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Abstract Within the framework of the Madelung
fluid description, in the present paper, we will derive
bright and dark (including gray- and black-soliton)
envelope solutions for a generalized mixed nonlinear

Schrödinger model i
∂Ψ

∂t
= ∂2Ψ

∂x2
+ i a |Ψ |2 ∂Ψ

∂x
+

i bΨ 2 ∂Ψ ∗

∂x
+ c |Ψ |4Ψ + d |Ψ |2Ψ , by virtue of the

corresponding solitary wave solutions for the general-
ized stationary Gardner equations. Via corresponding
parametric constraints, our results are achieved under
suitable assumptions for the current velocity associated
with different boundary conditions of the fluid den-
sity ρ, while we have only considered the motion with
stationary-profile current velocity case and excluded
the motion with constant current velocity case. Note
that our model is a generalized one with the inclusion
of multiple coefficients (a, b, c and d).
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1 Introduction

In virtue of the Madelung fluid description theory [1–
5], families of generalized one-dimensional nonlinear
Schrödinger equations (NLSEs) have been solved
[6–11] with the achievement of bright-, black- and
gray-soliton-type envelope solutions, which maybe
illustrated in the fluid language with new insights.
Within the framework of the Madelung fluid descrip-
tion, the complex wave function (say Ψ ) is repre-
sented in terms of modulus and phase. Substitution of

Ψ (x, t) = √
ρ(x, t) e

i
h̄ Θ(x,t) into the one-dimensional

Schrödinger equation

i h̄
∂Ψ (x, t)

∂t
= − h̄2

2m

∂2Ψ (x, t)

∂x2
+ mU (x)Ψ (x, t),

(1)

leads to the following pair of coupled Madelung fluid
equations

∂ρ

∂t
+ ∂

∂x
(ρ v) = 0, (2a)

∂v

∂t
+ v

∂v

∂x
− h̄2

2m2

∂

∂x

(
1√
ρ

∂2
√

ρ

∂x2

)
+ ∂U

∂x
= 0,

(2b)

whereρ = |Ψ |2 is the fluid density and v = 1
m

∂Θ
∂x is the

current velocity. Equation (2a) is a continuity equation
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240 X. Lü

for the fluid density, while Eq. (2b) is the equation of
motion for the fluid velocity and contains a force term
proportional to the gradient of the “quantum potential,”
h̄2

2m2
∂
∂x

(
1√
ρ

∂2
√

ρ

∂x2

)
. Under suitable hypothesis for the

current velocity, Eq. (2b) may be transformed into the
stationary Korteweg-de Vries, modified Korteweg-de
Vries or Gardner equations, which are directly solvable
and possess abundant types of solitary wave solutions.
Correspondingly, a number of envelope solitons can be
constructed for the original equations.

Let us consider the following generalized mixed
nonlinear Schrödinger equation (GMNLSE) in the
form of [12–17]

i
∂Ψ

∂t
= ∂2Ψ

∂x2
+ i a |Ψ |2 ∂Ψ

∂x
+ i bΨ 2 ∂Ψ ∗

∂x
+ c |Ψ |4Ψ + d |Ψ |2Ψ, (3)

where ∗ denotes the complex conjugation, Ψ =
Ψ (x, t) is the complex wave function, and a, b, c and
d are all real constants. Equation (3) arises in several
physical applications including quantum field theory,
weakly nonlinear dispersive water waves, and nonlin-
ear optics [12,13]. It is shown to enjoy the Painlevé

property only if c = 1

4
b (2 b − a) holds, regardless of

the value of d [14]. Based on its Lax pair, the system-
atic construction of infinitely many conservation laws
has been given [15], and the soliton behavior has been
studiedwithN-foldDarboux transformation [17].With
different choices of the multiple parameters a, b, c and
d, a series of celebrated nonlinear evolution equations
in mathematical physics are included by Eq. (3), as
follows:

• With d = 0, Eq. (3) reduces to the generalized
derivative NLSE, i.e., Eq. (1.1) in Ref. [14].

• With a = b = c = 0 and d = ±1

2
, Eq. (3) reduces

to the celebrated standard cubic NLSE [7,18–21].
• With a = d = 0, Eq. (3) reduces to the celebrated
Gerdjikov-Ivanov equation [22–24].

• With c = d = 0 and a = 2 b, Eq. (3) reduces to the
celebrated Kaup-Newell or named derivative NLSI
equation [25].

• With b = c = d = 0, Eq. (3) reduces to the cel-
ebrated Chen-Lee-Liu or named derivative NLSII
equation [26].

• Withd = 0 and c = 1

4
b (2 b−a), Eq. (3) reduces to

the celebrated higher-orderNLSEnamed byKundu
(see, e.g., Eq. (4) in Ref. [27] ) [14,16,27–29].

• With c = 0 and a = 2 b, Eq. (3) reduces to the
celebrated mixed NLSE of Wadati et al [11,14,15,
30,31].

• With a = b = ± 4 β, c = 4β2 and d = ∓ 2,
Eq. (3) reduces to the generalized mixed NLSE of
Geng et al (namely Eq. (1.2) in Ref. [32] ) [15,16,
32,33].

It is worthy of paying attention to the generalized
Eq. (3) in that it covers abundant nonlinear models of
physical and/or mathematical interest. The results for
Eq. (3) can be correspondingly cast to these special
cases with suitable parametric choices. In the present
paper, without considering Painlevé integrable condi-
tion, we will directly investigate Eq. (3) within the con-
text of theMadelungfluid description. Soliton solutions
obtained hereby can be reduced to the above cases by
different parameter choices. Based on the basic equa-
tions of Madelung fluid: the continuity equation for the
fluid density and motion equation for the fluid veloc-
ity, it is found that, for a motion with stationary-profile
current velocity, the fluid density satisfies a generalized
stationary Gardner equation. Under suitable hypothe-
sis for the current velocity and due to corresponding
parametric constraints, we will derive bright and dark
(including gray and black) solitary waves for the sta-
tionary Gardner equation, and finally associated enve-
lope solitons will be found for Eq. (3).

2 Basic equations and motion with
stationary-profile current velocity

By setting Ψ (x, t) = √
ρ(x, t) e

i
k Θ(x,t) with k �= 0 in

Eq. (3), the continuity equation for the fluid density ρ

can be computed as

∂ρ

∂t
− ∂

∂x

(
2

k
ρ v + 1

2
(a + b) ρ2

)
= 0, (4a)

and the equation of motion for the fluid velocity v =
∂Θ
∂x as

∂v

∂t
− 2

k
v

∂v

∂x
+ k

∂

∂x

(
1√
ρ

∂2
√

ρ

∂x2

)

− ∂

∂x

[
(a − b) ρ v − c k ρ2 − d k ρ

]
= 0. (4b)

With symbolic computation, Eq. (4b) is transformed
into
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Madelung fluid description 241

ρ
∂v

∂t
− v

∂ρ

∂t
+2

∂ρ

∂x

∫
∂v

∂t
dx + k

2

∂3ρ

∂x3
+ 2 c0(t)

∂ρ

∂x

+ (4 b − 2 a) ρ v
∂ρ

∂x
+3 d k ρ

∂ρ

∂x
− (a − b) ρ2 ∂v

∂x

+ 4 c k ρ2 ∂ρ

∂x
= 0, (4c)

where c0(t) is an arbitrary function of t .
Equations (4a) and (4c) constitute the basic equa-

tions for the subsequent discussion, based on which
we will discuss envelope solitons for Eq. (3) within the
framework of the Madelung fluid description.

Firstly, assuming that both the quantities ρ and v

involved in Eqs. (4a) and (4c) are functions of the com-
bined variable ξ = x − u0 t with u0 being a real con-
stant, we cast Eq. (4a) into

u0
dρ

dξ
+ d

dξ

[
2

k
ρ v + 1

2

(
a + b

)
ρ2
]

= 0. (5)

Integrating once of Eq. (5) with respect to ξ , and taking
the integration constant as A0, we obtain

v = k

2

[
−u0 − 1

2

(
a + b

)
ρ + A0

ρ

]
. (6)

Substitution of Eqs. (6) into (4c) leads to[
− k

2
u20 + 2 c0 + k

2
A0

(
3 b − a

)] dρ

dξ

+
[
3

2
k
(
a − b

)
u0 + 3 d k

]
ρ
dρ

dξ

+
[
k

4

(
3 a2 − 5 b2 − 2 a b

)
+ 4 c k

]
ρ2 dρ

dξ

+k

2

d3ρ

dξ3
= 0. (7)

NOTES: (i) Different from that in Refs. [6–9], the
fluid density ρ here satisfies a generalized station-
ary Gardner equation, namely, Eq. (7), which is not
the Korteweg-de Vries or modified Korteweg-de Vries
equation.

(ii)Attention should be paid to the expression of the
fluid velocity v, i.e., Eq. (6). In the case of a + b = 0,

Eq. (3) reduces to i
∂Ψ

∂t
= ∂2Ψ

∂x2
+ i a |Ψ |2 ∂Ψ

∂x
−

i a Ψ 2 ∂Ψ ∗

∂x
+c |Ψ |4Ψ +d |Ψ |2Ψ , thenwe can consider

both the motion with constant current velocity case
(A0 = 0) and the motion with stationary-profile cur-
rent velocity case (A0 �= 0); When a = 2 bwith c = 0,
Eq. (3) reduces to the generalized derivative NLSE,
namely, Eq. (1) in Ref. [11], and has been studied there;

When a + b �= 0, the fluid velocity v �= constant
whether A0 = 0 or not, then we will study Eq. (3) on
two aspects (the motion with constant current veloc-
ity and stationary-profile current velocity cases) in the
subsequent sections.

3 Solitary wave versus envelope soliton

To be followed, we will construct the envelope soli-
ton solutions for the GMNLSE, our Eq. (3). Actually,
with the solutions of ρ and v for Eqs. (4a) and (4c), or
equivalently Eqs. (6) and (7), the envelope solitons for
Eq. (3) can be given by the following transformation:

Ψ (x, t) = √ρ(x, t) e
i
k Θ(x,t). (8)

It is clear that ρ is positive (ρ > 0), and Θ(x, t) can be
obtained by integration of v (v = ∂Θ

∂x ). Under suitable
assumptions for the current velocity associated with
corresponding boundary conditions of ρ, wewill inves-
tigate different types of solitarywaves forEq. (7). Then,
fruitful envelope solitons can be correspondingly given
for the GMNLSE, namely, Eq. (3).

3.1 Solitary waves under the boundary conditions:
lim

ξ→±∞ ρ(ξ) = 0

Assume ρ satisfies the boundary conditions in the ξ -
space as lim

ξ→±∞ ρ(ξ) = 0, and it follows from Eq. (6)

that A0 = 0 and v = k

2

[
−u0 − 1

2

(
a + b

)
ρ

]
.

Consequently, Eq. (7) becomes[
−k

2
u20+2 c0

]
dρ

dξ
+
[
3

2
k
(
a − b

)
u0 + 3 d k

]
ρ
dρ

dξ

+
[
k

4

(
3 a2 − 5 b2 − 2 a b

)
+ 4 c k

]
ρ2 dρ

dξ

+ k

2

d3ρ

dξ3
= 0, (9)

which can be integrated twicewith respect to ξ and take
the integration constant as zero to give(
dρ

dξ

)2

= ρ2
[(1

4
a2 − 5

12
b2 − 1

6
a b + 4

3
c
)
ρ2

−
(
a u0 − b u0 + 2 d

)
ρ −

(4
k
c0 − u20

)]
.

(10)
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With the constraint
4

k
c0 − u20 > 0 and

1

4
a2 − 5

12
b2 −

1

6
a b+ 4

3
c > 0, the positive solitary wave solution of

Eq. (10) can be written as

ρ = 2 α0

α1+
√

α2
1+4α0 α2 Cosh

[√
α0 (ξ+ξ1)

] , (11)

with α0 = 4

k
c0 − u20, α1 = b u0 − a u0 − 2 d, α2 =

1

4
a2 − 5

12
b2 − 1

6
a b + 4

3
c and ξ1 as an integration

constant.
According to Eq. (6), it is easy to find

v = dΘ

dξ
= k

2

⎛
⎜⎝− u0

− (a + b) α0

α1 +
√

α2
1 + 4α0 α2 Cosh

[√
α0 (ξ + ξ1)

]
⎞
⎟⎠ ,

(12)

and

Θ(x, t) = − k

2
u0 ξ − k

4
(a + b)

∫
ρ dξ − 2 c0 t − Θ1

= − k

2
u0 x +

(
k

2
u20 − 2 c0

)
t − k (a + b)

2
√

α2

×ArcTan

[√α2
1 + 4α0 α2 − α1

2
√

α0 α2
Tanh

(√
α0

2
x

−
√

α0

2
u0 t +

√
α0

2
ξ1

)]
− Θ1, (13)

where Θ1 is an initial phase (integration constant).
Notice that, in this case, the solitary wave solution

of the stationary Gardner equation (i.e., Eq. 7) pos-
sesses a bright-soliton-type profile (see Expression 26
above). When α1 = 0, Expression (26) turns to be the
standard Sech-type bright soliton. Finally, the bright-
soliton-type envelope solution of the GMNLSE (see
Eq. 3 above) can be derived via Expression (8) with
ρ(x, t) andΘ(x, t) listed in Eqs. (26) and (27), respec-
tively.

3.2 Solitary waves under the boundary conditions:
lim

ξ→±∞ ρ(ξ) �= 0

In the case of lim
ξ→±∞ ρ(ξ) �= 0,we expressρ(ξ) = ρ0+

ρ1(ξ) with lim
ξ→±∞ ρ1(ξ) = 0 and ρ0 = constant > 0,

which determines that v = k

2

[
− u0 − a + b

2

(
ρ0 +

ρ1(ξ)

)
+ A0

ρ0 + ρ1(ξ)

]
. Via Eq. (7) with ρ(ξ) = ρ0 +

ρ1(ξ), we have{[
k

4

(
3 a2 − 5 b2 − 2 a b

)
+ 4 c k

]
ρ2
0

−
[
3

2
k u0

(
a − b

)
+ 3 k d

]
ρ0

+ k

2
A0

(
3 b − a

)
− k

2
u20 + 2 c0

}
dρ1
dξ

+
{
3

2
k u0

(
a − b

)
+ 3 k d

+ 2 ρ0

[
k

4

(
3 a2 − 5 b2 − 2 a b

)
+ 4 c k

]}
ρ1

dρ1
dξ

+
[
k

4

(
3 a2 − 5 b2 − 2 a b

)
+ 4 c k

]
ρ2
1
dρ1
dξ

+ k

2

d3ρ1
dξ3

= 0, (14)

which is also a generalized stationaryGardner equation
and can be similarly solved as Eq. (9). The key point
lies in that the sign of ρ1, which can be negative or
positive, is different from the sign of ρ in Sect. 3.1. Just
this point inspires us to study other types of solutions.

Integrating twice of Eq. (14) with respect to ξ and
taking the integration constants as zero, we obtain(
dρ1
dξ

)2

= ρ2
1

{
ρ2
1

[
1

12

(
5 b2 − 3 a2 + 2 a b

)
− 4

3
c

]

− ρ1

[
1

3
ρ0

(
3 a2 − 5 b2 − 2 a b + 16 c

)

+
(
a − b

)
u0 + 2 d

]
+
[
u20 − 4

k
c0

− A0

(
3 b−a

)
−6 d ρ0+3

(
b−a

)
u0 ρ0

− 1

2

(
3 a2 − 5 b2 − 2 a b + 16 c

)
ρ2
0

]}
.

(15)

3.2.1 Up-shifted bright- and upper-shifted bright-type
solitary waves

Under the constraint u20−
4

k
c0−A0 (3 b−a)−6 d ρ0+

3 (b−a) u0 ρ0 − 1

2
(3 a2 −5 b2 −2 a b+16 c) ρ2

0 < 0
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Madelung fluid description 243

and
1

12
(5 b2 − 3 a2 + 2 a b) − 4

3
c > 0, the positive

solution of Eq. (15) is taken as

ρ1 = 2 β0

β1+
√

β2
1 +4 β0 β2 Cosh

[√
β0 (ξ+ξ21)

] > 0,

(16)

with β0 = A0 (3 b − a) − u20 + 4

k
c0 + 6 d ρ0 − 3 (b −

a) u0 ρ0 + 1

2
(3 a2 − 5 b2 − 2 a b + 16 c) ρ2

0 , β1 =
−1

3
ρ0 (3 a2 − 5 b2 − 2 a b+ 16 c)− (a− b) u0 − 2 d,

β2 = 1

12
(5 b2 − 3 a2 + 2 a b) − 4

3
c and ξ21 as an

integration constant.
Hereby, the solitary wave solution of Eq. (7) is in

the form of

ρ = ρ0+ 2 β0

β1+
√

β2
1 +4 β0 β2 Cosh

[√
β0 (ξ+ξ21)

] ,
(17)

and subsequently,

Θ(x, t) =
[
k A0
2 ρ0

− k

2
u0 − k

4

(
a + b

)
ρ0

]
x

+
[
k

2
u20 + k

4

(
a + b

)
ρ0 u0 − k A0 u0

2 ρ0
− 2 c0

]
t

+ k A0 ξ21

2 ρ0
− k (a + b)

2
√

β2

×ArcTan

[√β2
1 + 4β0 β2 − β1

2
√

β0 β2
Tanh

(√
β0

2
x

−
√

β0

2
u0 t +

√
β0

2
ξ21

)]

−Θ21 − k A0
ρ0

√
β0

√
1 + A ρ0

√
1 + B ρ0

×ArcTanh

[√
1 + B ρ0√
1 + A ρ0

×Tanh
[√β0

2

(
x − u0 t + ξ21

)]]
, (18)

where A =
β1+

√
β2
1 +4β0 β2

2 β0
and B =

β1−
√

β2
1 + 4β0 β2

2 β0
with Θ21 and ξ21 as two integration constants.

It is shown in Expression (17) that the solution ρ

enjoys a bright-soliton profile. By means of Expres-
sions (8), (17) and (18), we can correspondingly dis-
cuss different cases of solution for Eq. (3).

Under the condition
1

3
ρ0 (3 a2 + 5 b2 − 2 a b +

16 c)+ (a−b) u0 +2 d = 0, Expression (17) takes the
form of

ρ = ρ0

{
1 + ε Sech

[√
β0
(
x − u0 t − ξ01

)]}
, (19)

with

ε =

√√√√√√ A0

(
3 b − a

)
− u20 + 4

k
c0 + 6 d ρ0 − 3

(
b − a

)
u0 ρ0 + 1

2

(
3 a2 − 5 b2 − 2 a b + 16 c

)
ρ2
0

1

12

(
5 b2 − 3 a2 + 2 a b

)
ρ2
0 − 4

3
c ρ2

0

.

• With 0 < ε < 1, Expression (19) represents a up-
shifted-bright-type solitary wave, whosemaximum
amplitude is ρ0(1+ ε) and up-shifted by the quan-
tity ρ0.

• With ε = 1, Expression (19) represents a upper-
shifted-bright-type solitary wave, whosemaximum
amplitude is 2 ρ0 and up-shifted by the quantity ρ0.

Having obtained different forms and types of the
solitary waves for stationary Gardner equation via
Expression (19), we can correspondingly investigate
the associated different types of envelope solitons for
the originalGMNLSE, i.e., Eq. (3) bymeans of Expres-
sion (8) (details ignored here).

3.2.2 Gray- and dark-type solitary waves

With the constraint u20− 4

k
c0− A0 (3 b−a)−6 d ρ0+

3 (b−a) u0 ρ0 − 1

2
(3 a2 −5 b2 −2 a b+16 c) ρ2

0 < 0

and
1

12
(5 b2 − 3 a2 + 2 a b) − 4

3
c > 0, the negative

solution of Eq. (15) can be taken as

ρ1= −2 β0√
β2
1 +4 β0 β2 Cosh

[√
β0 (ξ+ξ02)

]−β1

< 0 ,

(20)
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After tedious calculations, we find

ρ = ρ0

+ 2 β0

β1−
√

β2
1 +4 β0 β2 Cosh

[√
β0 (ξ+ξ02)

] , (21)

Θ(x, t) =
[
k A0

2 ρ0
− k

2
u0 − k

4

(
a + b

)
ρ0

]
x +

[
k

2
u20

+ k

4

(
a + b

)
ρ0 u0 − k A0 u0

2 ρ0
− 2 c0

]
t

+ k A0 ξ22

2 ρ0
+ k (a + b)

2
√

β2

×ArcTan

[√β2
1 + 4β0 β2 + β1

2
√

β0 β2

×Tanh
(√

β0

2
x −

√
β0

2
u0 t +

√
β0

2
ξ22

)]

−Θ22 − k A0

ρ0
√

β0
√
1 + A ρ0

√
1 + B ρ0

×ArcTanh

[√
1 + A ρ0√
1 + B ρ0

×Tanh
[√β0

2

(
x − u0 t + ξ22

)]]
, (22)

where Θ22 and ξ22 are two integration constants.
In Expression (20), notice that ρ1, the solution of
Eq. (15), enjoys a non-bright-soliton profile. By virtue
of Expression (21), we can discuss different solu-
tion cases for Eq. (15) as follows, and along with
Expression (22) to correspondingly discuss the orig-
inal GMNLSE.

Under the following condition

⎧⎨
⎩
1

3
ρ0 (3 a2+5 b2−2 a b+16 c)+(a−b) u0+2 d=0,

ρ0 >

√
β0
β2

,

(23)

Expression (21) reduces to

ρ = ρ0

{
1 − δ Sech

[√
β0

(
x − u0 t − ξ22

)]}
, (24)

with

δ =

√√√√√√ A0

(
3 b − a

)
− u20 + 4

k
c0 + 6 d ρ0 − 3

(
b − a

)
u0 ρ0 + 1

2

(
3 a2 − 5 b2 − 2 a b + 16 c

)
ρ2
0

1

12

(
5 b2 − 3 a2 + 2 a b

)
ρ2
0 − 4

3
c ρ2

0

.

• With 0 < δ < 1, Expression (24) denotes a gray-
type solitary wave, whose minimum amplitude is
ρ0(1−δ) and reaches asymptotically the upper limit
ρ0.

• With δ = 1, Expression (24) denotes a black-type
solitary wave, whose minimum amplitude is zero
and reaches asymptotically the upper limit ρ0.

Different forms and types of the solitary waves
for stationary Gardner equation can be obtained via
Expression (24), and as a result, we can investigate the
associated different types of envelope solitons for the
original GMNLSE by use of Expression (8) (details
ignored here).

4 Example: bright-soliton solution reduction

Hereby, one can recover one-soliton solutions for all
the known cases as tabulated in the Introduction,
directly from the soliton solutions (of different nature)
obtained here, when the Painlevé integrability condi-
tions on the parameters are imposed. As an exam-
ple, we show explicitly the bright-soliton solution
reduction.

With c = 0 and a = 2 b, Eq. (3) reduces to the
celebrated mixed NLSE of Wadati et al. [11,14,15,30,
31] as follows,

i
∂Ψ

∂t
= ∂2Ψ

∂x2
+ 2b i |Ψ |2 ∂Ψ

∂x
+ i bΨ 2 ∂Ψ ∗

∂x
+d |Ψ |2Ψ. (25)

With correspondingparameter reductions ofExpres-
sions (11) and (13), the bright-type one-soliton solu-
tion of Eq. (25) can be obtained as Ψ (x, t) =√

ρ(x, t) e
i
k Θ(x,t), where

ρ = 2α0

α1 +
√

α2
1 + 4α0 α2 Cosh

[√
α0 (ξ + ξ1)

] ,
(26)
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Table 1 Types of solitary waves

Solitary wave types for stationary Gardner Eq. (7) Parametric constraints

bright-soliton-type
A0 = 0;
4
k

c0 − u2
0 > 0;

1
4

a2 − 5
12

b2 − 1
6

a b +
4
3

c > 0;

bright-soliton-type

ρ0 > 0;
1
12

(5 b2 − 3 a2 + 2 a b)− 4
3

c > 0;

u2
0 −

4
k

c0 − A0 (3 b − a)− 6 d ρ0 + 3 (b − a)u0 ρ0

−1
2
(3 a2 − 5 b2 − 2 a b + 16 c) ρ20 < 0;

up-shifted-bright-type

ρ0 > 0;
0 < ε < 1;
1
12

(5 b2 − 3 a2 + 2 a b)− 4
3

c > 0;
1
3

ρ0 (3 a2 + 5 b2 − 2 a b + 16 c) + (a − b)u0

+2 d = 0;

u2
0 −

4
k

c0 − A0 (3 b − a)− 6 d ρ0 + 3 (b − a)u0 ρ0

−1
2
(3 a2 − 5 b2 − 2 a b + 16 c) ρ20 < 0;

upper-shifted-bright-type

ρ0 > 0;
ε = 1;
1
12

(5 b2 − 3 a2 + 2 a b)− 4
3

c > 0;
1
3

ρ0 (3 a2 + 5 b2 − 2 a b + 16 c) + (a − b)u0

+2 d = 0;

u2
0 −

4
k

c0 − A0 (3 b − a)− 6 d ρ0 + 3 (b − a)u0 ρ0

−1
2
(3 a2 − 5 b2 − 2 a b + 16 c) ρ20 < 0;;

gray-soliton-type

0 < δ < 1;
Expression (23);
1
12

(5 b2 − 3 a2 + 2 a b)− 4
3

c > 0;

u2
0 −

4
k

c0 − A0 (3 b − a)− 6 d ρ0 + 3 (b − a)u0 ρ0

−1
2
(3 a2 − 5 b2 − 2 a b + 16 c) ρ20 < 0;

black-soliton-type

δ = 1;
Expression (23);
1
12

(5 b2 − 3 a2 + 2 a b)− 4
3

c > 0;

u2
0 −

4
k

c0 − A0 (3 b − a)− 6 d ρ0 + 3 (b − a)u0 ρ0

−1
2
(3 a2 − 5 b2 − 2 a b + 16 c) ρ20 < 0;
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Θ(x, t) = − k

2
u0 x +

(
k

2
u20 − 2 c0

)
t − 2 k b√

α2

×ArcTan

[√α2
1 + 4α0 α2 − α1

2
√

α0 α2
Tanh

(√
α0

2
x

−
√

α0

2
u0 t +

√
α0

2
ξ1

)]
− Θ1, (27)

while α0 = 4

k
c0 − u20, α1 = −b u0 − 2 d, α2 = 1

4
b2,

and ξ1 and Θ1 are two integration constants.

5 Conclusions

In the present paper, we have derived bright and
dark (including gray and black) solitary wave solu-
tions for the generalized stationary Gardner equation,
namely,Eq. (7),which is associatedwith theGMNLSE.
Within the context of the Madelung fluid descrip-
tion, we have investigated the corresponding bright-
, black- and gray-soliton-type envelope solutions for
the GMNLSE via the transformation (8). Attention
should be emphasized on that our model, i.e., Eq. (3)
is a generalized one with the inclusion of multiple
parameter coefficients (a, b, c and d). With suitable
choice of these coefficients, abundant nonlinear mod-
els of physical and mathematical interest can be cov-
ered in Eq. (3). In this sense, many previous results
in published papers maybe included here, e.g., enve-
lope soliton solutions derived by using the Madelung
fluid description approach in Refs. [7–11]. It should
also be noted that our solutions are derived under
suitable assumptions for the current velocity associ-
ated with corresponding boundary conditions of ρ,
and under corresponding parametric constraints. The
types of the solitary waves with associated paramet-
ric constraints have been listed in Table 1. Finally, all
of those parametric constraints can be referred to the
free unknown quantities k, A0, ρ0 with u0, the arbitrary
integration constant c0, and the coefficient parameters
a, b, c with d. We hope our investigation in this paper
maybe useful for the study of other nonlinear models
[34–37].
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