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Abstract The extended homoclinic test approach is
an efficient and well-developed approach to solve
nonlinear partial differential equations. In this paper,
the (2+1)- and (3+1)-dimensionalBoiti–Leon–Manna–
Pempinelli equation are investigated by using this
approach. Some exact solutions including kinky peri-
odic solitary-wave solutions, periodic soliton solu-
tions and kink solutions are obtained. Moreover, the
strangely mechanical features of these solutions are
studied. These results enrich the variety of the dynam-
ics of nonlinear wave model.

Keywords Boiti–Leon–Manna–Pempinelli equa-
tion · Bilinear form · Extended homoclinic test
approach · Periodic solitary-wave solutions

1 Introduction

Many significant phenomena and dynamic processes
in physics, chemistry, biology and mechanics can be
represented by nonlinear partial differential equations
(NLPDEs). When we want to understand the mech-
anism of phenomena in nature which have described
by NLPDEs, we have to obtain the exact solutions of
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the NLPDEs. Searching for exact solutions of NLPDEs
has long been an important work for both mathemati-
cians and physicists. In recent years, quite a few meth-
ods have been proposed to solve solutions of NLPDEs,
such as the tanh-functionmethod [1], the sech-function
method [2], the homogeneous balance method [3],
the inverse scattering transformation approach [4], the
Bäcklund transformation (BT) [5], the Darboux trans-
formation [6], the bilinear method [7], Painlevé analy-
sis [8], the Wronskian technique [9] and the exp-
function method [10,11], and so on. It is well known
that the studyof soliton generatingNLPDEs are of great
interest not only in (1+1)-dimensional systems, but also
in (2+1)- and (3+1)-dimensional systems. Recently,
Dai et al. [12] constructed the extended homoclinic
test approach (EHTA) to seek solitary-wave solution
of high dimensional nonlinear wave system. Some
exact solutions including breather type soliton, peri-
odic type of soliton and two soliton solutions are
obtained [12–17]. In this letter, we solve the (2+1)-
and (3+1)-dimensional BLMP equation by using the
extended homoclinic test approach (EHTA) and study
the strangely mechanical features of these wave solu-
tions.

This paper is organized as follow: in Sect. 2, a
direct formulation of the procedure for the extended
homoclinic test approach (EHTA) is made. In Sect. 3,
we solve the (2+1)-dimensional BLMP equation by
using EHTA. In Sect. 4, we apply EHTA to the (3+1)-
dimensional BLMP equation. We conclude the paper
in the final section.
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2 The extended homoclinic test approach

To explain these fundamental steps of the extended
homoclinic test approach, we consider a general form
of a (3+1)-dimensional nonlinear partial differential
equation as

F(u, ut , ux , uy, uz, uxx , uyy, uzz, . . .) = 0, (1)

where u = u(x, y, z, t) and F is a polynomial of u and
its derivatives.

The basic steps of the EHTA can be expressed in the
following form, (for more details see [12]).

Step 1We make a transformation as

u = T ( f ), (2)

where f is a new unknown function. By substituting
Eq. (2) into Eq. (1), we can obtain the Hirota’s bilinear
form

G(Dt , Dx , Dy, Dz; f, f ) = 0, (3)

where Dt , Dx , Dy and Dz are Hirota’s bilinear oper-
ators [18] which is defined by

Dm
x Dk

yD
p
z D

n
t f (x, y, z, t) · g(x, y, z, t)

=
( ∂

∂x1
− ∂

∂x2

)m( ∂

∂y1
− ∂

∂y2

)k( ∂

∂z1
− ∂

∂z2

)p

×
( ∂

∂t1
− ∂

∂t2

)n[
f
(
x1, y1, z1, t1

)

g(x2, y2, z2, t2)
]
,

where the right-hand side is computed in

x1 = x2 = x, y1 = y2 = y, z1 = z2 = z, t1 = t2 = t.

Step 2 To obtain the exact solutions of Eq. (3), we
suppose the standard ansatz in EHTA as

f (x, y, z, t) = e−ξ1 + δ1 cos(ξ2) + δ2e
ξ1 , (4)

where ξi = ai x + bi y + ci z + di t, ai , bi , ci , di and
δi , (i = 1, 2) are unknown constants to be deter-
mined later. Substituting Eq. (4) into (3), and collect-
ing the coefficients of sin(ξ2), cos(ξ2) and e jξ1 , j =
−1, 0, 1,then equating coefficients of these terms to
zero, we obtain a set of algebraic equations.

Step 3 Solving the set of algebraic equation defined
by step 4 with the help of

Maple, we can find solutions of ai , bi , ci , di and
δi (i = 1, 2). Substituting the identified values of
ai , bi , ci , di and δi (i = 1, 2) into Eq. (4) and then
Eq. (2), we can obtain abundant exact solution of
Eq. (1).

3 Application to the (2+1)-dimensional BLMP
equation

We study the (2+1)-dimensional Boiti–Leon–Manna–
Pempinelli (BLMP) equation as

uyt + uxxxy − 3uxxuy − 3uxuxy = 0, (5)

which was derived by Gilson et al. [19] and recently
investigated by Luo [20]. This equation was used to
describe the (2+1)-dimensional interaction of the Rie-
mann wave propagated along the y-axis with a long
wave propagated along the x-axis. Based on the binary
Bell polynomials, the bilinear form for the BLMP
equation is obtained in [20]. The variable separable
solutions and some novel localized excitations for
the (2+1)-dimensional BLMP were obtained in [21].
New solutions of (2+1)-dimensional BLMP equation
from Wronskian formalism and the Hirota method are
obtained in [22,23].

Under the dependent variable transformation u =
−2(ln f )x , the Eq. (5) is transformed into the Hirota’s
bilinear form

(DyDt + DyD
3
x ) f · f = 0, (6)

Now we assume the solution of Eq. (6) as

f (x, y, z, t) = e−ξ1 + δ1 cos(ξ2) + δ2e
ξ1 , (7)

where ξi = ai x + bi y + ci z + di t, ai , bi , ci , di and
δi , (i = 1, 2) are some constants to be determined
later. Now substituting Eq. (7) into Eq. (6) and equating
all the coefficients of sin(ξ2), cos(ξ2) and e jξ1 , j =
−1, 0, 1 to zero, we can obtain the following set of
algebraic equation for ai , bi , ci , di and δi , (i = 1, 2)

⎧
⎨
⎩
a31b1 + a32b2−b2d2+b1d2−3a21a2b2−3a1a22b1=0,
−a32b1 + b1d2+b2d1−3a1a22b2+3a21a2b1 + a31b2=0,
16a31b1δ2 + 4a32b2δ

2
1−b2d2δ21 + 4b1d1δ2 = 0.

(8)
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Solving the system of Eq. (8) with the help of Maple,
we obtain the following cases:
Case 1

a2 = −4a1b1δ2
b2δ21

, d1 = a31
(−δ41b

2
2 + 48δ22b

2
1

)

δ41b
2
2

,

d2 = −4δ2a31b1
(−3δ41b

2
2 + 16δ22b

2
1

)

δ61b
3
2

(9)

where a1, b1, b2, δ1 and δ2 are some free real constants.
Substituting Eq. (9) into u = −2(ln f )x with Eq. (7),
we obtain the solution

u(x, y, z, t)= −2
(−a1e−ξ1−δ1 sin(ξ2)a2+δ2a1eξ1

)

e−ξ1+δ1 cos(ξ2) + δ2eξ1
.

(10)

If δ2 > 0, then we obtain the exact solution as

u(x, y, z, t) = −2(2a1
√

δ2 sinh(ξ1 − θ) − δ1 sin(ξ2)a2)

2
√

δ2 cosh(ξ1 − θ) + δ1 cos(ξ2)
,

for θ = 1
2 ln(δ2).

If δ2 < 0, then we obtain the exact solution as

u(x, y, z, t) = −2(2a1
√−δ2 cosh(ξ1−θ)−δ1 sin(ξ2)a2)

2
√−δ2 sinh(ξ1−θ) + δ1 cos(ξ2)

,

for θ = 1
2 ln(−δ2), where

ξ1 = a1x + b1y + a31
(−δ41b

2
2 + 48δ22b

2
1

)

δ41b
2
2

t,

ξ2 =−4a1b1δ2
b2δ21

x + b2y− 4δ2a31b1
(−3δ41b

2
2+16δ22b21

)

δ61b
3
2

t.

Obviously, the Eq. (10) is a periodic solitary-wave solu-
tion that is to say it is a periodic wave with period 2π
with X = ξ2, and meanwhile is also solitary wave with
Y = ξ1 − θ .

Figure 1 shows the periodic solitary-wave solutions
for some special values of the solution parameters in
cases 1.
Case 2

b2=0, d1=3a1a
2
2−a31, d2=−3a2a

2
1+a32, δ2 = 0

(11)

where a1, a2, b1 and δ1 are some free real constants.
Substituting Eq. (11) into u = −2(ln f )x with Eq. (7),
we obtain the solution

Fig. 1 Kinky periodic-wave solution for case 1 as a1 =
0.5, b1 = 1, b2 = 1, δ1 = 1, δ2 = 1 and t = 0

Fig. 2 Kinky periodic-wave solution for case 2 as a1 = 2, a2 =
0.5, b1 = 2, δ1 = 1 and t = 0

u(x, y, z, t) = −2
(−a1e−ξ1 − δ1 sin(ξ2)a2

)

e−ξ1 + δ1 cos(ξ2)
, (12)

for

ξ1 = a1x + b1y + (3a1a
2
2 − a31)t,

ξ2 = a2x +
(
−3a2a

2
1 + a32

)
t.

Figure 2 shows the periodic solitary-wave solutions
for some special values of the solution parameters in
cases 2.
Case 3

d1 = −4a31, δ1 = 0 (13)
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where a1, a2, b1, b2, d2 and δ2 are some free real con-
stants. Substituting Eq. (13) into u = −2(ln f )x with
Eq. (7), we obtain the solution

u(x, y, z, t)= −2
(−a1e−ξ1 + δ2a1eξ1

)

e−ξ1 + δ2eξ1
, (14)

If δ2 > 0, then we obtain the exact solution as

u(x, y, z, t) = −4a1
√

δ2 sinh(ξ1 − θ)

2
√

δ2 cosh(ξ1 − θ)
,

for θ = 1
2 ln(δ2).

If δ2 < 0, then we obtain the exact solution as

u(x, y, z, t) = −4a1
√−δ2 cosh(ξ1 − θ)

2
√−δ2 sinh(ξ1 − θ)

,

for θ = 1
2 ln(−δ2), where

ξ1 = a1x + b1y − 4a31 t, ξ2 = a2x + b2y + d2t.

Obviously, the Eq. (14) is an exact kink solution.
Figure 3 shows the exact kink solutions for some

special values of the solution parameters in cases 3.

4 Application to the (3+1)-dimensional BLMP
equation

In this section, we extend our analysis to construct the
exact solutions to the (3+1)-dimensional Boiti–Leon–

Fig. 3 Exact kink solution for case3 as a1 = 1, a2 = 3, b1 =
1, b2 = 2, d2 = 1, δ1 = 1 and t = 0

Manna–Pempinelli (BLMP) equation as

uyt + uzt + uxxxy + uxxxz − 3ux (uxy + uxz)

−3uxx (uy + uz) = 0. (15)

This equation was introduced in [24]. Based on
the multiple exp-function method, the single-wave,
double-wave and multi-wave solutions for the (3+1)-
dimensional BLMP equation are obtained in [24], by
means of the Wronskian technique, some exact solu-
tions including rational solutions, soliton solutions,
positons and negatons are obtained in [25].

By using the transformation u = −2(ln f )x ,
Eq. (15) can be converted into the following Hirota’s
bilinear form

(DyDt + DzDt + DyD
3
x + DzD

3
x ) f · f = 0. (16)

Similarly, we assume the solution of Eq. (16) as

f (x, y, z, t) = e−ξ1 + δ1 cos(ξ2) + δ2e
ξ1 , (17)

where ξi = ai x + bi y + ci z + di t, ai , bi , ci , di and
δi , (i = 1, 2) are someconstants to bedetermined later.
Now substituting Eq. (17) into Eq. (16) and equating
all the coefficients of sin(ξ2), cos(ξ2) and e jξ1 , j =
−1, 0, 1 to zero, we can obtain the following set of
algebraic equation for ai , bi , ci , di and δi , (i = 1, 2)
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−3a1a22c1−3a21a2c2+ a31b1+a32b2 − b2d2 + b1d2
−3a21a2b2 − 3a1a22b1 + c1d1 − c2d2 + a31c1 + a32c2 = 0,
−a32b1 + b1d2 + b2d1 − 3a1a22c2 − 3a1a22b2 + c1d2
+c2d1 + 3a21a2b1 + a31b2 − a32c1 + 3a21a2c1 + a31c2 = 0,
4a32c2δ

2
1 + 16a31b1δ2 + 4a32b2δ

2
1 − b2d2δ21 + 16a31c1δ2+4b1d1δ2 + 4c1d1δ2 − c2d2δ21 = 0.

(18)

Solving the set of algebraic equation with the aid of
Maple, yields the following cases:
Case 1

b1 = −1

4

4a1c1δ2 + δ21a2b2 + δ21a2c2
a1δ2

,

d1 = −a1
(
−3a22 + a21

)
, d2 = −3a2a

2
1 + a32 (19)

where a1, a2, b2, c1, c2, δ1 and δ2 are some free real
constants. Substituting Eq. (19) into u = −2(ln f )x
with Eq. (17), we obtain the solution

u(x, y, z, t)=−2
(−a1e−ξ1−δ1 sin(ξ2)a2 + δ2a1eξ1

)

e−ξ1+δ1 cos(ξ2)+δ2eξ1
,

(20)
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If δ2 > 0, then we obtain the exact solution as

u(x, y, z, t)=−2(2a1
√

δ2 sinh(ξ1−θ)−δ1 sin(ξ2)a2)

2
√

δ2 cosh(ξ1−θ)+δ1 cos(ξ2)
,

for θ = 1
2 ln(δ2).

If δ2 < 0, then we obtain the exact solution as

u(x, y, z, t) = −2(2a1
√−δ2 cosh(ξ1−θ)−δ1 sin(ξ2)a2)

2
√−δ2 sinh(ξ1−θ)+δ1 cos(ξ2)

,

for θ = 1
2 ln(−δ2), where

ξ1 = a1x − 1

4

4a1c1δ2 + δ21a2b2 + δ21a2c2
a1δ2

y + c1z

− a1
(
−3a22 + a21

)
t,

ξ2 = a2x + b2y + c2z +
(
−3a2a

2
1 + a32

)
t.

Obviously, the Eq. (20) is a periodic solitary-wave solu-
tion that is to say it is a periodic wave with period 2π
with X = ξ2, and meanwhile is also solitary wave with
Y = ξ1 − θ .

Figure 4 shows the periodic solitary-wave solutions
for some special values of the solution parameters in
cases 1.
Case 2

a1 = 0, b2 = −c2, d1 = 0, d2 = a32 (21)

Fig. 4 Kinky periodic-wave solution for case 1 as a1 = 0.5,
a2 = 1, b2 = 1, c1 = 1, c2 = 1, δ1 = 1, δ2 = 1, t = 1 and
z = 1

where a2, b1, c1, c2, δ1 and δ2 are some free real con-
stants. Substituting Eq. (21) into u = −2(ln f )x with
Eq. (17), we obtain the solution

u(x, y, z, t) = 2δ1 sin(ξ2)a2
e−ξ1 + δ1 cos(ξ2) + δ2eξ1

, (22)

for

ξ1 = b1y + c1z, ξ2 = a2x − c2y + c2z + a32 t.

If δ2 > 0, then we obtain the exact solution as

u(x, y, z, t) = 2δ1 sin(ξ2)a2
2
√

δ2 cosh(ξ1 − θ) + δ1 cos(ξ2)
,

for θ = 1
2 ln(δ2).

If δ2 < 0, then we obtain the exact solution as

u(x, y, z, t) = 2δ1 sin(ξ2)a2
2
√−δ2 sinh(ξ1 − θ) + δ1 cos(ξ2)

,

for θ = 1
2 ln(−δ2).

Apparently, theEq. (22) is a periodic soliton that is to
say it is a periodic solutionwith period 2π with X = ξ2,
and meanwhile is solitary wave with Y = ξ1 − θ .

Figure 5 shows the periodic soliton solutions for
some special values of the solution parameters in
cases 2.
Case 3

a2 = 0, d1 = −a31, d2 = 0, δ2 = 0 (23)

Fig. 5 Periodic soliton solution for case 2 as a2 = 1.5, b1 =
1, c1 = 1, c2 = 1, δ1 = 1, δ2 = 1, t = 1 and z = −1
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Fig. 6 Kinky periodic-wave solution for case 3 as a1 = 1, b1 =
1, b2 = 1.6, c1 = 1, c2 = 2, δ1 = 1, t = 0 and z = 0

where a1, b1, b2, c1, c2 and δ1 are some free real con-
stants. Substituting Eq. (23) into u = −2(ln f )x with
Eq. (17), we obtain the solution

u(x, y, z, t) = 2a1e−ξ1

e−ξ1 + δ1 cos(ξ2)
, (24)

for ξ1 = a1x + b1y + c1z − a31 t, ξ2 = b2y + c2z.
Figure 6 shows the periodic solitary-wave solutions

for some special values of the solution parameters in
cases 3.

5 Conclusion

In conclusion, we solve the (2+1)- and (3+1)-dimensio-
nal Boiti–Leon–Manna–Pempinelli (BLMP) equations
by using the extended homoclinic approach, new exact
solutions including kinky periodic solitary-wave solu-
tions, periodic soliton solutions and kink solutions are
obtained in this paper. To our knowledge, these solu-
tions are novel. In addition, the differently mechani-
cal features of these exact solutions are studied. These
results show that EHTA combined with the bilinear
form is a simple and powerful method to seek exact
solutions of nonlinear partial differential equations.
whether there are similar results to other equations is
still an open problem.
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