
Nonlinear Dyn (2015) 81:257–264
DOI 10.1007/s11071-015-1987-3

ORIGINAL PAPER

Nonlinear attitude control scheme with disturbance
observer for flexible spacecrafts

Zhen Wang · Zhong Wu

Received: 13 August 2014 / Accepted: 16 February 2015 / Published online: 26 February 2015
© Springer Science+Business Media Dordrecht 2015

Abstract To attenuate the effects of parameter vari-
ations and disturbances of flexible spacecrafts on atti-
tude control accuracy and stability, a composite control
approach by combining nonlinear disturbance observer
(NDO) and feedback linearization (FBL) control is pro-
posed. In this paper, the multiple disturbances that act
on spacecrafts from flexible appendages, space envi-
ronment, and unmodelled dynamics are considered
as an ‘equivalent’ disturbance. The proposed NDO is
used to estimate and compensate for the disturbances
through feedforward. Stability and tracking perfor-
mance of the NDO are then analyzed. Moreover, the
stability of the FBL+NDOcomposite control approach
is established through the Lyapunov method. Simu-
lation results show that the NDO can estimate dis-
turbances and reduce the effect of disturbances on
spacecrafts through feedforward compensation.Robust
dynamic performance and attitude control accuracy are
effectively improved.
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1 Introduction

Tomeet the demand of future space missions, the high-
precision and high-stability attitude control of flexi-
ble spacecrafts has become a difficult and important
problem [1]. However, unknown external and internal
disturbances widely act on spacecrafts, and the inertia
parameter is uncertain. Moreover, the structural vibra-
tions of flexible appendages usually occur in rotational
maneuvers [2], which seriously affect attitude control
performance. These problems pose a huge challenge
for attitude control system designers, and thus good
control schemes are required to improve robust perfor-
mance and control accuracy to solve these problems.

Over the last decades, many researchers have con-
ducted extensive studies on the spacecraft attitude con-
trol system. Early in the 1980s, Breakwell [3] and Ben-
Asher et al. [4] discussed the optimal control scheme
of flexible spacecrafts for vibration suppression prob-
lems. Afterward, to improve robust performance in the
presence of the unmodelled dynamics, disturbances,
model uncertainty, and structural vibrations of flexi-
ble appendages, many control methods with robustness
have been studied for the spacecraft attitude control
system. The slidingmode control (SMC)was proposed
to effectively design the attitude control system in [5–
7]. However, the phenomenon of chattering caused by
SMChas limited its practical applications [1]. Luo et al.
[8] andHu et al. [9] studied the H∞ control scheme sys-
tematically for the attitude control system to solve dis-
turbance and vibration problems. In [10–12], a series of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-1987-3&domain=pdf


258 Z. Wang, Z. Wu

adaptive attitude controllerswas also applied to address
the tracking problem of spacecrafts in the presence of
unknown control input saturation and external distur-
bances. Ali et al. [13] designed a nonlinear backstep-
ping attitude controller using an inverse tangent-based
tracking function for the attitude maneuver problem of
spacecrafts. The feedback linearization (FBL) control
approach,with its advantages of efficiency and simplic-
ity in the nonlinearity system, was also used to improve
attitude control performance in [14–16]. Moreover, a
hybrid control scheme with the classic FBL and μ-
synthesis control method was designed for the control
of flexible space structures that consider uncertainties
and environmental disturbances [17].

As an effective disturbance attenuation control
strategy, the nonlinear disturbance observer (NDO),
which can estimate unknown disturbances and effec-
tively compensate for them through feedforward, has
attracted the attention of many researchers [18–22].
A composite controller with hierarchical architecture
attained by combining theNDOand the SMCwas stud-
ied in [19,20], and stability of the closed-loop system
was also established. Qian et al. [21] designed a flight
control system for a hypersonic gliding vehiclewith the
help of the NDO. An NDO approach was developed in
combination with the nonlinear dynamic inverse con-
trol law for a missile autopilot system [22]. The NDO
can implement disturbance attenuation and is easy to
combine with other traditional feedback control meth-
ods, such as the FBL, H∞ , variable structure controller,
and SMC.

In this paper, the NDO combined with the FBL
approach is proposed to enhance the disturbance atten-
uation ability and robust performance of a flexible
spacecraft attitude control. The NDO, which can esti-
mate various unknown disturbances, is designed for
feedforward compensation. Then, a FBL approach is
adopted for the flexible spacecraft attitude control.
Stability of the closed-loop system is analyzed using
the Lyapunov method. The composite attitude control
scheme improves the accommodation of uncertainties
and unknown disturbances to give the spacecraft atti-
tude control system high precision and high stability.

2 Problem formulation

To simplify the control problem, three-axis rotation is
considered, and the spacecraft includes one rigid body

and n flexible appendages. The rotational dynamics of
the spacecraft with flexible appendages is described as
follows [23]:

(J + �J) ω̇ + ω×
(

(J + �J) ω +
n∑

i=1

Fsaiη̇i

)

+Fsaiη̈i = u + d0 (1)

η̈i + 2ξ iΩaiη̇i + Ω2
aiηi = −FT

saiω̇ (2)

where ω is the attitude angle velocity of the space-
craft body frame with respect to the inertia frame
expressed in the body frame, J is the exact inertia
moment of the spacecraft, �J is the uncertainties of
the inertia moment, Fsai is the coupling matrix, ηi
is the modal coordinate of the i th flexible appendage
(i = 1, 2, . . ., n), u is the control torque, d0 is the dis-
turbance torqueproducedby the space environment and
unmodelled dynamics, ξ i is the damping ratio of the i th
flexible appendage, and Ωai is the modal frequency of
the i th flexible appendage; the symbol x× is a skew
symmetric matrix acting on the vector x = [x1 x2 x3]T
and

x× =
⎡
⎣ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎤
⎦ (3)

Combining (1) with (2), we obtain

Jω̇ = −ω× (Jω) + u + d0 − ω×
(

n∑
i=1

Fsaiη̇i

)

+Fsai

(
2ξ iΩaiη̇i + Ω2

aiηi + FT
saiω̇

)
−�Jω̇ − ω× (�Jω) (4)

From (4), we can consider

d1 = −�Jω̇ + Fsai

(
2ξ iΩaiη̇i + Ω2

aiηi + FT
saiω̇

)

−ω× (�Jω) − ω×
(

n∑
i=1

Fsaiη̇i

)
(5)

as the disturbance produced by the elastic vibration of
the flexible appendages and model uncertainties, and
ω×(Jω) as the nonlinear function.

We denote d = d0 + d1 as the ‘equivalent’ dis-
turbance, including external and internal disturbances,
model uncertainties, and unmodelled dynamics. The
rotational dynamics of the spacecraft can be rearranged
in the following form:

Jω̇ = −ω× (Jω) + u + d (6)

123



Nonlinear attitude control scheme 259

In this paper, the quaternion is used to express the
attitude of the spacecraft, which is free of singularity
and simpler to calculate due to the inexistence of tran-
scendental functions [24]. The quaternion is defined
by q = [q0 q1 q2 q3]T = [q0 q̂T ]T satisfying
q̂T q̂ + q20 = 1, where q0 is the scalar component and
q̂ ∈ R3×1 is the vector part. The attitude kinematics is
given by [9]{

q̇0 = − 1
2 q̂

T
ω

˙̂q = 1
2

(
q̂×

ω + q0ω
) (7)

3 Composite control system design

3.1 Nonlinear disturbance observer design

To design the NDO and the composite controller, the
following assumptions are needed in this paper.

Assumption 1 In the spacecraft dynamics (6) and (7),
all state variables can be measured, which implies that
the attitude angle velocity ω and the quaternion q are
available for the NDO and composite controller design
[8,25].

Assumption 2 The elastic vibration and its velocity of
flexible appendages are assumed to be bounded during
the whole attitude control process [9]. Thus,

∥∥η̇i
∥∥ and∥∥ηi

∥∥ are bounded.

Assumption 3 The ‘equivalent’ disturbance d is slow
varying and bounded. Therefore, ḋ ≈ 0 is reasonable.

To estimate the disturbance of system (6), we con-
struct the disturbance observer as⎧⎨
⎩
d̂ = z + p(ω)

ż = −L(ω)
{−J−1

[
ω× (Jω)

] + J−1u
}

−L(ω)J−1
[
z + p(ω)

] (8)

where d̂ is the estimation of the merged disturbance
d, p(ω) is the nonlinear function, and L(ω) is the non-
linear observer gain function defined by

L(ω) = ∂p(ω)

∂ω
(9)

Denoting de as the disturbance observer error, we
have

ḋe = ḋ − ˙̂d ≈ −˙̂d = −ż − ∂p(ω)

∂ω
ω̇ = −ż − L(ω)ω̇

(10)

Theorem 1 Considering the system (6) and the NDO
system (8), when the nonlinear function p(ω) satisfies

p(ω) =

⎡
⎢⎢⎣

λ1
(
ω1 + ω

s1
1 /s1

)
λ2

(
ω2 + ω

s2
2 /s2

)
λ3

(
ω3 + ω

s3
3 /s3

)
⎤
⎥⎥⎦ (11)

theNDOsystem (8) can track the disturbance d, and the
estimation error de can converge to the origin, where
λi > 0 and si is the positive odd integer (i = 1, 2, 3).

Proof Select a candidate Lyapunov function (CLF) V1
as:

V1 = 1

2
dTe de > 0 (12)

Computing the derivative of V1, we have

V̇1 = dTe ḋe = dTe (−ż − L(ω)ω̇) (13)

Putting (8) into (13), we have

V̇1 = dTe L(ω)
{
−J−1 [ω × (Jω)] + J−1u − ω̇

}
+ dTe L(ω)J−1d̂ (14)

By substituting (6) into (14), (14) can be rewritten
as

V̇1 = − dTe L(ω)J−1d + dTe L(ω)J−1d̂

= − dTe L(ω)J−1de (15)

From (9) and (11), we can obtain

L(ω) =⎡
⎢⎢⎢⎣

λ1

(
1 + ω

s1−1
1

)
0 0

0 λ2

(
1 + ω

s2−1
2

)
0

0 0 λ3

(
1 + ω

s3−1
3

)
⎤
⎥⎥⎥⎦ (16)

Clearly, L(ω) is a positive definite matrix. As J−1 is
also a positive definite matrix, when de �= 0,

V̇1 < 0. (17)

The NDO system (8) can track the disturbance d,
and the estimation error de converges to the origin. The
conclusion can then be obtained.

Further, from (13)–(15), we can obtain

ḋe = −L(ω)J−1de (18)

Hence, it is easy to get the solution

de(t) = e−L(ω)J−1(t−t0)de(0) (19)

where de(0) is the initial value of de. ��
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Fig. 1 Schematic of the
composite attitude control
system
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Remark 1 It is obvious that the convergence rate and
observation error accuracy ofNDOdepend on the para-
meters λi and si . The larger the parameters λi and si
are, the faster the convergence rate and the higher the
observation error accuracy will be. However, too large
parameters will lead to undesirable substantial chat-
tering. Therefore, the parameters λi and si cannot be
selected too large.

3.2 Composite controller design

The composite controller scheme mainly consists of
two parts as shown in Fig. 1: The inner loop is the
merged disturbance estimation and feedforward com-
pensation, and the outside loop is the FBL attitude con-
troller.

We denote ωe as the error of the current attitude
angle velocity with respect to the desired attitude angle
velocity. Therefore,

ωe = ω − ωd (20)

whereωd is the desired attitude angle velocity expressed
in the body frame.

The expression qe = [qe0 q̂Te ]T is defined as the
error quaternion of the current attitude with respect to
the desired attitude. The attitude kinematics error can
be written as [24]{

q̇e0 = − 1
2 q̂

T
e ωe

˙̂qe = 1
2

(
q̂×
e ωe + qe0ωe

) (21)

Generally, the classical FBL controller for system
(6) and the attitude kinematic error system (21) without
disturbances can be expressed as [15]

uc = −k1q̂e − K2ωe + Jω̇d + ω× (Jω) (22)

Therefore, the composite controller based on the
FBL and NDO can be designed as

u = uc − d̂ (23)

Theorem 2 Considering the rotational dynamic sys-
tem (6) and the attitude kinematic error system (21),
choose the control law u as

u = −k1q̂e − K2ωe + Jω̇d + ω× (Jω) − d̂ (24)

and the NDO in the form of (8); then, the system (21)
is in global asymptotic stability, where k1 > 0 and
K2 > 0 are controller gains, η2 > 1/(4η1), η1 is the
minimum eigenvalue of L(ω)J−1 in (15), and η2 is the
minimum eigenvalue of K2 in (24).

Proof Consider a candidate Lyapunov function (CLF)
V as:

V = k1
[
q̂Te q̂e + (qe0 − 1)2

]
+ 1

2
ωT
e Jωe + V1 (25)

Similarly, by computing the derivative of V along
the trajectories of (21), we can obtain

V̇ = 2k1
[
q̂Te ˙̂qe + (qe0 − 1) q̇e0

]
+ ωT

e Jω̇e + dTe ḋe

= k1
[
q̂Te

(
q̂×
e ωe + qe0ωe

) − (qe0 − 1) q̂Te ωe

]
+ωT

e Jω̇e + dTe ḋe
= k1q̂

T
e ωe + ωT

e Jω̇e + dTe ḋe (26)

In view of (13), (14), and (15), it shows that

V̇ = k1q̂
T
e ωe + ωT

e Jω̇e − dTe L(ω)J−1de (27)

Substituting (20) into (27) gives

V̇ = k1q̂
T
e ωe + ωT

e (Jω̇ − Jω̇d) − dTe L(ω)J−1de (28)

It is readily obtained from (6) that

V̇ = k1q̂
T
e ωe + ωT

e

(
u + d − ω× (Jω) − Jω̇d

)
− dTe L(ω)J−1de (29)
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By combining the control law (24) with (29), we
have

V̇ = k1q̂
T
e ωe + ωT

e (−k1q̂e − K2ωe − d̂ + d)

− dTe L(ω)J−1de
= −ωT

e K2ωe + ωT
e de − dTe L(ω)J−1de (30)

Further, the (30) can be transformed as

V̇ ≤ −η2 ‖ωe‖2 + ‖ωe‖ ‖de‖ − η1 ‖de‖2

= −
(

η2 − 1

4η1

)
‖ωe‖2 −

( ‖ωe‖
2
√

η1
− √

η1 ‖de‖
)2

(31)

When the following condition

η2 − 1

4η1
> 0 (32)

is satisfied,

V̇ ≤ 0 (33)

According to (33), it is obvious that V (t) ≤ V (0)
and V is bounded. Then, we easily find q̂e, qe0,ωe, de
are bounded form (25), that is, q̂e ∈ L∞,ωe ∈
L∞, de ∈ L∞. In viewof (13)–(15), it is clear ḋe ∈ L∞
. According to (21), it is obvious q̂e ∈ L∞ and
qe0 ∈ L∞. Therefore, u ∈ L∞ is clear from (24). Fur-
ther, it is reasonable ω̇ ∈ L∞ from (6), so ω̇e ∈ L∞.

The time derivative of (30) is given by

V̈ = − 2ωT
e K2ω̇e + ω̇T

e de + ωT
e ḋe − 2dTe L(ω)J−1ḋe

− dTe L̇(ω)J−1de (34)

It is clear that V̈ is bounded. According to the Bar-
balat’s Lemma [26], V̇ can converge to zero as t → ∞.
Then, the observer error de, the attitude angle veloc-
ity error ωe, and the attitude error q̂e can converge to
origin as t → ∞. The composite controller can effec-
tively track the desired attitude in the presence of vari-
ous disturbances, model uncertainties, and unmodelled
dynamics. The conclusion can then be obtained. ��
Remark 2 As can be seen from (19) and (31), the sys-
tem convergence rate depends on η2−1/(4η1), λi , and
si . To keep the stability of the system, the parameter
η2 > 1/(4η1) should be satisfied first. It is obvious that
the larger the parameters η2, λi , and si are, the faster
the system states can converge to the origin. However,
too large η2, λi , and si will lead to undesirable substan-
tial chattering and require a high control input torque
u, which is bounded in practice. Thus, the parameters
η2, λi , and si cannot be chosen too large.

4 Simulation results and discussion

In this section, the disturbance attenuation ability and
robust performance of the proposed composite con-
trol algorithm for flexible spacecrafts, which combines
the NDO and FBL, are discussed and demonstrated
by numerical simulations. We give the instruction atti-
tude angle and use the FBL approach, adaptive control
approach, and FBL+NDO approach to compare the
tracking performance of the control system.

In the simulation, themoment of inertia of the space-
craft is

J =
⎡
⎣420.8 0 0
0 410.6 0
0 0 690.7

⎤
⎦ kg · m2 (35)

Four bending modes are considered for the flexi-
ble appendages with ω1 = 0.05Hz, ω2 = 0.5 Hz,
ω3 = 1.0Hz, and ω4 = 2.0 Hz; damping ratio
of ξ1 = 0.05, ξ2 = 0.05, ξ3 = 0.05, and ξ4 =
0.05; and the coupling coefficients of the four bend-
ing modes are Fsai = [Fsa1 Fsa2 Fsa3 Fsa4], where
Fsa1 = [−0.28895e2 − 0.39046e10.3986e − 8]T ,
Fsa2 = [0.49894e−70.052219−0.30009e2]T ,Fsa3 =
[0.16520 − 4.3318 − 0.87999e − 7]T , and Fsa4 =
[6.78770.22092e10.98309e − 9]T . Suppose n0 is the
orbit rate, then the space environmental disturbance
torques acting on the spacecraft are supposed as fol-
lows [1]:⎧⎨
⎩
d0x = 4.5 × 10−3(3 cos n0t + 1)
d0y = 4.5 × 10−3(3 cos n0t + 1.5 sin n0t)
d0z = 4.5 × 10−3(3 sin n0t + 1)

(36)

Aside from the external merged disturbances, the
disturbance form d can also represent the systemuncer-
tainties and unmodelled dynamics of a flexible space-
craft. That is, system uncertainties and unmodelled
dynamics can be considered part of the disturbances,
and the NDO approach can also estimate and compen-
sate for them through feedforward. In the simulation,
±20% perturbation of the nominal moment of inertial
is considered [1]. The initial attitudes of the spacecraft
are [ϕ θ ψ] = [5◦ 5◦ − 5◦]. The desired attitudes of
the spacecraft are given by [11]⎡
⎣ϕd

θd
ψd

⎤
⎦ = π

36
sin

( π

15
t
)⎡

⎣0
1
0

⎤
⎦ (37)

The composite control approach in Eq. (24), adap-
tive control approach in Ref. [25], and the pure FBL
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approach in Eq. (22) will control the flexible spacecraft
attitude. We choose the same attitude controller para-
meters: k1 = 27.3 and K2 = diag(16.1, 28.5, 23.2).
Meanwhile, the NDO parameters are chosen as: λ1 =
2210, λ2 = 2853, λ3 = 2210, s1 = s2 = s3 = 3;
then the nonlinear function is p(ω) = [2210(ω1 +
ω3
1/3) 2853(ω2 + ω3

2/3) 2210(ω3 + ω3
3/3)]T . Sup-

pose the maximum control torque for each axis gen-
erated by the actuators is umax < 100(N · m)[5].
On the basis of the preceding formulation of our
model, we can obtain the simulation results, respec-
tively, as shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9,
and 10.

Figures. 2, 3, and 4 indicate the time responses of
the three-axis disturbances, disturbance estimations,
and estimation errors. Based on the simulation results
in Figs. 2, 3, and 4, all disturbances from the flexi-
ble appendages, space environment, and unmodelled
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Fig. 5 Time responses of roll angle

dynamics can be effectively estimated by the NDO,
where the estimation error is <3.2% of the practical
disturbance for the roll axis, that for the pitch axis
is <2.8%, and that for the yaw axis is <2.1%. The
effects of the disturbances on the flexible spacecraft
are reduced to the lowest by the NDO through feedfor-
ward compensation.

Under the same simulation conditions, Figs. 5, 6,
and 7 show that all spacecraft attitude angles have bet-
ter dynamic response performance controlled by the
FBL+NDO composite controller. Moreover, the atti-
tude tracking accuracy and attitude stabilization are
improved compared with those generated by the pure
FBL approach and the adaptive approach in the pres-
ence of various disturbances. The roll angle tracking
error is < 8 × 10−5◦, the pitch angle tracking error
is < 1.5 × 10−3◦

, and the yaw angle tracking error is
< 3 × 10−6◦

.
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As demonstrated in Figs. 8, 9, and 10, the composite
control torque is larger at the beginning of the simula-
tions than the FBL control torque and the adaptive con-
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trol torque. The reason is that the composite controller
can estimate and compensate for the disturbances. This
reason also explains how the FBL+NDO approach has
better dynamic response performance than the FBL
approach and adaptive approach.

5 Conclusions

A composite control approach combining the NDO
with the FBL is proposed for the attitude control system
of flexible spacecrafts to enhance disturbance attenua-
tion ability and robust performance. The NDO is used
to estimate various unknown disturbances and com-
pensate for them through feedforward. The FBL con-
troller can effectively accomplish attitude control in
the presence of various disturbances. Simulation results
demonstrate that the NDO can estimate the disturbance
and reduce the effect of the disturbances on flexible
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spacecrafts through feedforward compensation. The
composite controller can improve robust dynamic per-
formance and attitude control accuracy.
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