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Abstract A typical two-dimensional airfoil with
freeplay nonlinearity in pitch undergoing subsonic flow
is studied via numerical integrationmethods.Due to the
existence of the discontinuous nonlinearity, the clas-
sical fourth-order Runge-Kutta (RK4) method cannot
capture the aeroelastic response accurately. Particu-
larly, it is because the RK4 method is incapable of
detecting the discontinuous points of the freeplay that
leads to the numerical instability and inaccuracy. To
resolve this problem, the RK4 method is used with
the aid of the Henon’s method (referred to as the
RK4Henon method) to precisely predict the freeplay’s
switching points. The comparison of the classical RK4
and the RK4Henon methods is carried out in the
analyses of periodic motions, chaos, and long-lived
chaotic transients. Numerical simulations demonstrate
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the advantages of the RK4Henonmethod over the clas-
sical RK4 method, especially for the analyses of chaos
and chaotic transients. Another existing method to deal
with the freeplay nonlinearity is to use an appropriate
rational polynomial (RP) to approximate this discon-
tinuous nonlinearity. Consequently, the discontinuity
is removed. However, it is demonstrated that the RP
approximation method is unable to capture the chaotic
transients. In addition, an efficient tool for predicting
the existence of chaotic transients is proposed bymeans
of the evolution curve of the largest Lyapunov expo-
nent. Finally, the effects of system parameters on the
aeroelastic response are investigated.

Keywords Freeplay nonlinearity · Henon’s method ·
Rational polynomial approximation · Chaotic
transient · Largest Lyapunov exponent

1 Introduction

Structural nonlinearities may occur in either a distrib-
uted or concentrated form. In general, distributed non-
linearity can only become significant when the ampli-
tude of the response is large, while the concentrated
nonlinearity may show a significant effect even for
vibrations having small amplitude. The freeplay non-
linearity is one of the concentrated nonlinearities and
is commonly encountered in mechanical engineering
[2,27]. For the present two degrees-of-freedom (DOF)
airfoil model, the freeplay nonlinearity has been stud-
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ied by several researchers. Yang and Zhao [34] car-
ried out both experimental and theoretical analyses
to investigate the limit cycle oscillations (LCOs) of
the aeroelastic system, wherein the unsteady aerody-
namic force and moment were expressed in terms of
the Theodorsen function, and both bilinear and freeplay
nonlinearities were studied. Hauenstein and Laurenson
[16] conducted an experimental analysis of the airfoil
with freeplay nonlinearity, and both LCOs and chaos
were observed. Price et al. [28] studied the same model
with a freeplay nonlinearity in pitch by the Houbolt’s
finite difference method in conjunction with the RK4
method. They found that the critical flutter speed for
the freeplay nonlinear model was well below the lin-
ear flutter speed. Liu et al. [24] proposed an ana-
lytical point transformation method to solve the two
DOF model with freeplay nonlinearity. Although the
point-transformation method can accurately detect the
switching points of the freeplay, unfortunately, it is
limited to the analysis of periodic motions due to its
analytical nature. Abdelkefi et al. [3] investigated the
response of the aeroelastic twoDOFwingproblemboth
experimentally and theoretically using numerical simu-
lation methods. Vasconcellos et al. [31,32] represented
the freeplay nonlinearity by three different representa-
tions, namely, discontinuous based onHenon’smethod,
polynomial, and hyperbolic tangent. It was shown that
the discontinuous and hyperbolic tangent representa-
tions are effective. Additionally, Chung et al. [7] and
Liu et al. [22] employed the perturbation-incremental
method and the incremental harmonic balance method,
respectively, to study the bifurcation of this aeroelastic
systems with hysteresis/freeplay nonlinearities. Nev-
ertheless, these analytical methods are limited to the
analysis of periodic motions.

In the aforementioned studies, either approximate
analytical methods or numerical integration methods
were adopted in theoretical analysis. Numerical inte-
gration methods, e.g., the RK4, are powerful in solv-
ing the nonlinear dynamical problems. In compari-
son with the approximate analytical methods such as
the harmonic balance method [23], the perturbation
method [26], and the time domain collocation method
[9,11,35], the RK4 is much more straightforward and
simpler to use. What is more, the RK4 can be applied
to analyze the chaotic responses, while in contrast,
the approximate analytical methods cannot work for
chaotic analysis due to the periodicity feature of their
trial functions. Unfortunately, the RK4 method works

well only for systems with distributed nonlinearities.
It may fail to produce accurate simulations when a
discontinuous nonlinear system is encountered [8,24].
The present system is essentially a combination of
three distinct linear subsystems. Hence, it is crucial
to accurately detect the switching points between sub-
systems. Failure to accurately identify the switching
points would cause numerical inaccuracy in the analy-
sis of LCOs and evenmore serious issues in the analysis
of chaos.

Henon’s method [17] for integrating state-space
equations to a prescribed value of a specified state
coordinate was applied for the location of the switch-
ing points in the freeplay model by Conner et al. [8],
Trickey et al. [29]. The method involves integrating the
system until a change in linear subdomains occurs. At
that moment, the distance the system has traveled into
the new subdomain is known. Upon exchanging the
dependent variable (the specified variable) and inde-
pendent variable, viz. time, theODEsystemcanbe inte-
grated back to the exact discontinuous point in merely
one step. Conner et al. [8] investigated the effect of
the RK4Henon method on the accuracy of calculating
periodic motions, by comparing with the RK4 method.
It was found that the two methods were consistent with
each other in the analysis of LCOs (see also Ref. [1]),
except that the two methods may sometimes fall to dif-
ferent LCO attractors for the same set of initial con-
ditions. The present work is a continuation of a previ-
ous paper, in which a numerical study of the chaotic
motions of a two DOF airfoil with coupled cubic non-
linearities was conducted [10]. Also, as an extension
to [8], in this study, the comparison of the RK4 and
the RK4Henon methods is carried out, in the analy-
ses of not only LCOs, but also chaos and chaotic tran-
sients. The importance of using the RK4Henonmethod
rather than the classical RK4 method will be revealed,
when chaotic motions are under consideration. More
importantly,wewill show that chaotic transients,which
can be captured by the RK4Henon method, would be
missed out by the RK4 method. The chaotic transients
are observed in the present system for the first time.

An alternative strategy to handle the discontinu-
ous nonlinearity is to use a proper rational polynomial
(RP) to closely fit the discontinuous function. Alighan-
bari and Price [5] used a third-order RP function to
fit the freeplay nonlinearity, and the resulting continu-
ous system was applied in the analyses of both LCOs
and chaos. Liu et al. [22] applied the same strategy
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to process the freeplay and hysteresis nonlinearities,
and the resulting system was solved by an incremen-
tal harmonic balance method; this study was focused
on the LCO analysis. Li et al. [21] demonstrated that
the RP approximation method is highly accurate in the
analysis of LCOs. However, whether the RP approxi-
mation method is suitable in the analyses of chaos and
chaotic transients has not been answered until now. In
this study, the comparison of the RP approximation
method and the RK4Henon method will be carried out
to answer this question.

Another objective of the present study is to intro-
duce a simple method for predicting the existence of
the long-lived chaotic transients. In general, if a very
longtime chaotic transient exists before settling into
a periodic motion, one would be apt to mistake it
as a chaotic motion [15,25]. Vasconcellos et al. [30]
showed that this transition phenomenon is probably
due to grazing bifurcations. A safe way to avoid this
misunderstanding is to run a very long integration time
and check the time response to see whether it settles
into a periodic motion or not. Here, our method is
based on viewing the evolution history of the largest
Lyapunov exponent (LLE), that is, a decreasing LLE
evolution curve implies the existence of chaotic tran-
sient. The present method is simpler and more effi-
cient than the conventional method. Because in the
case of chaotic transients, the LLE, if not convergent,
will show a decreasing trend sooner than the period-
icity begins to emerge in the time response. Finally,
the effects of the freeplay nonlinearity, the damp-
ing level, and the frequency ratio ω̄ on the aeroelas-
tic response are analyzed by means of bifurcation
diagrams.

2 Mathematical model

Themathematicalmodel for the twoDOFairfoil in sub-
sonic flowwas established byFung [14].Although only
linear springs in pitch and plunge were considered, the
structural nonlinearity can be readily introduced into
Fung’s formulation. A sketch of the two DOF airfoil
with freeplay nonlinearity in pitch is plotted in Fig. 1,
in which the positive directions of the pitch angle α and
the plunge displacement h are defined.

Including the structural nonlinearity, the linear for-
mulation of Fung [14] is modified into the following
non-dimensional form [27]:

Fig. 1 Sketch of a typical airfoil section with freeplay nonlin-
earity in pitch

ξ̈+xαα̈ + 2ζξ

ω̄

U∗ ξ̇+
(

ω̄

U∗

)2

G(ξ)=− 1

πμ
CL(τ ),

(1a)

xα

r2α
ξ̈+α̈+2ζα

1

U∗ α̇+
(

1

U∗

)2

M(α)= 2

πμr2α
CM (τ ),

(1b)

where the related symbols are defined in “Appendix 1”.
In this study, the plunge spring is linear, and the pitch

spring is freeplay nonlinear. Thus, the pitch and plunge
stiffness terms M(α) and G(ξ) are expressed as

M(α) =
⎧⎨
⎩

M0 + α − α f , α < α f
M0 + M f (α − α f ), α f ≤ α ≤ α f + δ

M0 + α − α f + δ(M f − 1), α > α f + δ

(2)

and G(ξ) = ξ , respectively. In fact, the nonlinear-
ity expressed in Eq. (2) is generally referred to as a
bilinear nonlinearity, a sketch for which is provided in
Fig. 2a. Specifically, the bilinear nonlinearity can be
reduced to a freeplay nonlinearity by fixing the stiff-
ness of the freeplay range, viz. M f , to zero. In most
cases, investigators also enforce the preload M0 = 0
andα f = − 1

2δ, which results in amore special freeplay
nonlinearity, as shown in Fig. 2b. In the present study,
the general freeplay nonlinearity is analyzed, wherein
onlyα f = − 1

2δ is fixed for the sake of freeplay symme-
try. In numerical simulation, the variations of M0, M f

and δ will be carried out to show their effects on the
aeroelastic response of the present system.

In addition to the structural nonlinearities, CL(τ )

and CM (τ ) accounting for linear aerodynamic force
and aerodynamic moment are [14]
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(a)

(b)

Fig. 2 Sketches of nonlinearity (a) bilinear nonlinearity (b) sim-
ple freeplay nonlinearity

CL (τ ) = π(ξ̈ − ah α̈ + α̇)

+ 2π

[
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]
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CM (τ ) = π

(
1

2
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)[
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(
1

2
− ah

)
α̇(0)

]
φ(τ)

+ π

2
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16
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(
1

2
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)
π

2
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+ π

(
1

2
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)∫ τ

0
φ(τ − σ)

[
α̇(σ ) + ξ̈ (σ )

+
(
1

2
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)
α̈(σ )

]
dσ, (3b)

where the Sears approximation to the Wagner function
φ(τ) = 1 − ψ1e−ε1τ − ψ2e−ε2τ is [6]

φ(τ) = 1 − 0.165e−0.0455τ − 0.335e−0.3τ .

System (1) is essentially a set of two integro-differential
equations, which cannot be directly integrated. In this
study, the original integro-differential equations are
transformed into six first-order ODEs with the follow-
ing two auxiliary variables introduced by Alighanbari
and Hashemi [4]:

y1 = ψ1e
−ε1τ

[
ξ̇ (0) +

(
1

2
− ah

)
α̇(0) + α(0)

]

+
∫ τ

0
ψ1e

−ε1(τ−σ)

×
[
ξ̈ (σ ) +

(
1

2
− ah

)
α̈(σ ) + α̇(σ )

]
dσ, (4a)

y2 = ψ2e
−ε2τ

[
ξ̇ (0) +

(
1

2
− ah

)
α̇(0) + α(0)

]

+
∫ τ

0
ψ2e

−ε2(τ−σ)

×
[
ξ̈ (σ ) +

(
1

2
− ah

)
α̈(σ ) + α̇(σ )

]
dσ. (4b)

The integral terms in the aerodynamic force can be
suppressed by the introduced two auxiliary variables.
Considering Eqs. (4), CL(τ ) and CM (τ ) can be rewrit-
ten as

CL(τ ) = π

[
ξ̈ − ah α̈ + 2ξ̇ + 2 (1 − ah) α̇

+ 2α − 2y1 − 2y2

]
,

and

CM (τ ) = π

2

[
ah ξ̈ −

(
1

8
+ a2h

)
α̈ + (1 + 2ah)ξ̇

+ ah(1−2ah)α̇+(1 + 2ah)α−(1 + 2ah)y1

− (1 + 2ah)y2

]
.

Consequently, Eqs. (1) are transformed into a couple
of second-order ODEs. In the meanwhile, two addi-
tional variables y1 and y2 have been introduced into
the system. For the system’s completeness, two sup-
plemental equations should be constructed. Differenti-
ating Eqs. (4a) and (4b) with respect to τ yields

ẏ1 = −ε1y1 + ψ1

[
ξ̈ (τ ) + (

1

2
− ah)α̈(τ ) + α̇(τ )

]
,

(5a)

ẏ2 = −ε2y2 + ψ2

[
ξ̈ (τ ) + (

1

2
− ah)α̈(τ ) + α̇(τ )

]
.

(5b)
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Equations (5) are two supplemental first-order
ODEs. Therefore, the complete system modeling the
typical airfoil section consists of two second-order
ODEs, plus two first-order ODEs. Upon introducing
x1 =α, x2 = α̇, x3 = ξ, x4 = ξ̇ , x5 = y1 and x6 = y2,
the system can be written in a state-space form as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,
ẋ2 = a21x1 + a22x2 + a23x3 + a24x4 + a25x5

+ a26x6 + m2M(x1),
ẋ3 = x4,
ẋ4 = a41x1 + a42x2 + a43x3 + a44x4 + a45x5

+ a46x6 + m4M(x1),
ẋ5 = a51x1 + a52x2 + a53x3 + a54x4 + a55x5

+ a56x6 + m5M(x1),
ẋ6 = a61x1 + a62x2 + a63x3 + a64x4 + a65x5

+ a66x6 + m6M(x1),

(6)

where the coefficients are given in “Appendix 2”.
In literature, most of the numerical studies have

adopted an eight ODE system proposed by Lee’smodel
[18]. The present system (6) consisting of six first-order
ODEs is expected to be computationally more efficient
than Lee’s model. Dai et al. [12] compared the com-
putational efficiency of employing the six ODE model
(with cubic nonlinearity) and Lee’s model and found
that using the six ODE model was approximately 20%
faster. In this study, the six ODE system (6) is applied
in all computations.

3 Henon’s method

The presence of the discontinuous (or non-smooth)
nonlinearity limits the range of application of the classi-
calRK4method to the analysis of periodicmotions, due
to the numerical inaccuracy induced by the crossover
of the integration step, see Fig. 3.

Linear interpolationmethod is an intuitive technique
to alleviate the numerical inaccuracy. Concretely, one
is required to do a linear interpolation between the last
two integration pointswhich belong to two neighboring
subdomains. Although simple to use, this method may
produce an unacceptable error. High-order interpola-
tion methods are available, but suffering from complex
programming as well as the storage of a number of
previous integration points.

The most effective method for accurately detecting
a specified value of a state coordinate (herein x1) is
attributed to Henon [17], wherein Henon’s method was

Fig. 3 Error mechanism of the traditional integration method

applied to construct Poincare maps. Henon’s method
involves integrating the system until a change in linear
subdomains is detected. At that time, the distance the
system has traveled into the new subdomain is known.
By exchanging the dependent variable of interest α and
independent variable τ , the system can be integrated
from its current location back to the exact point of dis-
continuity within one step. Then, time is reverted to be
the independent variable and the classical RK4 is then
applied to integrate the new subsystem in the new sub-
domain with the initial conditions already known, until
a next discontinuity is encountered.

System (6) can be written in state-space form as

d

dτ

⎛
⎜⎜⎜⎝
x1
x2
...

x6

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1(x)

f2(x)
...

f6(x)

⎞
⎟⎟⎟⎠ . (7)

Henon’s method involves exchanging the independent
variable τ and the identifying dependent variable x1,
which is accomplished via, first dividing each of the
equations in Eqs. (7) by dx1/dτ = f1(x), and then
replacing the first equation by dτ/dx1 = 1/ f1(x). Con-
sequently, the new system with x1 being the indepen-
dent variable is

d

dx1

⎛
⎜⎜⎜⎝

τ

x2
...

x6

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1/ f1(x)

f2(x)/ f1(x)
...

f6(x)/ f1(x)

⎞
⎟⎟⎟⎠ . (8)

Note that the new system is used only for one integra-
tion step immediately after the identifying variable x1
crossed the specified value. The RK4Henon method is
essentially a variable stepsize integration method, and
the stepsize variation happens once the switching point
has been crossed.

123



174 H. Dai et al.

Fig. 4 Sketch of the freeplay nonlinearity with α f = − 1
2 δ

Table 1 System parameters for Case 1, 2 and 3

Parameters Case 1 Case 2 Case 3

ah −0.5 −0.5 −0.5

ω̄ 0.2 0.2 0.2

μ 100 100 100

xα 0.25 0.25 0.25

rα 0.5 0.5 0.5

ζα 0 0 0

ζξ 0 0 0

M0 −0.0025◦ 0 0

M f 0.01 0 0

δ 0.5◦ 0.5◦ 0.5◦

α f −0.25◦ −0.25◦ −0.5δ

4 Results and discussions

The sketch of the freeplay nonlinearity considered
is plotted in Fig. 4, in which α f is fixed to be −0.5δ,
which means the freeplay range is equally divided by
the y axis. In general, the pattern of the freeplay nonlin-
earity is affected by three factors, namely, the freeplay
magnitude δ, the preload M0, and the pitch stiffness
in the freeplay region M f (in the freeplay range, the
stiffness is sometimes not exactly zero). The system
parameters are given as Case 1 in Table 1, which are
taken from Price et al. [27]. The corresponding linear
flutter speed U∗

L is 6.2851.
Figure 5 shows the bifurcation diagram for the pitch

motion, which is calculated by the RK4Henon method.
It is consistent with the bifurcation diagram calculated
by the combination of the finite difference method
(FDM) and the classical RK4 method in Price et al.
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m
a 

of
 α

 (d
eg

) 

Fig. 5 Bifurcation diagrams for the pitch motion with parame-
ters of Case 1 in Table 1, with initial conditions α(0) = 3◦ and
the rest initial states are zero. The stepsize of the flow speed is
0.01(U∗/U∗

L ). For each flow speed, the number of integration
steps is 2× 105; the initial 20% data is dropped off to damp out
transients

[27], which verifies the consistency of the present six
ODE model and the FDM resulting model. However,
the coarse comparison by means of the bifurcation dia-
grams is not sufficient to exhibit the significant differ-
ence between the RK4Henon and the classical RK4
methods. Thus, further investigations will be carried
out to show the discrepancies between the RK4Henon
method and the RK4 method, in the analyses of LCOs,
chaos, and chaotic transients.

4.1 Limit cycle oscillations

The RK4 method can produce accurate solutions, pro-
vided that LCOs are under consideration [8,24]. Fig-
ure 6 shows the comparisons of the time histories and
phase portraits by using the RK4Henon and the RK4
at U∗/U∗

L = 0.6. This flow speed is selected, accord-
ing to Fig. 5, to obtain LCOs. Unless otherwise spec-
ified, the integration step is τ = 0.1 throughout the
paper. It can be seen that the results by the two meth-
ods are in good agreement. However, a partial enlarge-
ment in Fig. 6b illustrates that the RK4 phase trajectory
contains numerous loops in a limited band, while the
RK4Henon trajectory falls exactly in a single loop at
current resolution. This indicates that the RK4Henon
method is numerically more stable and accurate than
the RK4 method. Liu et al. [24] applied both the point
transformationmethod and the RK4 to examine the air-
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Fig. 6 Comparisons of a time histories, and b phase plane por-
traits, for U∗/U∗

L = 0.6 using the present RK4Henon method
and the RK4 method. The total number of integration steps (For
the sake of rigor,we use “ the number of integration steps” instead
of “integration time” due to the fact that theRK4Henon’s stepsize
is variable) is 2 × 105.

foil section with freeplay nonlinearity. The numerical
results were used as the benchmark solutions to eval-
uate the results via the point transformation method.
However, as stated earlier, the integration time stepτ

has to be very small in order to yield an accurate result.
In addition,τ can only be selected numerically when
the solution computed by τ is essentially the same as
those obtained usingτ/2 [24], which is a tedious pro-
cedure. For the chaotic response, this procedure fails to
work.

4.2 Chaotic motions

Having compared the performance of the RK4Henon
and the RK4 methods for analyzing LCOs, we turn

Table 2 Parameters used during the calculation of LLE

Integration step 0.1 s

Initial conditions, α(0) (and other states being zero) 3◦

Time-to-run to eliminate transients 3000s

Distance between the fiducial and test pointsa 10−8

Number of integrations per rescaling 10

Number of rescalings between printouts 2000

Number of initial LLEs to discard for orientation 20

a The initial states of the test particle are specified as xtest (1) =
x f iducial (1) + 10−8 and xtest (i) = x f iducial (i), (i = 2, . . . , 6)

our attention to their performance in chaotic analysis.
Before comparison, we introduce several descriptors of
chaos. Normally, time series and phase plane portraits
are straightforward hints of chaos. But sometimes, they
may not be sufficient to distinguish long-term periodic
motions, quasi-periodic motions, and chaos [13].

The Poincare map is a useful tool to identify chaos.
For an autonomous system, its Poincare map is plotted
by recording the phase plane points at discrete times
when a prescribed “event” occurs. Here, the event is
defined as being the passage of a specified coordinate
through zero. As suggested by Moon [25], more than
4000 points should be plotted in a Poincare map so as
to ensure the integration time is long enough to rule out
the possibility of chaotic transients.

A quantitativemeans to identify chaos is to calculate
the largest Lyapunov exponent (LLE) of a time series.
A positive LLE indicates that the motion is chaotic,
while a nonpositive LLE implies a regular motion. In
the present computations, the LLE is calculated based
on the algorithms ofWolf et al. [33]. All involved para-
meters during the calculation of LLE are provided in
Table 2. Base-2 instead of base-e is used.

Figure 7 shows the Poincare map, the amplitude
spectrum, and the evolution of the LLE for U∗/U∗

L =
0.27. As shown in Fig. 7a, the Poincare map is neither
a finite set of points (means periodic) nor a closed orbit
(means quasi-periodic), which implies that the motion
may be chaotic. The amplitude frequency spectrum in
Fig. 7b shows a broadband, which is consistent with
chaos. To add a further evidence, the LLE has also
been calculated. The terminal time for calculating the
LLE is different case by case to ensure the convergence
of the LLE (if it can converge). As can be seen from
Fig. 7c, the LLE converges to approximately 0.009,
which indicates mild chaos.
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Fig. 7 a Poincare map, b amplitude spectrum, and c evolution
history of LLE for U∗/U∗

L = 0.27

Shown in Fig. 8 are the time histories forU∗/U∗
L =

0.27 by the RK4Henon method and the RK4 method
with different integration stepsizes. The time series in

Fig. 8 are short segments cut out from long chaotic
time series. Although they appear to be rather peri-
odic in this short time range, they are definitely chaotic
motions as demonstrated in Fig. 7. It can be seen
from Fig. 8 that the RK4 method with a smaller
integration step can produce a result closer to the
RK4Henon result. Also, it is known that the RK4 with
a smaller integration step would generate a more accu-
rate result. That is, the result via RK4 method with
τ = 0.001 is better than that with τ = 0.01,
and similarly result with τ = 0.01 is better than
that with τ = 0.1. In addition, Fig. 8c shows
that RK4 with τ = 0.001 agrees very well with
the RK4Henon. Thus, it can be concluded that the
RK4Henon with τ = 0.1 produces a more accu-
rate result than the RK4 with τ = 0.1 and RK4
with τ = 0.01. A further comparison between RK4
with τ = 0.0001 and the RK4Henon with τ =
0.1 shows an even closer agreement (not reported
in figure), which indicates that the RK4Henon with
τ = 0.1 is better than the RK4 with τ = 0.001.
This demonstrates the accuracy and efficiency of the
RK4Henon method over the classical RK4 method. In
computations, we also tried the RK4Henon method
with t = 0.05 and 0.02 for comparison purpose.
We found that deceasing the integration step t can
increase the accuracy. However, due to the fact that
the RK4Henon with t = 0.1 already has a relatively
high accuracy, the improvement of using a smaller
step is not prominent. Besides, a smaller size step
may cause a longer computing time. Therefore, the
results of RK4Henon with t = 0.05 and 0.02 are
not reported.

It should be emphasized that in the analysis of
chaos, even a slight numerical inaccuracy may lead to
entirely different solutions after a longtime. Therefore,
the RK4Henon method would be the only choice for
the chaotic analyses considering (1) its computational
economy compared to the classical RK4 method (RK4
requires a much smaller integration stepsize) and (2)
its high accuracy (RK4Henon overcomes the numeri-
cal instability arising from the crossover during inte-
grations, while RK4 suffers from this).

Shown in Fig. 9 are the time histories and phase por-
traits computed by RK4Henon with τ = 0.01, 0.1,
0.2, 0.4. The result by RK4Henon with τ = 0.01
serves as the benchmark. It can be seen that (1) decreas-
ing the integration step can increase the accuracy of
RK4Henon method; (2) τ = 0.1 is sufficient for
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Fig. 8 Comparison of the
time series for
U∗/U∗

L = 0.27 calculated
by the RK4Henon,
τ = 0.1 with that
calculated by a the RK4,
τ = 0.1, b the RK4,
τ = 0.01, and c the RK4,
τ = 0.001
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the present chaotic study; and (3) globally speaking,
τ = 0.01, 0.1, 0.2, 0.4 yield similar results, see
Fig. 9b.

In addition, the order of convergence, p, of the
RK4Henon method has been evaluated by p =
log2

E02∼04
E01∼02

, where E02∼04 is the maximum absolute
distance of the plunge responses between τ = 0.2
and 0.4. In the present case, p ≈ 2.1.

4.3 Chaotic transients

We move our attention to the chaotic transients in
this section. Shown in Fig. 10 are the phase por-
traits, the Poincare maps, and the amplitude spectra
for U∗/U∗

L = 0.3 by the RK4 and the RK4Henon
methods. All three subfigures show that the results by
the two methods are qualitatively in very good agree-
ment. In particular, Fig. 10a shows two phase trajecto-
ries which spread out the phase plane, implying chaos.
Figure 10b shows Poincare maps with many points in a
well-organized structure, and Fig. 10c shows two spec-
tra with broadbands. All of these descriptors imply a
chaotic motion. However, by careful observation, there

seems to be sometime abnormal in Fig. 10b. That is,
the structure of the Poincare map by the RK4Henon
appears to be much sparser than that by the RK4. Bear
in mind that the two methods run the same number
of integration steps (2 × 106 integration steps), the
RK4Henon’s Poincare map should not be so sparse.
It implies that a large number of points must be hitting
at one or some points, repeatedly.

Now, we turn to the time response curve for help.
Figure 11 shows the time histories of the pitch motion
for U∗/U∗

L = 0.3 by the two methods. We can see
that the time series via RK4 corresponds to a chaotic
motion, while that via RK4Henon seems to settle to a
periodicmotion after a longtime (approximately 1.12×
104s) chaotic transient. The phase plane portrait and
the Poincare map are replotted in Fig. 12, in which
the initial 1.5 × 104 s response has been dropped out
before plotting, such that the chaotic transient can be
completely damped out. Both the phase trajectory of
Fig. 12a and the Poincare map of Fig. 12b show that
the response is a period-2 LCO.

Previous studies show that the chaotic transients are
difficult to detect. One must always be careful before
identifying a random-likemotion in a deterministic sys-
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Fig. 9 a Time history and b phase portrait for U∗/U∗
L = 0.27

using RK4Henon with τ = 0.01, 0.1, 0.2, 0.4

tem to be chaos. Moon [25] suggested that a sufficient
longtime must be run before one can safely determine
chaos. By his suggestion, the simulation time should
be so long such that more than 4000 points have been
plotted in the Poincare map. Of course, this time length
is not necessary for some short chaotic transients and
might be insufficient for some super long-lived chaotic
transients. Although simple, this method is not robust
and sometimes computationally expensive.

Now, we propose a more robust and economic
method for researchers to distinguish chaos and chaotic
transients based on the trend of the LLE evolution
curve. Figure 13 provides the evolution history of the
LLE for the pitch motion calculated by the RK4Henon
method for U∗/U∗

L = 0.3. It can be seen that the LLE
evolution curve has a decreasing trend. In addition, we
have already known from Fig. 11c, d that the present
motion is a long- term chaotic transient followed by a
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Fig. 10 Comparisons of a phase portraits, b Poincare maps, and
c amplitude spectra forU∗/U∗

L = 0.3 through using the classical
RK4 and the RK4Henon methods

periodic motion. So, it seems that the decreasing LLE
evolution curve implies the existence of chaotic tran-
sient.
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Fig. 11 Time series of the pitch motion for U∗/U∗
L = 0.3 via

a and b: the RK4 method, and c and d: the RK4Henon method.
Note that b and d are cut out from a and c, respectively
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Fig. 12 a Phase plane portrait and b Poincare map via
RK4Henon method after completely damping out transients for
U∗/U∗
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Fig. 13 LLE evolution curves for U∗/U∗
L = 0.3 calculated by

the RK4Henon method, dropping out the initial 3× 104 integra-
tion steps before calculation
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In a previous study [10], the present authors ana-
lyzed a two DOF airfoil with a cubic structural nonlin-
earity. The chaotic transient was detected, and its corre-
sponding LLE evolution curve also showed a decreas-
ing trend. Furthermore, this finding has also been veri-
fied in a totally different dynamical system. In an ongo-
ing study, a cantilevered three-dimensional fluttering
panel has been analyzed, in which a decreasing LLE
evolution curve was also found to be associated with
the chaotic transient. Therefore, it is reasonable to con-
clude that a decreasing LLE evolution curve implies
the existence of chaotic transient prior to settling into a
periodicmotion. This finding provides a simple but effi-
cient tool to determine whether a random-like motion
is chaos or chaotic transient.

5 RK4Henon method versus RP approximation
method

In this section, we compare the performance of the
Rational Polynomial (RP) approximation method and
the present RK4Henon method. The RP approxima-
tion method consists of first approximating the dis-
continuous nonlinearity M(α) by a well-fitted ratio-
nal polynomial and then integrating the resulting con-
tinuously dynamical system via the classical RK4. In
contrast, the present method directly integrates the
original discontinuous system via the highly accu-
rate RK4Henon method. The comparison is carried
out in the analyses of LCOs, chaos, and chaotic
transients.

5.1 Limit cycle oscillations

The RP approximation is essentially a modification of
the dynamical model via smoothing the discontinuous
nonlinearity. This technique has been used in many
studies, e.g., [5,19,20], however, its validity has not
been verified thoroughly. Li et al. [20] applied the RP
approximation method to analyze an airfoil with either
freeplay or hysteresis nonlinearity. The accuracy of the
RP approximation method was proved only in the LCO
analysis.

In accordance with [20], we take the system para-
meters of Case 2 in Table 1. Note that δ in the present
study is twice that in [20]. According to Eq. (2), the
freeplay nonlinearity is

M(α) =
⎧⎨
⎩

α + 0.25◦, α < 0.25◦
0, 0.25◦ ≤ α ≤ 0.25◦
α − 0.25◦, α > 0.25◦

(9)

In implementing the RP approximation method, the
freeplay nonlinearity is then represented by a rational
polynomial using a curve fitting tool in Matlab [20]:

MRP (α)

= 0.00002747 − 0.01702α − 11.94α2 + 5462α3

0.4556 − 12.36α + 5732α2 .

Figure 14 shows the time histories and the phase
portraits for U∗/U∗

L = 0.35 by using the RP approxi-
mation method and the RK4Henon method. The initial
conditions for the numerical simulation are α = 3◦
and the rest being zero. The phase portraits are plotted
after a sufficient longtime has been run to remove tran-
sients. Figure 14 indicates that the response is LCO.
It can be seen from Fig. 14a, c that the results by the
RP approximation are in agreement with those by the
RK4Henon in the first 300 seconds. Then, discrepancy
occurs between them. The phase portraits in Fig. 14b,
d show that the results by the two different methods are
different. However, by numerical verification, we con-
firm that the portraits by the two methods are exactly
symmetric about the origin. Thus, the RP approxima-
tion method can be used in the analysis of LCOs. This
conclusion is consistent with Li et al. [20].

5.2 Chaotic motions

Next, we will show whether the RP approximation
method is capable of analyzing the chaotic motions.
Figure 15 shows the time histories, phase portraits,
Poincare maps, and amplitude spectra for U∗/U∗

L =
0.26, where the corresponding response is chaos. It
can be seen from the four subfigures that the results
by the two different methods are qualitatively in good
agreement. However, the inset in Fig. 15a shows that
the two results are in excellent agreement in the first
200 seconds, after which the two begin to deviate. The
pattern of the phase trajectories in Fig. 15b can ensure
that the discrepancy of the time histories in Fig. 15a
is not caused by the responses’ symmetry, but by the
accuracy of the two numerical schemes. Overall, the
RP approximation method can be applied in the analy-
sis of chaotic motions to capture the primary feature of
chaos.
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Fig. 14 a Time history and b phase portrait for pitch motion; c
time history and d phase portrait for plungemotion forU∗/U∗

L =
0.35 (LCO)
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Fig. 15 a Time histories, b phase portraits, c Poincare maps,
and d amplitude spectra for the pitch motion for U∗/U∗

L =
0.26 (chaos) by using the RP approximation method and the
RK4Henon method
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Fig. 16 a Time history, b phase portrait and c Poincare map for
the pitch motion for U∗/U∗

L = 0.27 (chaotic transient)

5.3 Chaotic transients

Furthermore, the chaotic transients will be analyzed in
this part. Shown in Fig. 16 are the time histories, phase

portraits, and Poincare maps for U∗/U∗
L = 0.27 by

the two methods. We can see from Fig. 16a that the
two responses agree well until roughly 0.8 × 104 s,
after which they differ from each other qualitatively.
Very interestingly, the inset shows that the time his-
tory calculated by the RK4Henon method settles into
a periodic motion after a long-lived chaotic transient,
while that by theRPapproximationmethodkeeps being
chaotic. The lifetime of the chaotic transient is up
to 3.77 × 104 s. Figure 16b, c shows the phase por-
traits and the Poincare maps, respectively; these figures
are constructed after the long-lived chaotic transients
have been dropped out. Figure 16b indicates that the
response by RK4Henon is indeed periodic (after a very
long chaotic transient). Although the two motions are
essentially different types, the symmetry of the two
trajectories, which was discussed in the LCO case, can
be noticed in Fig. 16b. Figure 16c shows the Poincare
maps by the two methods. The Poincare map by the
RK4Henon contains two adjacent points, which indi-
cates a period-2 motion, while that by the RP approxi-
mation method shows a well-organized structure indi-
cating chaos. In sum, the RP approximation method
cannot be applied to capture the long-lived chaotic tran-
sient followed by a periodic motion.

6 Parametric variations

The effects of the various parameters on the aeroelastic
response will be explored in this part. In the following
computations, the reference system parameters are pro-
vided as Case 3 in Table 1. In the course of investigating
a specified parameter, only the one under consideration
is varied with the rest being fixed. Except that when δ

is varied, the α f is varied correspondingly. The linear
flutter speed U∗

L remains to be 6.2851, and U∗
L keeps

unchanged during parametric variations.

6.1 Effect of freeplay nonlinearity

The freeplay nonlinearity is affected by three factors:
(1) the freeplay magnitude δ, (2) the preload M0, and
(3) the stiffness in the freeplay rangeM f .Wewill inves-
tigate their effect one by one, by means of bifurcation
diagrams. In plotting the bifurcation diagrams, the step-
size of the flow speed is 0.01(U∗/U∗

L).
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Fig. 17 Bifurcation diagrams plotting α for α̇ = 0 as a function
of U∗/U∗

L for various values of δ: a δ = 0.25, b δ = 0.5, c
δ = 0.75; and (d), phase portrait forU∗/U∗

L = 0.48 for the case
with δ = 0.75

6.1.1 Effect of δ

Figure 17 shows the bifurcation diagrams for the pitch
motion for various values of freeplay δ. It is seen that
as the freeplay δ increases the peak amplitude of the
response becomes larger. In particular, the peak ampli-
tudes for δ = 0.25, 0.5 and 0.75 are 0.54, 1.1 and 1.6,
respectively, for U∗/U∗

L = 0.8. On the other hand,
the critical flutter speeds for the three cases are almost
the same (approximately at U∗/U∗

L = 0.14), which
means that the magnitude of the freeplay does not
alter the critical flutter speed (here, flutter means LCO
occurs).

The “flip-over” phenomenon, e.g., aroundU∗/U∗
L =

0.6 in Fig. 17a, is pervasive in bifurcation diagrams.
If a parameter marching procedure is employed, “flip-
over” can be avoided. Figure 17d shows the phase por-
trait of the pitch motion forU∗/U∗

L = 0.48 in Fig. 17c.
Its chaos-like appearance explains the densely plotted
vertical line at U∗/U∗

L = 0.48 in Fig. 17c. Moreover,
we note that the response, prior to the flutter speed, is
statically stable with a constant pitch angle. The stati-
cally stable response is not the present concern in the
present study.

6.1.2 Effect of M0

Shown in Fig. 18 are the bifurcation diagrams for dif-
ferent values of preload M0. Overall, the magnitude of
the preload does not significantly influence the ampli-
tude of the motions. Specifically, the first two diagrams
withM0 = −0.0025 and 0.0025 are similar, except that
prior to U∗/U∗

L = 0.55, the two responses are sym-
metric. This symmetric feature can be explained by the
solutions’ dependance on initial conditions. The com-
parison between the last two diagrams indicates that
increasing the magnitude of the preload may increase
the flutter speed.

6.1.3 Effect of M f

Similarly, the effect of M f is also investigated. In prac-
tice,M f ismuch smaller than the linear stiffness, viz. 1.
Here, the bifurcation diagrams for M f = 0.001, 0.02,
and 0.03 are plotted in Fig. 19. Generally speaking,
M f does not significantly influence the response of the
aeroelastic system, which can be intuitively understood
by the facts that (1) M f exists only within the freeplay
and (2)M f has a very small value comparedwith unity.
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Fig. 18 Bifurcation diagrams plotting α for α̇ = 0 as a function
of U∗/U∗

L for various values of M0: a M0 = −0.0025, b M0 =
0.0025, c M0 = 0.01

In detail, we can see from Fig. 19 that a larger value of
M f slightly increases the onset of flutter. In the limiting
situation, if the M f is increased to 1, the present sys-
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Fig. 19 Bifurcation diagrams plotting α for α̇ = 0 as a function
ofU∗/U∗

L for various values ofM f :a M f = 0.01,b M f = 0.02,
c M f = 0.03

tem with freeplay nonlinearity degenerates to a linear
system. In this special case, the critical flutter speed is
equal to the linear flutter speed U∗

L .

123



A comparison of classical Runge-Kutta and Henon’s methods 185

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

U*/U*
L

E
xt

re
m

a 
of

 α
 (d

eg
) 

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

U*/U*
L

Ex
tre

m
a 

of
 α

 (d
eg

) 

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

U*/U*
L

Ex
tre

m
a 

of
 α

 (d
eg

) 

(c)

Fig. 20 Bifurcation diagrams plotting α for α̇ = 0 as a function
of U∗/U∗

L for various levels of damping: a ζα = ζξ = 0.02, b
ζα = ζξ = 0.04, c ζα = ζξ = 0.1

6.2 Effect of damping level

Figure 20 provides three bifurcation diagrams for three
different levels of damping.As shown in Fig. 20a,when
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Fig. 21 Bifurcation diagrams plotting α for α̇ = 0 as a function
of U∗/U∗

L for different values of ω̄: a ω̄ = 0.22, b ω̄ = 0.25, c
ω̄ = 0.3

the damping is relatively weak, viz. ζα = ζξ = 0.02,
the bifurcation diagram has a chaotic region approxi-
mately from 0.25 to 0.57. Increasing the damping to
ζα = ζξ = 0.04, the chaotic range will be reduced sig-
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nificantly, see Fig. 20b. Further increasing the damping
to ζα = ζξ = 0.1, the chaotic response has been com-
pletely removed, see Fig. 20c. So, it can be concluded
that a reasonably large damping can suppress the pres-
ence of chaos, which is consistent with the report of
Price et al. [27]. On the other hand, it can be seen by
comparing the diagrams in Fig. 20 that the damping can
slightly affect the critical flutter speed. Specifically, the
critical values for ζα = ζξ = 0.02, 0.04 and 0.1 are
U∗/U∗

L = 1.14, 1.16 and 2.11, respectively, which
indicates that the damping also has the effect of stabi-
lizing the aeroelastic airfoil. Besides, the damping level
does not influence the amplitude of motions.

6.3 Effect of frequency ratio

The bifurcation diagrams for different values of ω̄

are given in Fig. 21. We can see that the response
amplitude increases with the increase of ω̄, especially
for a relatively large flow speed. For instance, when
U∗/U∗

L = 0.8, the maximum pitch amplitudes for
ω̄ = 0.22, 0.25 and0.3 are 1.13, 1.28, and1.75, respec-
tively. Additionally, the critical flutter speeds for dif-
ferent values of ω̄ are also different. Specifically, flut-
ter speeds for ω̄ = 0.22, 0.25 and 0.3 are 0.14, 1.16
and 0.21, respectively. It means that increasing the fre-
quency ratio ω̄ can raise the flutter speed of the present
two DOF airfoil system. Moreover, it can be seen that
the increase in the frequency ratio has an effect of sup-
pressing the occurrence of chaos. Concretely, when
ω̄ = 0.22, the diagram has a range of chaos. Increasing
ω̄ to 0.25, the diagram only exhibits periodic motions.
Further increasing ω̄ to 0.3, the diagram shows a much
simpler period-1 response.

7 Concluding remarks

A numerical study of the two DOF airfoil with freeplay
nonlinearity was carried out. The comparison of the
classical RK4 method and the RK4Henon method was
conducted in the analyses of LCOs, chaos, and chaotic
transients. Some conclusions were drawn. First, the
RK4 method can be used to generate a relatively good
result in the analysis of LCOs, although there exists
an inherent numerical instability due to the crossover
of the discontinuous points. Second, the RK4 method
cannot capture the chaotic response to a long- term, as

in contrast to the RK4Henon method. Even applying a
very small integration stepsize, the RK4 method can-
not match with the present RK4Henon method. Third
and most importantly, the RK4Henon method can cap-
ture the long-lived chaotic transient followed by a peri-
odic motion, while the RK4 method cannot. In sum,
the RK4Henon method is a better choice when analyz-
ing periodic motions and (perhaps) the only choice for
analyzing chaos and chaotic transients. Moreover, the
comparison of the RP approximation method and the
RK4Henon method has been conducted. It showed that
the RP approximation method was suitable for analyz-
ing LCOs, and chaos, but not for chaotic transients.

In addition, a useful tool for identifying chaotic tran-
sients, based on viewing the evolution history of the
LLE of a time series, was proposed. It was demon-
strated that a decreasing LLE history implies the
existence of chaotic transient. This finding provides
researchers in the dynamics community with an effi-
cient tool to distinguish chaos and long-lived chaotic
transients. This method is believed to be more effective
than the normally used method, that is, running a very
longtime numerical integration to see whether the time
history finally settles to a periodic attractor.

Finally, the effects of freeplay, damping level, and
frequency ratio on the aeroelastic response were ana-
lyzed. For the freeplay nonlinearity, (1) increasing
the freeplay magnitude raises the amplitude of the
response, but does not change the flutter speed; (2)
conversely, increasing the preload of the freeplay non-
linearity increases the flutter speed, but the response
amplitude keeps unchanged; and (3) the magnitude of
M f only slightly affects the critical flutter speed. For
the effect of damping, we come to two conclusions: (1)
increasing the damping level may increase the flutter
speed; and (2) the damping has an effect of suppressing
the occurrence of chaos. Moreover, the increase in the
frequency ratio ω̄ enhances both the response ampli-
tude and the flutter speed.
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Appendix 1: Nomenclature

ah Non-dimensional distance from airfoil mid-
chord to elastic axis
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b Airfoil semi-chord
CL(τ ) Coefficient of linear aerodynamic force
CM (τ ) Coefficient of linear aerodynamic moment
G(ξ) Structural nonlinearity in plunge
h Plunge deflection
m Airfoil mass
M(α) Structural nonlinearity in pitch
M0 Preload of freeplay nonlinearity
M f Stiffness in the freeplay range
rα Radius of gyration about elastic axis
t Time
U Free-stream velocity
U∗ U/bωα , non-dimensional velocity
U∗

L Non-dimensional linear flutter speed
xα Non-dimensional distance from airfoil elas-

tic axis to center of mass
α Pitch angle
α f Parameter in freeplay nonlinerity
δ Magnitude of freeplay
ε1, ε2 Constants in Wagner’s function
φ Wagner’s function
μ m/πρb2

ρ Air density
τ Ut/b, non-dimensional time
ω Fundamental circular frequency of the

motion
ωξ , ωα Natural frequencies in plunge and pitch
ω̄ ωξ /ωα , frequency ratio
ξ h/b, non-dimensional plunge deflection
ψ1, ψ2 Constants in Wagner’s function
ζα, ζξ Viscous damping ratios in pitch and plunge
˙( ) d( )/dτ

Appendix 2: Coefficients in system (6)

a21 = f0(d0c4 − c0d4)

a22 = f0(d0c3 − c0d3)

a23 = f0d0c7

a24 = f0(d0c2 − c0d2)

a25 = f0(d0c5 − c0d5)

a26 = f0(d0c6 − c0d6)

m2 = − f0c0d7

a41 = − f0(d1c4 − c1d4)

a42 = − f0(d1c3 − c1d3)

a43 = − f0d1c7

a44 = − f0(d1c2 − c1d2)

a45 = − f0(d1c5 − c1d5)

a46 = − f0(d1c6 − c1d6)

m4 = f0c1d7

a51 = [ f0(c1d4 − d1c4) + f0 f1(d0c4 − c0d4)]ψ1

a52 = [ f0(c1d3 − d1c3) + f0 f1(d0c3 − c0d3) + 1]ψ1

a53 = ψ1 f0( f1d0c7 − d1c7)

a54 = [ f0(c1d2 − d1c2) + f0 f1(d0c2 − c0d2)]ψ1

a55 = −ε1 + [ f0(c1d5 − d1c5) + f0 f1(d0c5 − c0d5)]ψ1

a56 = [ f0(c1d6 − d1c6) + f0 f1(d0c6 − c0d6)]ψ1

m5 = ψ1 f0(c1d7 − f1c0d7)

a61 = [ f0(c1d4 − d1c4) + f0 f1(d0c4 − c0d4)]ψ2

a62 = [ f0(c1d3 − d1c3) + f0 f1(d0c3 − c0d3) + 1]ψ2

a63 = ψ2 f0( f1d0c7 − d1c7)

a64 = [ f0(c1d2 − d1c2) + f0 f1(d0c2 − c0d2)]ψ2

a65 = [ f0(c1d5 − d1c5) + f0 f1(d0c5 − c0d5)]ψ2

a66 = −ε2 + [ f0(c1d6 − d1c6) + f0 f1(d0c6 − c0d6)]ψ2

m6 = ψ2 f0(c1d7 − f1c0d7)

where

c0 = 1 + 1

μ
d0 = xαμ − ah

μr2α
f0 = 1

c0d1 − c1d0

c1 = xα − ah
μ

d1 = 1 + 1 + 8a2h
8μr2α

f1 = 1

2
− ah

c2 = 2

(
ζξ

ω̄

U∗ + 1

μ

)
d2 = −1 + 2ah

μr2α

c3 = 2(1 − ah)

μ
d3 = 2

ζα

U∗ − ah(1 − 2ah)

μr2α

c4 = 2

μ
d4 = −1 + 2ah

μr2α
c5 = c6 = −c4 d5 = d6 = −d4

c7 =
(

ω̄

U∗

)2

d7 =
(

1

U∗

)2
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