fixed support is now considered, which entails the
typical internal resonance conditions among the infi-
nite natural frequencies of the string to occur. As it was
discussed in [28], when NES is absent, the dominant
dynamics of a nonlinear, double supported, taut string
under harmonic excitation resonant to a generic mode
(say the r th), is ruled just by the resonant (r th) mode
itself, while the amplitudes of the infinite remaining
modes give higher-order contribution. The effect of the
NES on this peculiar behavior is discussed here, further
extending theMSHBM to systemswhich include inter-
nal resonances, possibly involvingmore than one active
mode of the principal structure. Relevant amplitude
modulation equations are obtained and some numer-
ical results are reported, compared to those provided
by integration of the system after the application of a
multi-mode Galerkin projection.

2 The model

A double supported extensible elastic string is consid-
ered here, as shown in Fig. 1. Its initial length is � and
prestress tensile force N , and an external force, ruled
by the law f (x, t) = p(x) cos(�t), is applied along the
span. Here x is the abscissameasured in the prestressed
configuration and t is the time. The linear mass den-
sity is ρ and the axial stiffness is EA. The equations of
motion of the string are taken from [27,28,32]: they
are valid for moderately large displacements, under

y
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v(x, t)
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m
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f(x, t)

Fig. 1 String equipped with a NES

the hypothesis that the longitudinal versus transverse
celerity-rate is large. A NES is applied to the string at
pointC , corresponding to the abscissa xC . The mass of
the NES is m, its linear damping c and cubic stiffness
k. The in-plane transverse displacement of a generic
point of the string is v(x, t) while the displacement of
the mass of the NES is y(t). The equations read:

Nv′′(x, t) + E A

�
v′′(x, t)

[∫ �

0

v′2(x, t)
2

dx

]
−ρv̈(x, t)

+ p(x) cos(Ωt) −
[
k(v(x, t) − y(t))3

+ c(v̇(x, t) − ẏ(t))] δ(x − xC ) = 0

mÿ(t) −
[
k(v(xC , t) − y(t))3

+ c(v̇(xC , t) − ẏ(t))] = 0 (1)

where δ(x) is the Dirac delta, the dot indicates time-
derivative and the prime space-derivative.

The geometric boundary conditions at the supports
read

v(0, t) = 0

v(�, t) = 0 (2)

Relevant initial conditions must be added too.
Nondimensional quantities are defined as:

x̃ = x

�
, t̃ = ω̄t, ỹ = y

L
, ṽ = v

L
, x̃C = xC

�
,

δ̃ = �δ, p̃ = p�

N

√
EA

N
, Ω̃ = Ω

ω̄
,

κ = k�3

EA
, ξ = c√

ρN
, m̃ = m

ρ�
(3)

where L is a characteristic length defined as L :=
�

√
N
EA, and ω̄ = 1

�

√
N
ρ
. After the substitutions of
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the definitions (3) in Eq. (1), the nondimensional ver-
sion of the equations of motion is obtained. Omitting
the tilde, including the contribution of linear structural
damping (ζ v̇(x, t), where ζ is the damping coefficient),
and introducing the relative displacement between the
main structure at point C and NES, namely z(t) :=
v(xC , t) − y(t), Eq. (1) become

v̈ + ζ v̇ − v′′ − v′′
[∫ 1

0

v′2

2
dx

]

+
[
κz3 + ξ ż

]
δ(x − xC ) = p cos(Ωt)

m(z̈ − v̈C ) + κz3 + ξ ż = 0 (4)

where vC (t) := v(xC , t), and the boundary conditions

v(0, t) = 0

v(1, t) = 0 (5)

where the dot and the prime stand here for differen-
tiation with respect to the nondimensional time and
abscissa, respectively.

3 The Multiple Scale/Harmonic Balance Method

In order to obtain the perturbation equations, the pro-
cedure described in [26] is used here; it is briefly
recalled for the sake of completeness. A nondimen-
sional small parameter ε is introduced to rescale the
dependent variables and the parameters: the displace-
ments are (v, z) := ε1/2(ṽ, z̃), consistently with the
presence of cubic nonlinearity; the damping factor is
ζ = εζ̃ and the external force is p = ε3/2 p̃, consis-
tently with the idea to let both the terms appear at the
same level of the nonlinearity. The external excitation
is considered 1:1 resonant with one of the linear modes
(the r th, of frequency ωr = rπ ) of the string with NES
disengaged. A detuning parameter σ is introduced for
the external excitation, asΩ = ωr +σ ; it is rescaled as
σ = εσ̃ . The parameters of the NES are rescaled too,
since both its mass and damping are assumed small:
(m, ξ) := ε(m̃, ξ̃ ). After the application of the rescal-
ing, the omission of tilde and division by ε1/2, Eq. (4)
become:

v̈ − v′′ + ε

[
ζ v̇ − v′′

[∫ 1

0

v′2

2
dx

]

+[κz3 + ξ ż]δ(x − xC ) − p cos(Ωt)

]
= 0

ε[m(z̈ − v̈C ) + κz3 + ξ ż] = 0 (6)

Independent time scales t0 := t , t1 := εt , t2 =
ε2t, . . . are introduced and the relevant derivatives are
expressed as ∂

∂t = d0 + εd1 + ε2d2 + · · · and ∂2

∂t2
=

d20+2εd0d1+ε2(d21+2d0d2)+· · · , where d j := ∂/∂t j ,
for j = 0, 1, 2, . . .. Series expansion of the dependent
variables is applied as:{

v

z

}
=

{
v0
z0

}
+ ε

{
v1
z1

}
+ ε2

{
v2
z2

}
+ · · · (7)

After substitution in Eq. (6) and boundary conditions,
the collection of terms at the same order in ε gives the
perturbation equations:

order ε0 :
d20v0 − v′′

0 = 0 (8)

order ε1 :
d20v1 − v′′

1 = −2d0d1v0 − ζd0v0 + p cos(Ωt0)

−(ξd0z0 + κz30)δ(x − xC ) + v′′
0

[∫ 1

0

v′2
0

2
dx

]
(9)

m(d20 z0 − d20vC0) + ξd0z0 + κz30 = 0 (10)

order ε2:
d20v2 − v′′

2 = −(d21v0 + 2d0d2v0 + 2d0d1v1)

−ζ(d2v0 + d1v1) −
[
ξ(d0z1 + d1z0) + 3κz20z1

]

δ(x − xC ) + v′′
1

[∫ 1

0

v′2
0

2
dx

]
+ v′′

0

[∫ 1

0
v′
0v

′
1dx

]

(11)

m(d20 z1 − d20vC1) + ξd0z1 + 3κz20z1

= −2m(d0d1z0 − d0d1vC0) − ξd1z0 (12)

At any order, the boundary conditions are trivial:

order εk :
vk(0, t0, t1, . . .) = 0,

vk(1, t0, t1, . . .) = 0 (13)

for k = 0, 1, 2. So far, except for the boundary condi-
tion at the point B, the perturbation equations are iden-
tical to those reported in [26] and valid for the internally
nonresonant case. It should be noted that no equation
relevant to the NES appears at order ε0, where just the
linearized problem of the string (withNES disengaged)
is retained. This occurrence is due to the small value
of mass and damping of the NES, as well as to the
fact that its stiffness is essentially nonlinear. The solu-
tion of Eqs. (8) and (13), which represents the generat-
ing solution of the perturbation procedure, should con-
tain all the infinite components relevant to the infinite
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eigenfunction of the linear system (see [28]). However,
driven by inspection of the shape of the equations of
motion and by the presence in them of the cubic non-
linearity, and being aimed at obtaining approximated
solutions for the system, just the resonant ( j = r ) and
a superharmonic ( j = s := 3r ) components are chosen
to be retained in the solution:

v0(x, t0, t1, . . .) = Ar (t1, . . .)ϕr (x)e
iωr t0

+As(t1, . . .)ϕs(x)e
iωs t0 + cc (14)

where: A j (t1, . . .) are the complex modal amplitudes
to be evaluated, depending on the slower timescales; i
is the imaginary unit; ω j = jπ and ϕ j (x) = sin(ω j x)
are the j th eigenvalue and (real) eigenfunction of the
problem with NES disengaged; cc stands for complex
conjugate ( j = r, s).

Passing at order ε, the Harmonic Balance method
[27] is applied to the NES Eq. (10), assuming as solu-
tion for it a one-term Fourier expansion:

z0(t0, t1, . . .) = B0r (t1, . . .)e
iωr t0 + cc (15)

where B0r (t1, . . .) is the complex amplitude depending
on slower time scales, to be evaluated. The substitu-
tion of Eqs. (14) and (15) in Eq. (10) and the balance
of frequency ωr is carried out while, still in the idea
of approximation, other frequencies are neglected (see
[22] for a discussion on the contribution of higher fre-
quencies). The procedure gives rise to the following
algebraic equation:

− mω2
r (B0 − Arϕr (xc)) + iξωr B0 + 3κB2

0 B̄0 = 0

(16)

where the overbar stands for complex conjugate. To
obtain the real form of Eq. (16), the following steps
are covered: (a) application of the polar transforma-
tion for both Ar and B0, which reads Ar := 1

2ar e
iαr

and B0 := 1
2be

iβ ; (b) separation of real and imagi-
nary parts; (c) squaring and adding the two obtained
parts. The equation for the invariant manifold which
describes a first approximation of a Nonlinear Normal
Mode of the system is therefore written:

m2ω4
r ϕr (xc)

2a2r =
(
mω2

r b − 3

4
κb3

)2

+ ξ2ω2
r b

2

(17)

The dynamics outside the manifold (17) is ruled by
the equations of the string at the same order, namely
Eqs. (9) and (13) as well as the NES equation at the

order ε2, which will be tackled ahead. In particular, the
solution of Eq. (9) is sought in the form

v1(x, t1, t2) = ψr (x, t1, t2)e
iωr t0 + ψs(x, t1, t2)e

iωs t0

+ψ2s−r (x, t1, t2)e
iω2s−r t0

+ψ2s+r (x, t1, t2)e
iω2s+r t0

+ψ3s(x, t1, t2)e
iω3s t0 + cc (18)

where ψq(x, t1, t2) are complex functions to be deter-
mined (q = r, s, 2s−r, 2s+r, 3s). This expression for
v1 in Eq. (19) is suggested by the presence of cubic non-
linear terms inEq. (9) but, in the spirit of the approxima-
tion, just components in q = r, s are actually retained,
while the other terms are considered as higher-order
harmonics. Then, Eq. (18) is replaced by

v1(x, t1, t2) = ψr (x, t1, t2)e
iωr t0

+ψs(x, t1, t2)e
iωs t0 + cc (19)

and substituted inEqs. (9) and (13), and termsmultiply-
ing exp(iωr t0) and exp(iωs t0) are separated, giving two
ordinary differential equations with relevant boundary
conditions, respectively. They read:

ψ ′′
j + ω2

jψ j = − f j (x, t1, t2) (20)

with boundary conditions

ψ j (0, t1, t2) = 0

ψ j (1, t1, t2) = 0
(21)

where

f j (x, t1, t2) := −2iω jϕ j (x)d1A j − iζω jϕ j (x)A j

−[(iω jξ B0 + 3κB2
0 B̄0)Δ j,r + κB3

0Δ j,s]δ(x − xC )

+
[
Arϕ

′′
r (x)

∑
h=r,s

Ah Āh

∫ 1

0
ϕ′
h(x)

2dx

+
(
A2
r Ār

2
ϕ′′
r (x) + As Ā2

r

2
ϕ′′
s (x)

) ∫ 1

0
ϕ′
r (x)

2dx

]
Δ j,r

+
[(

A3
r

2
ϕ′′
r (x) + As Ar Ārϕ

′′
s (x)

) ∫ 1

0
ϕ′
r (x)

2dx

+
(
As Ā2

s

2
ϕ′′
s (x) + A2

s Āsϕ
′′
s (x)

) ∫ 1

0
ϕ′
s(x)

2dx

]
Δ j,s

+ p(x)

2
eiσ t1Δ j,r (22)

and

Δ j,h =
{
1 j = h

0 j �= h
(23)

for j = r, s.
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In order to get a not diverging solution fromEqs. (20)
and (21), the solvability condition must be enforced on
them, which reads:
∫ 1

0
f j (x, t1, t2)ϕ j (x)dx = 0 (24)

Substitution of Eq. (22) in Eq. (24) for j = r, s
provides:

d1Ar = −ζ

2
Ar −

[
ξ B0 − 3iκ

ωr
B2
0 B̄0

]
ϕr (xC )

+ i
ωr

4
Ar

[
3

2
ω2
r Ar Ār + ω2

s As Ās

]
− i pr
2ωr

eiσ t1

d1As = −ζ

2
As − iκ

ωs
B3
0ϕr (xC )

+ i
ωs

4
As

[
ω2
r Ar Ār + 3

2
ω2
s As Ās

]
(25)

where pr = ∫ 1
0 p(x)ϕr (x)dx . It is worth noticing that

the external force contribution pr appears just in the
equation ruling the resonant amplitude Ar [Eq. (25a)].
Moreover, the single component B0 of the NES ampli-
tude of relative oscillation appears in both the equations
(25a, b). However, it would not appear in equations rel-
evant to amplitudes A j , for j �= r, s, if those amplitudes
were considered in the generating solution (14). That
means that the possible equations ruling all the other
amplitudes different than Ar and As would give trivial
solution for them (A j → 0, for j �= r, s, as it happens
for the string with NES disengaged for j �= r [28]),
confirming the good choice of retaining just the res-
onant and superharmonic contributions. On the other
hand, if a more precise solution for the NES oscilla-
tion z0 were considered in (15), containing, e.g., the
component r as well as the component s, they would
couple the amplitude modulation equations relevant to
string amplitudes of index j = r, s, 2s − r, 2s + r, 3s,
which in this case should be retained in the generating
solution (14).

The substitution of Eq. (25) in Eqs. (20) and (21)
allows one to obtain a solution for this system, which
reads:

ψr (x, t1)=−ω2
rω

2
s

4
As Ā

2
r Jrs(x)

+
[
iξωr B0 + 3κB2

0 B̄0

]
[Ir (x, xC )

−2ϕr (x)Jr (x)]−
[
Pr (x)

2
− pr Jr (x)

]
eiσ t1

ψs(x, t1) = κB3
0 (Is(x, xC ) − 2ϕs(x)Js(x))

−ω4
r

4
A3
r Jrs(x) (26)

where

I j (x, xC ) = 1

ω j
sin(ω j (x − xC ))H(x − xC )

J j (x) = 1

2ω j
(sin(ω j x) − ω j x cos(ω j x))

Jrs(x) = ωr sin(ωs x) − ωs sin(ωr x)

ωr (ω2
r − ω2

s )

Pr (x) = 1

ωr

∫ x

0
p(θ) sin(ωr (x − θ))dθ

(27)

and H(x) is the Heaviside step (Dirac delta and Heavi-
side step are used in the paper in the sense of the distri-
butions). In Eq. (26), the normalization condition con-
sisting in a vanishing amplitude for the complementary
solution is assumed.

Equation (12) is considered and a further harmonic
balance is applied to it, still assuming a one-term
Fourier expansion for z1:

z1(t0, t1, . . .) = B1(t1, . . .)e
iωr t0 + cc (28)

Substituting Eqs. (14), (15) and (19) in Eq. (12) and
balancing frequency ωr , the following equation is
obtained:

−m
[
ω2
r B1 − 2iωr d1B0 + 2iωrϕr (xC )d1Ar

]
+ ξd1B0 + iξωr B1 + 3κB2

0 B̄1

−m
ω2
rω

2
s

4
As Ā

2
r Jrs(xC )

− 2m
[
iξωr B0 + 3κB2

0 B̄0

]
ϕr (xC )Jr (xc)

−m

[
Pr (xC )

2
− pr Jr (xC )

]
eiσ t1 = 0 (29)

Equations (16) and (29) can be reconstituted, using
the definition B := B0 + εB1; coming back to the
true time, reabsorbing ε for those and for Eq. (25) one
obtains:

Ȧr = −ζ

2
Ar −

[
ξ B − 3iκ

ωr
B2 B̄

]
ϕr (xC )

+ i
ωr

4
Ar

[
3

2
ω2
r Ar Ār + ω2

s As Ās

]
− i pr

2ωr
eiσ t

Ȧs = − ζ

2
As − iκ

ωs
B3ϕr (xC )

+ i
ωs

4
As

[
ω2
r Ar Ār + 3

2
ω2
s As Ās

]

− 2iωrmϕr (xC ) Ȧr + (ξ + 2iωrm)Ḃ
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= −mω2
r ϕr (xC )Ar + (mω2

r − iξωr )B

− 3κB2 B̄ + m
ω2
rω

2
s

4
As Ā

2
r Jrs(xC )

+ 2m
[
iξωr B0 + 3κB2

0 B̄0

]
ϕr (xC )Jr (xc)

+m

[
Pr (xC )

2
− pr Jr (xC )

]
eiσ t1 (30)

Equation (30) are the complex amplitude modula-
tion equations (AME) ruling the slow dynamics of
the string and NES, also outside the manifold (16).
The derivatives of B and Ar have been obtained at
the second order, due to the fact that they are multi-
plied by small coefficients ξ and m. Equation (30) can
be written in real form through the polar transforma-
tion A j (t) := 1

2a j (t)eiα j (t) ( j = r, s) and B(t) :=
1
2b(t)e

iβ(t), separating real and imaginary parts, and
defining phase differences as γ (t) := σ t − αr (t),
χ(t) := αs(t) + 3γ (t) − 3σ t and ϑ(t) := σ t − β(t).
They read

ȧr = F1(ar , as, b, γ, χ, ϑ)

ȧs = F2(ar , as, b, γ, χ, ϑ)

mωr ḃ + mωr ar γ̇ sin(ωr xC ) sin(γ − ϑ)

− 1

2
ξbϑ̇ − mωr ȧr sin(ωr xC ) cos(γ − ϑ)

= F3(ar , as, b, γ, χ, ϑ)

ar γ̇ = F4(ar , as, b, γ, χ, ϑ)

as χ̇ − 3as γ̇ = F5(ar , as, b, γ, χ, ϑ)

mωr bϑ̇ − mωr ar γ̇ sin(ωr xC ) cos(γ − ϑ)

+ 1

2
ξ ḃ − mωr ȧr sin(ωr xC ) sin(γ − ϑ)

= F6(ar , as, b, γ, χ, ϑ) (31)

The nonlinear functionsFk (k = 1, . . . , 6) are reported
in Appendix 1.

If one defines the columns u := {ar , as, b, γ, χ, ϑ},
F := {F1,F2,F3,F4,F5,F6} and the mass matrix
M(u) (the expression ofM(u) is reported inAppendix
1), Eq. (31) can be written as

M(u)u̇ = F(u) (32)

which in normal formbecomes (provideddet(M) �= 0)

u̇ = G(u) (33)

where G(u) := M(u)−1F(u)

Equilibrium points of system (33), describing peri-
odic motions of the variables v(x, t) and z(t), are eval-

uated by solving the same system for ȧr = ȧs = ḃ =
γ̇ = ϑ̇ = χ̇ = 0, and their stability properties are
detected looking at the real part of the eigenvalues of
the Jacobianmatrix; periodic solutions of Eq. (33), giv-
ing rise to quasiperiodic motions in v(x, t) and z(t),
are numerically obtained through direct integration of
Eq. (31), while semi-analytical detection of the bands
of existence of the SMR (see e.g., [22]) is not carried
out here as a consequence of the increased dimension
of the system,whichmakes the procedure not computa-
tionally easy. The computations, carried out by means
of the softwares Auto [33] and Mathematica [34], are
presented in the following Section for a case study.

4 Numerical results

Numerical results are evaluated for a string of damp-
ing coefficient ζ = 1.119% (the value is reconstructed
from [35] where modal damping ratios are experimen-
tallymeasured for a stay). The external force is assumed

x

ϕ
r
,s

(a)

b

a
r

(b)

Fig. 2 Position of the NES on the span: xC = 0.5, orange point;
xC = 0.3, black point; xC = 0.2, green point; first mode (blue
line) and third mode (red line) of the string (a); invariant mani-
folds corresponding to the three positions of the NES (b). (Color
figure online)
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σ

a
r
,s

(a)

σ

b

(b)

Fig. 3 Frequency–response curves: a amplitude ar with NES
disengaged (black line), amplitude ar (red line) and as (blue
line) with NES engaged; b amplitude of NES b (red line). Force
p = 0.0084, position of the NES xC = 0.5. Continuous line
stable; dashed line unstable. (Color figure online)

as uniform (p(x) ≡ p), and the nondimensional para-
meters of the NES are m = 0.05, κ = 70, ξ = 0.01.

From now on, the external force is assumed to be
resonant to the first mode, therefore r = 1, s = 3,
moreover ωr := π , ωs := 3π and ϕr (x) := sin(πx),
ϕs(x) = sin(3πx).

The position of the NES along the span changes the
invariant manifold (17) in the way shown in Fig. 2. In
particular, if the NES is located at themid-span (orange
point in Fig. 2a, xC = 0.5), which is the antinode of
both the first and third modes (blue and red lines in
Fig. 2a, respectively), for a fixed value of amplitude

σ

a
r

HB HB

(a)

σ

a
s

(b)

HB
HB

σ

b

(c)

HB HB

Fig. 4 Frequency–response curves of the amplitudes ar (a), as
(b) and b (c), for p = 0.0084 and xC = 0.5. Continuous line
stable; dashed line unstable. Dark filled regions stable quasi-
periodic oscillations. Light filled regions unstable quasiperiodic
oscillations
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b

a
r

(a)

b

a
r

(b)

Fig. 5 Weakly modulated response [σ = 0.048, black line (a)]
and strongly modulated response [σ = 0.060, black line (b)]
with NES at the antinode, for p = 0.0084 and xC = 0.5; red line
invariant manifold. Continuous line stable; dashed line unstable.
(Color figure online)

of oscillation b of the NES, a smaller amplitude of
oscillation a of the principal structure occurs, than the
case where the NES is elsewhere (i.e., the orange curve
is always underneath the black and green ones, cor-
responding to xC = 0.3 and xC = 0.2 in Fig. 2a,
respectively). Therefore, the NES is more capable to
absorb energy from the main structure, which is the
main objective of the control problem, when its posi-
tion corresponds to the node of the mode shape.

Amplitude of periodicmotions of both the string and
NES, for force amplitude value p = 0.0084, are shown
in Fig. 3. In Fig. 3a, the black line corresponds to the
response ar without NES, which is the unique contri-
bution to the solution of the string; it is superimposed
to the response curve obtained when NES is engaged,
in terms of ar (red line) and as (blue line). The strong
reduction of the peak amplitude is evident, which is a
beneficial effect of the NES, as well as the participation
of the superharmonic component as to the dynamics.
In Fig. 3b, the amplitude of oscillation b of the NES is
shown.

t

a
r

(a)

t

a
s

(b)

t

b

(c)

Fig. 6 Strongly modulated response (σ = 0.06, p = 0.0084,
xC = 0.5). Time evolution of ar (a); time evolution of as (b);
time evolution of b (c)

A more detailed view of the same frequency–
response curves is shown in Fig. 4. There, Hopf bifur-
cation points (HB) are highlighted; they induce the aris-
ing of quasiperiodic oscillations of the string and NES,
which are stable close to the left HB point (dark filled
regions) and representing weakly modulated responses
(WMR). After secondary bifurcations, they become
unstable (light filled regions) and the response jumps to
StronglyModulatedResponses (which are not shown in
the pictures). In Fig. 5,WMRandSMR(black lines) are
shown as superimposed to the invariant manifold (red
lines), for σ = 0.046 (WMR, Fig. 5a) and σ = 0.060
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t
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(a)

t

z
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Fig. 7 Strongly modulated response (σ = 0.06, p = 0.0084,
xC = 0.5). Time evolution of vm (a); time evolution of z (b)

t

v
m

(a)

t

z

(b)

Fig. 8 Strongly modulated response from the Galerkin model
(σ = 0.06, p = 0.0084, xC = 0.5). Time evolution of vm (a);
time evolution of z (b)

(SMR, Fig. 5b). The time evolution of the same SMR
is shown in Fig. 6, where the three components ar , as
and b experience relaxation oscillations. In Fig. 7, the
reconstituted displacement of themidpoint of the string
(vm := v(1/2, t)) and of the NES (z(t)) are shown.
They are in good agreement with the time evolutions
provided by integration of a system of ordinary differ-
ential equations obtained by a Galerkin projection of
Eqs. (4) and (5), using the first eight odd eigenfunctions
as trial functions (Fig. 8).

5 Conclusions

An internally resonant elastic string is considered here
under the action of an external harmonic force. A NES
is engaged at a generic point of the string in order to
reduce the amplitude of oscillations as a passive con-
trol device. The MSHBM, extended in order to deal
with internally resonance cases, is applied in direct
approach to the system of partial differential equations,
to get amplitude modulation equations ruling the slow
dynamics of the system.

Differently than the case with NES disengaged,
where the dominant dynamics of the string is ruled
just by the directly excited resonant mode, the pres-
ence of theNES involves (in a first approximation) both
the resonant and a superharmonic components in the
response, and amplitude modulation equations ruling
the slow dynamics of them are coupled to the equation
relevant to the NES slow amplitude of oscillation.

Numerical results for a case study are presented,
denoting the contribution of both the components in
periodic and quasiperiodic solutions, and the benefi-
cial effect of the NES to reduce the amplitude of oscil-
lation of the string. Results are in good agreement with
those provided by a discrete, approximated, system of
ordinary differential equations obtained by means of a
Galerkin projection of the infinite dimensional prob-
lem.

Appendix: Coefficients of the equations

The expression of the right-hand sides of Eq. (31) is:

F1 = − ζ

2
ar − ξb cos(γ − ϑ) sin(ωr xC ) + pr

ωr
sin(γ )

− 3

4ω
κb3 sin(γ − ϑ) sin(ωr xC )
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F2 = −ζ

2
as − 1

4ω
κb3 sin(ωr xC ) sin(3γ − 3ϑ − χ)

F3 = −1

2
ξ(ωrσ)b − 1

2
mxCξω2

r b sin(ωr xC ) cos(ωr xC )

+ 1

2
mξωr b sin(ωr xC )2

+mωr (ωr + σ)a sin(ωr xC ) sin(γ − ϑ)

− 1

2
mpr

[
1 + (1 − xC + xC cos(ωr )) cos(ωr xC )

+ 1

2ωr
(1 − cos(ωr )) sin(ωr xC )

]
sin(ϑ)

+ mω4
rω

2
s

32ω3
r − 32ωrω2

s
(ωs − ωr )a

2
r as

× sin(ωr xC ) sin(γ − ϑ − χ)

F4 = arσ − 3

32
ηω3

r a
3
r − η

16
ωrω

2
s ara

2
s + pr

ωr
cos(γ )

− 3

4ωr
κb3 sin(ωr xC ) cos(γ − ϑ)

+ ξb sinωr xC ) sin(γ − ϑ)

F5 = −3σas + η

16
ωrω

2
s _r

2as + 3

32ωr
ηω4

s a
3
s

+ κ

4ωr
b3 sin(ωr xC ) cos(3γ − 3ϑ − χ)

F6 = −mωr

(ωr

2
+ σ

)
b + 3

8
κb3

−1

2
mpr xC

[
1 − (1 − xC + xC cos(ωr ))

× cos(ωr xC ) − (1 − cos(ωr )
sin(ωr xC )

2ωr

]
cos(ϑ)

+ 3

8
mκωr xCb

3 cos(ωr xC ) sin(ωr xC )

+m
(
σ + ωr

2

)
ωr ar sin(ωr xC ) cos(γ − ϑ)

+ mω4
rω

2
s

32ω3
r − 32ωrω2

s
(ωs − ωr )a

2
r as sin(ωr xC )

× cos(γ − ϑ − χ) − 3

8
κmb3 sin(ωr xC )2 (34)

The mass matrix of Eq. (31) isM(u) =
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−mωr sin(ωr xC ) cos(γ − ϑ) 0 mωr mωr ar sin(ωr xC ) sin(γ − ϑ) 0 − 1
2ξb

0 0 0 ar 0 0
0 0 0 −3as as 0

−mωr sin(ωr xC ) sin(γ − ϑ) 0 1
2ξ −mωr ar sin(ωr xC ) cos(γ − ϑ) 0 mωr b

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)
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