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Abstract This paper investigates the static and
dynamic characteristics of a doubly clamped micro-
beam-based resonator driven by two electrodes. The
governing equation of motion is introduced here, which
is essentially nonlinear due to its cubic stiffness and
electrostatic force. In order to have a deep insight into
the system, static bifurcation analysis of the Hamil-
tonian system is first carried out to obtain the bifurca-
tion sets and phase portraits. Static and dynamic pull-
in phenomena are distinguished from the viewpoint of
energy. What follows the method of multiple scales is
applied to determine the response and stability of the
system for small vibration amplitude and AC voltage.
Two important working conditions, where the origin of
the system is a stable center or an unstable saddle point,
are considered, respectively, for nonlinear dynamic
analysis. Results show that the resonator can exhibit
hardening-type or softening-type behavior in the neigh-
borhood of different equilibrium positions. Besides,
an attractive linear-like state may also exist under cer-
tain system parameters if the resonator vibrates around
its stable origin. Whereafter, the corresponding para-
meter relationships are deduced and then numerically
verified. Moreover, the variation of the equivalent nat-

J. Han · Q. Zhang · W. Wang (B)
Department of Mechanics, School of Mechanical
Engineering, Tianjin University, Tianjin 300072, China
e-mail: wangweifrancis@tju.edu.cn

W. Wang
School of Computing and Engineering, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

ural frequency is analyzed as well. It is found that the
later working condition may increase the equivalent
natural frequency of the resonator. Finally, numerical
simulations are provided to illustrate the effectiveness
of the theoretical results.
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1 Introduction

Electrostatically actuated microbeams, due to their
geometric simplicity, broad applicability, and easy-to-
implement characteristic, have become major com-
ponents in many micro-electro-mechanical systems
(MEMSs) devices [1], such as switches [2,3], sensors
[4], and resonators [5]. However, these structures are
small in size and may exhibit relatively large deforma-
tions [6]. Moreover, as the existence of structure nonlin-
earity and nonlinear electrostatic force, they can exhibit
rich static and dynamic behaviors [1,7]. These behav-
iors have attracted many attentions and have been stud-
ied by many MEMS communities. In this paper, a dou-
bly clamped microbeam-based resonator actuated by
two symmetrical electrodes [8] is considered to study
its static bifurcation and small vibration characteristics
in the neighborhood of stable equilibrium positions.

Pull-in instability is always a key issue in the design
of MEMS [9]. When the DC voltage is increased
beyond a critical value, stable equilibrium positions of
the microbeam cease to exist [10], and pull-in is trig-
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gered. Early studies mainly focus on the static pull-in
analyses which only take care of the static deflection
of the microbeam. For instance, Abdel-Rahman et al.
[11] investigated an electrically actuated microbeam
accounting for mid-plain stretching and finally derived
its static pull-in position. Pamidighantam et al. [12]
derived a closed-form expression for the pull-in volt-
age of two types of microbeams and validated its effec-
tiveness through finite-element simulation. Younis et
al. [13] presented an analytical approach and accu-
rately predicted the pull-in voltage of microbeam-based
MEMS. Hu et al. [14] used a distributed model to more
accurately predict the static pull-in position.

However, many studies have indicated that the
motion of the system induced by inertial effects, DC
voltage loading and AC voltage excitation is also
important and cannot be neglected [7,10]. Actually,
the dynamic pull-in voltage is lower than the sta-
tic pull-in voltage [14]. Therefore, dynamic pull-in
analysis seems to be necessary as well in the design
of MEMS. This instability is usually undesirable in
dynamic MEMS devices. It can lead to collapse of the
microbeam and hence the failure of the devices. Studies
have indicated that bifurcation, transient process and
perturbations can lead to dynamic pull-in [7]. A capac-
itive accelerometer simplified as a micro-cantilever
resonator was theoretically and experimentally inves-
tigated to grasp its nonlinear characteristics, includ-
ing dynamic pull-in [15,16]. Krylov [17] proposed a
largest Lyapunov exponent criterion and well evalu-
ated the dynamic pull-in instability of a doubly clamped
microbeam. A series of AC voltages was applied into
the electrode and successfully controlled the dynamic
pull-in phenomenon of a microbeam [18]. Based on
a high-frequency AC tension, dynamic pull-in of a
MEMS resonator was successfully suppressed [19].
Fang and Li [10] derived a new approach and model to
accurately determine the dynamic pull-in voltage and
position of a cantilever and a clamped–clamped beam.

During working process, nonlinear dynamic analy-
sis of these microbeams is also crucial in MEMS
devices. For example, nonlinear model analysis was
applied to study the dynamics of a doubly clamped
microswitch in the presence of geometric nonlin-
earity and nonlinear energy coupling [20]. Luo and
Wang [21,22] investigated the resonant conditions and
chaotic motion of a simplified time-varying capacitor.
Subjected to random disturbance, the chaotic behav-
iors of a doubly clamped MEMS resonator were ana-

lytically and numerically studied in [23]. Nonlinear
dynamics of a simplified comb-drive actuator, includ-
ing a fractional order situation, were numerically stud-
ied in [24]. What is more, parametrically excited vibra-
tion of microbeams was also investigated in [25–31].
Recently, nonlinear dynamics of imperfect microbeams
or MEMS arches were investigated in [32–36]. Results
showed some interesting nonlinear phenomena, such
as hysteresis, softening behavior, snap through, and
dynamic pull-in. These analyses are helpful to fur-
ther grasp the dynamic instability of this type of
micro-components. Besides, nonlinear dynamics of
microbeams made from some special materials, such
as functionally graded materials [37] and piezoelectric
materials [38], have also attracted many attentions.

Nonlinearities may lead to chaotic behaviors of
MEMS components [24], which are also undesirable
in MEMS devices. Therefore, some chaotic control
methods are used to suppress this unexpected behavior.
Voltage control [39,40], optimal linear feedback con-
trol [24], and time-delayed feedback control [41] were
applied to successfully suppress the chaotic motion
while enlarging the stable operation range of the sys-
tem. Moreover, some modern control theories, such as
fuzzy control [42], fractional order control [43], and
sliding mode control [44] also showed their advantages
in control strategy.

It can be concluded from the above analysis that sta-
tic or dynamic pull-in instabilities and nonlinear char-
acteristics are both important in the design of MEMS
and should be taken into account [11,45]. Studies
show that under different parameter combinations, the
equilibrium positions of a doubly clamped microbeam
actuated by two symmetrical electrodes are variable
[27,46,47]. Besides zero equilibrium position, there
may be other stable centers at either side of the origin
[8,27,48]. Meanwhile, under small perturbations, this
type of MEMS resonator may exhibit nonlinear char-
acteristics such as softening-type or hardening-type
behavior [49,50]. This implies nonlinear stiffness may
affect the vibration state of the system. However, to the
best of our knowledge: (1) There are fewer quantitative
results about a general analysis of equilibrium position
variations of this type of microresonator, especially
from the viewpoint of static bifurcation; (2) the non-
linear characteristics of the resonator in the neighbor-
hood of different equilibrium positions are still unclear,
which motivates our present work. Here, a relatively
simplified one degree-of-freedom (1-DOF) model of
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Fig. 1 Schematic diagram of an electrostatically actuated
microresonator

a doubly clamped microresonator with two symmetri-
cally actuated electrodes [8] is used to try to quantita-
tively make a complete description of the static bifur-
cation and transition mechanism of nonlinear jump-
ing phenomena. Some detail characteristics are inves-
tigated based on doubly clamped beam’s first vibration
mode assumption [51].

The structure of this paper is as follows. In Sect. 2,
an analytical model is described [8] and the poten-
tial energy of the system is given. In Sect. 3, static
bifurcation analysis is carried out. Static and dynamic
pull-in concepts are considered to define the stable
regions under nondimensional parameters. In Sect. 4,
the method of multiple scales is applied to determine
the response and stability of the system under small
vibration amplitude and AC voltage. In Sect. 5, based
on the frequency response equation, hardening-type or
softening-type behavior is investigated. A neutral state,
linear-like state is also discussed. Moreover, the equiv-
alent natural frequency is analyzed as well. In Sect. 6,
case studies are carried out to investigate the effect of
physical parameters on system behaviors discussed in
former sections. Finally, summary and conclusions are
presented in the last section.

2 System description

The electrostatically actuated microresonator is shown
in Fig. 1, in which x̂ is the flexural displacement of the
beam and d0 is the initial gap width. Deflected by a DC
voltage and actuated by an AC voltage, the governing
equation of motion of this system can be expressed as
[8]

mx̂ ′′ + cx̂ ′ + k1 x̂ + k3 x̂3 = 1

2

C0d0

(d0 − x̂)2

×[Vdc + Vac sin(�t)]2 − 1

2

C0d0

(d0 + x̂)2 V 2
dc (1)

where (′) represents the derivative with respect to time
t, m, c, k1 and k3 are the effective lumped mass,
damping, linear and cubic stiffness of the system,
respectively. C0 = εd As/d0 is the capacitance over
the gap when x̂ = 0, εd is the permittivity of the
gap medium, As is the overlapped area between the
microbeam and the stationary electrode, Vdc is the DC
voltage, Vac and �(� = 2π fe) are the amplitude and
angular frequency of AC harmonic voltage, in which,
fe is the frequency of AC voltage.

Introduce the following nondimensional variables

τ = ω0t, x = x̂

d0
, μ = c√

k1m
, α = k3d2

0

k1
,

γ = C0V 2
dc

2k1d2
0

, ρ = Vac

Vdc
, ω = �

ω0
(2)

where ω0 = √
k1/m is the natural angular frequency

of the microbeam; then, the nondimensional form of
Eq. (1) can be written as

ẍ + μẋ + x + αx3 = γ

[
1

(1 − x)2 − 1

(1 + x)2

]

+ 2γρ

(1−x)2 sin(ωτ)+ γρ2

2(1−x)2 [1−cos(2ωτ)] (3)

where (·) represents the derivative with respect to
nondimensional time τ .

Essentially, electrostatically actuated MEMS com-
ponents are parametrically excited systems and may
exhibit rich dynamics [25–31]. Parametric vibration
investigations are meaningful to grasp the complicated
vibration properties of MEMS devices, which are very
useful for MEMS designer. However, our present inves-
tigations assume the resonator to be deflected by a DC
voltage and actuated by a relatively small AC voltage
(Vac � Vdc yields ρ � 1), which is one main working
condition for such microresonators [41,49]. Besides,
damping coefficient is relatively small in practice [7].
Therefore, system (3) can be reduced to a forced vibra-
tion system under some certain conditions as men-
tioned in [41], and the dissipation and excitation terms
can be regarded as perturbations to the corresponding
Hamiltonian system.

The potential energy of the corresponding Hamil-
tonian system [8] can be described as below if the
potential energy is set to be zero at x = 0

123



1588 J. Han et al.

V (x) = 1

2
x2 + α

4
x4 − γ

(
1

1 − x
+ 1

1 + x

)
+ 2γ

(4)

The variation of equilibrium positions versus nondi-
mensional parameter γ was described in reference [8].
Melnikov analysis was applied to investigate the homo-
clinic bifurcation when the origin of the perturbed sys-
tem was unstable and two new centers emerged at either
side of it. What follows, a robust adaptive fuzzy con-
trol method was applied to stabilize the chaotic motion
into a high-amplitude oscillation state. These analy-
ses are useful in the design of dynamic MEMS res-
onators. However, it must be pointed out that static
bifurcation analysis is also significant in grasping the
dynamic characteristic of this type of MEMS. It can
provide a comprehensive understanding of the parame-
ter space where the number of equilibrium positions of
the system varies as the variation of system parameters.
Elata and Abu-Salih [46] pointed out that the stability
of zero equilibrium position can be used as a criterion to
judge whether side pull-in instability happens. Besides,
Mobki et al. [47] also discussed this type of instabil-
ity through a distributed beam model. However, some
studies show that when the origin is unstable, there
may be another two new centers emerge at either side
of the origin [8,27,48]. Krylov [27] built a reduced
order model using the Galerkin decomposition, found
the first and secondary pull-in voltages by analyzing
the fundamental frequency of the system and discussed
the phase portraits under each case as well. However,
he only took two specific simulation cases with dif-
ferent initial gap widths to describe these phenomena.
Approximate physical parameter relationships when
the first and secondary pull-in voltages coexist were
not obtained in this research. Haghighi and Markazi
[8] only discussed a relatively large amplitude vibra-
tion case through Taylor expansion of the electrostatic
force and did not analyze the phase portraits of the sys-
tem. Miandoab et al. [48] used the simplified model by
Haghighi and Markazi [8] to approximately obtain dif-
ferent shapes for potential function and discussed the
chaos prediction of the large amplitude vibration case.
Here, one must be noticed that when static bifurcation
analysis is carried out, some particular phenomena may
be overlooked by Taylor expansion of the electrostatic
force. Therefore, the corresponding Hamiltonian sys-
tem of Eq. (3) without any approximation seems to
be more appropriate to investigate the whole equilib-

rium position property. Besides, mathematical deriva-
tion and proof are necessary as well. These are the main
work in following section.

3 Static bifurcation analysis

In this section, static bifurcation analysis is carried
out to investigate the variation of equilibrium posi-
tions versus nondimensional parameters. The dissipa-
tion and AC excitation terms can be treated as pertur-
bations to the corresponding Hamiltonian system (5)
for a microresonator with high quality factor and AC
driving voltage much smaller than DC voltage [8]{

ẋ = y

ẏ = −x − αx3 + γ
[

1
(1−x)2 − 1

(1+x)2

] (5)

Setting ẋ = ẏ = 0 in Eq. (5) gives the equilibrium
position (xe, 0), where the abscissa xe can be deter-
mined by

xe + αx3
e − γ

[
1

(1 − xe)2 − 1

(1 + xe)2

]
= 0 (6)

It is clear from Eq. (6) that only α and γ can affect
the number of equilibrium positions. According to the
expressions in Eq. (2), one can notice that α > 0 and
γ > 0. With the existence of DC voltage (γ > 0), Eq.
(6) can be rewritten in the following equivalent form

xe[αx6
e + (1 − 2α)x4

e + (α − 2)x2
e + (1 − 4γ )] = 0

(7)

Besides xe = 0, the other roots of Eq. (7) can be indi-
rectly derived by solving Eq. (8)

αX3 + (1 − 2α)X2 + (α − 2)X + (1 − 4γ ) = 0 (8)

where X = x2
e .

The roots of Eq. (8) can be written as follows

X1 = 
 · 3

√
−q

2
+

√(q

2

)2 +
( p

3

)3

+
 2 · 3

√
−q

2
−

√(q

2

)2 +
( p

3

)3 − 1 − 2α

3α

X2 = 
 2 · 3

√
−q

2
+

√(q

2

)2 +
( p

3

)3

+
 · 3

√
−q

2
−

√(q

2

)2 +
( p

3

)3 − 1 − 2α

3α
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X3 = 3

√
−q

2
+

√(q

2

)2 +
( p

3

)3

+ 3

√
−q

2
−

√(q

2

)2 +
( p

3

)3 − 1 − 2α

3α
(9)

where p = − (1+α)2

3α2 , q = 2[(1+α)3−54α2γ ]
27α3 ,
 =

−1+√
3i

2 , i = √−1.
The discriminant and the relationship between roots

and coefficients of Eq. (8) can be, respectively, written
as

� =
(q

2

)2 +
( p

3

)3 = 4γ [27α2γ − (1 + α)3]
27α4 (10)

κ1 = X1 + X2 + X3 = 2α − 1

α
,

κ2 = 1

X1
+ 1

X2
+ 1

X3
= 2 − α

1 − 4γ
,

κ3 = X1 X2 X3 = 4γ − 1

α
(11)

Several possible cases of Eq. (8) can be distin-
guished by using the discriminant:

1. If � > 0, then the equation has one real root and
two conjugate complex roots;

2. If � = 0, then the equation has three real roots, two
of which are equal (notice: p �= 0);

3. If � < 0, then the equation has three distinct real
roots.

The above possible cases will be analyzed below,
respectively. Before our analysis, introduce the follow-
ing variable

M = (1 + α)3

27α2 (12)

It is easy to prove that α = 2 is the only extreme and
minimum point, and the minimum is min(M) = 0.25.
This property is very important in our following study.

Case 1 � > 0, i.e., γ > M
It is easy to know that X3 is real, while X1 and X2

are conjugate complex roots with X1 · X2 > 0. In light
of γ > M ≥ 0.25, the expression of κ3 in Eq. (11) is
positive, which yields X3 > 0. Actually, X3 is greater
than 1. The complete proof is given in Appendix.

Case 2 � = 0, i.e., γ = M
The expressions of X1, X2, and X3 in Eq. (9) can

be simplified as X1 = X2 = α−2
3α

, and X3 = 1+4α
3α

.
Obviously, X3 > X1,2. If 0 < α < 2, X1,2 < 0 and
X3 > 1. If α ≥ 2, X1,2 ≥ 0 and X3 > 1.

Case 3 � < 0, i.e., γ < M
As p < 0, three real roots can be rewritten in the

following convenient forms

X1 = 2 3
√

r cos

(
θ − 4π

3

)
− 1 − 2α

3α

X2 = 2 3
√

r cos

(
θ − 2π

3

)
− 1 − 2α

3α

X3 = 2 3
√

r cos(θ) − 1 − 2α

3α
(13)

where r =
√

− ( p
3

)3 = (1+α)3

27α3 , and θ = 1
3 arccos(− q

2r

)
, (0 < θ < π

3 ).
Based on the expression of r and the range of θ , the

relationships between X1, X2 and X3 can be derived
as

− 1

α
< X1 <

α − 2

3α
,
α − 2

3α
< X2 < 1,

1 < X3 <
1 + 4α

3α
(14)

X2 − X1 = 2
√

3 3
√

r · sin(θ) > 0,

X3 − X2 = 2
√

3 3
√

r · sin
(π

3
− θ

)
> 0 (15)

Obviously, X3 > 1. Here, one situation with γ =
0.25 must be mentioned because of the meaningless
definition of κ2 in Eq. (11). This corresponds to X1 < 0
and X2 = 0 if 0 < α < 2; X1 = 0 and X2 > 0 if
α > 2. Notice that α �= 2 as γ < M . Next, we assume
γ �= 0.25. Then, the signs of X1 and X2 are related to
the values of γ and α [see κ2 and κ3 in Eq. (11)]. When
0 < γ < 0.25, κ3 < 0, that is to say X1 · X2 < 0.
As X2 − X1 > 0, it is clear that X1 < 0 and X2 > 0.
When 0.25 < γ < M, X1 · X2 > 0. At this point,
the signs of X1 and X2 are decided by the value of α.
When 0 < α < 2, κ2 < 0, which means X1 < 0 and
X2 < 0. When α > 2, κ1 > 0 and κ2 > 0, which
corresponds to X1 > 0 and X2 > 0.

According to the relationship X = x2
e and the above

analysis, the number of equilibrium positions of the
Hamiltonian system (5) and their expressions can be
summarized in Table 1.

In view of the displacement constraint |xe| < 1,
static bifurcation sets and phase portraits of the Hamil-
tonian system (5) can be shown in Fig. 2. Boundary
curves separate the nondimensional parameter space
α − γ into four regions. Each region has its own phase
property.

There is one attractive feature of the phase portraits
that needs to pay attention to. Although the number
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Table 1 Equilibrium positions of the Hamiltonian system

Case γ α xe Remark

I (M,+∞) (0,+∞) 0, ±√
X3 X3 > 1

H1 M (0, 2) 0, ±√
X3 X3 = 1+4α

3α
∈ ( 3

2 ,+∞)

G0 0.25 2 0, ±√
X3 X3 = 3

2

H2 M (2,+∞) 0, ±√
X1,2, ±√

X3 X1,2 = α−2
3α

∈ (0, 1
3 ), X3 = 1+4α

3α
∈ ( 4

3 , 3
2 )

III (0, 0.25) (0,+∞) 0, ±√
X2, ±√

X3 0 < X2 < 1, 1 < X3 < 1+4α
3α

H4 0.25 (0, 2) 0, ±√
X3 1 < X3 < 1+4α

3α

H3 0.25 (2,+∞) 0, ±√
X2, ±√

X3
α−2
3α

< X2 < 1, 1 < X3 < 1+4α
3α

IV (0.25, M) (0, 2) 0, ±√
X3 1 < X3 < 1+4α

3α

II (0.25, M) (2,+∞) 0, ±√
X1, ±√

X2, ±√
X3 0 < X1 < X2 < 1, 1 < X3 < 1+4α

3α

Fig. 2 Bifurcation sets and phase portraits of the Hamiltonian system in different α–γ domains (solid line physically possible; dashed
line physically impossible)

of equilibrium positions is invariable in region II, the
phase portraits may have a distinct difference. Through
analysis, we find that this difference can be distin-
guished from the viewpoint of potential energy. As
is shown in Fig. 3, the ball at the origin can exhibit
three different states of motion: stable (green one), crit-
ical (red one), and pull-in (gray one). An ideal situa-
tion is considered here, in which the moving surface is
assumed to be perfectly smooth. The ball at the ori-

gin starts to move under small perturbations. When
system parameters satisfy V (±xe,2) < 0, correspond-
ing to the last state of motion, the ball will overpass
the left or right potential barrier and then falls into an
infinite potential well. Then, pull-in instability is trig-
gered. Generally speaking, static pull-in analysis only
takes care of the variation of stable equilibrium posi-
tions and the critical pull-in voltage. At this point, the
former pull-in state is stable as there are two table cen-
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Fig. 3 Potential energy of the Hamiltonian system in region II
(xe,2 = √

X2). (Color figure online)

ters at either side of the origin. However, static pull-in
analysis neglects the inertial effects [10] induced by
DC voltage changing instantaneously from zero to the
specified design value. For this type of microresonator,
the microbeam is subjected to two symmetrical DC
loadings. Assume the origin is unstable, only when the
microbeam suffers small perturbations will it move to
a new stable center, just like the motion of the ball in
Fig. 3. Many studies [7] have shown that dynamic pull-
in is important as well in the design of MEMS. Then,
the transient process due to inertial effects needs to be
taken into account. Therefore, in our point of view, the
pull-in condition of this dynamic MEMS component
in region II should be defined by

V (±xe,2) = 0 (16)

where xe,2 = √
X2.

When the system parameters are in region II, what is
needed is to let V (±xe,2) > 0 in order to keep the sys-
tem beyond dynamic pull-in. Take α = 10 as an exam-
ple, the value of M is approximately equal to 0.493,

while the critical value of γ satisfying Eq. (16) is equal
to 0.45. In Fig. 4, the red solid lines represent the phase
diagrams of system (3), the blue dotted-dashed lines
and black dashed lines represent the contour lines of
which the Hamiltonian energies are equal to zero and
V (±xe,2), respectively. It can be observed from Fig. 4
that when γ is smaller than 0.45, the system is stable
(Fig. 4a); otherwise, it is triggered to pull-in (Fig. 4b).
Therefore, the value of M overestimates the dynamic
pull-in value of γ .

As is shown in Fig. 4a, the phase portraits of the
system are restricted within the Hamiltonian energy
V (±xe,2). This implies that the maximal energy of the
system cannot overpass this energy value. In the pres-
ence of perturbations due to dissipation and AC exci-
tation, this system may be away from dynamic pull-in
only if the maximal energy is smaller than V (±xe,2),
in other words, the potential barrier V (±xe,2) is big
enough.

As is known to us, the variation of γ is directly
related to DC voltage Vdc. During working process,
it seems that the nondimensional parameter γ is more
important for MEMS designers. Therefore, the effect
of parameter γ to the static bifurcation of the sys-
tem is investigated in our following research. For con-
venience, introduce the following variables: xe,0 =
0, xe,1 = √

X1, xe,2 = √
X2, xe,3 = √

X3. The sta-
bility of (±xe,i , 0), (i = 0, 1, 2, 3) can be determined
through the Jacobi matrix J of the system (5), which
can be written as

J =
[

0 1
−1 − 3αx2

e,i + 2γ

(1∓xe,i )
3 + 2γ

(1±xe,i )
3 0

]
(17)

As is shown in Fig. 5, the number of abscissa coef-
ficients varies as the variation of γ . When: (1) α > 0
and 0 < γ < 0.25, the system has one stable center

Fig. 4 Phase portraits of
the microresonator with
initial conditions (0, 0):
α = 10, μ = 0.005, ρ =
0.003, ω = 0.5 (dashed line
Hamiltonian energy is equal
to V (±xe,2); dotted-dashed
line Hamiltonian energy is
equal to zero). a γ = 0.448,
b γ = 0.452. (Color figure
online)
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Fig. 5 Static bifurcation of the Hamiltonian system versus γ

under different α (solid line stable; dashed line unstable)

point (0, 0) and two unstable saddle points (±xe,2, 0);
(2) α < 2 and γ > 0.25, or α > 2 and γ > M , the
system only has one unstable saddle point (0, 0); (3)
α > 2 and 0.25 < γ < M , three unstable saddle points
(0, 0), (±xe,2, 0), and two center points (±xe,1, 0).
Here, one must be noticed that xe,3 always exists, but it
is meaningless for this system. Maybe the relative size
of xe,3 can explain some behaviors such as the speed of
transient time to pull-in [13]. However, this is beyond
the scope of our research.

The above analysis indicates that if α and γ sat-
isfy some certain conditions, the system may vibrate in
the neighborhood of (0, 0) or (±xe,1, 0). In our study,
the perturbations are assumed to be small enough,
which yield a small vibration state of the microres-
onator around either one of the stable equilibrium posi-
tions. As the existences of cubic stiffness and elec-
trostatic actuation, the vibration is essentially nonlin-
ear. For better understanding of the small vibration of
the system, perturbation methods should be utilized to
derive approximate expressions for the dynamic behav-
ior. That is the work in our following section.

4 Perturbation analysis

In this section, the method of multiple scales [52] is
used to investigate the response of the microresonator
with small vibration amplitude around three stable
equilibrium positions, respectively.

Introduce x = xe + u, where u = O(ε) is the
dynamic amplitude of motion and ε is regarded as
a small nondimensional bookkeeping parameter only
[41]. Considering the terms Vdc = O(1), Vac =

O(ε3), scaling the damping and expanding the electro-
dynamic term of Eq. (3) up to third order of ε, one can
obtain

ü + ε2μu̇ + ω2
nu + aqu2 + acu3 = ε3 f sin(ωτ) (18)

where

aq = 3αxe − 3γ

(1 − xe)4 + 3γ

(1 + xe)4

ac = α − 4γ

(1 − xe)5
− 4γ

(1 + xe)5

ω2
n = 1 + 3αx2

e − 2γ

(1 − xe)3 − 2γ

(1 + xe)3

f = 2γρ

(1 − xe)2 (19)

One can see that ωn is the equivalent natural angular
frequency of the resonator in nondimensional form.

In a microbeam-based resonator, the beam is
deflected by a DC voltage and then driven to vibrate
around its natural frequency by an AC loading [7].
Therefore, the primary resonance is investigated here.
To describe the nearness of the primary resonance, a
detuning parameter σ is introduced and defined by

ω = ωn + ε2σ (20)

One seeks the approximate solution of Eq. (18) in the
form

u(τ ; ε) = εu1(T0, T1, T2) + ε2u2(T0, T1, T2)

+ ε3u3(T0, T1, T2) + · · · (21)

where Tn = εnτ, (n = 0, 1, 2).
Substituting Eqs. (20) and (21) into Eq. (18) and

equating coefficients of like powers of ε, yield

O(ε1) : D2
0u1 + ω2

nu1 = 0 (22)

O(ε2) : D2
0u2 + ω2

nu2 = −2D0 D1u1 − aqu2
1 (23)

O(ε3) : D2
0u3 + ω2

nu3 = −2D0 D1u2

− 2D0 D2u1 − D2
1u1 − μD0u1

− 2aqu1u2 − acu3
1 + f sin(ωnT0 + σ T2) (24)

where Dn = ∂
∂Tn

, (n = 0, 1, 2).
The general solution of Eq. (22) can be written as

u1(T0, T1, T2)=A(T1, T2)e
iωn T0 + Ā(T1, T2)e

−iωn T0

(25)

Substituting Eq. (25) into Eq. (23), yields

D2
0u2 + ω2

nu2 = −2iωn
∂ A

∂T1
eiωn T0

− aq(A2e2iωn T0 + AĀ) + cc (26)
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where cc represents the complex conjugate terms.
To eliminate the secular term, one needs

− 2iωn
∂ A

∂T1
= 0 (27)

which indicates that A is only the function of T2.
Thus, Eq. (26) becomes

D2
0u2 + ω2

nu2 = −aq(A2e2iωn T0 + AĀ) + cc (28)

The solution of u2 can be given as

u2(T0, T2) = aq A2

3ω2
n

ei2ωn T0 − aq AĀ

ω2
n

+ cc (29)

Substituting Eqs. (25) and (29) to Eq. (24) yields the
secular terms

2iωn
dA

dT2
+ μiωn A − 10a2

q A2 Ā

3ω2
n

+ 3ac A2 Ā + i
f

2
eiσ T2 = 0 (30)

At this point, it is convenient to express A in the polar
form

A = 1

2
a(T2)e

iβ(T2) (31)

Substituting Eq. (31) into Eq. (30), and separating the
imaginary and real parts, yield

da

dT2
= −μ

2
a − f

2ωn
cos ϕ (32)

a
dϕ

dT2
= aσ +

(
5q2

q

12ω3
n

− 3ac

8ωn

)
a3 + f

2ωn
sin ϕ (33)

where ϕ = σ T2 − β.
Steady-state response can be obtained by imposing

the condition da
dT2

= dϕ

dT2
= 0. Finally, the frequency

response equation can be derived as

a2
[(

σ + κa2
)2 +

(μ

2

)2
]

=
(

f

2ωn

)2

(34)

where κ = 5a2
q

12ω3
n

− 3ac
8ωn

.

The vibration peak value and backbone curve can
be decided by amax = f/(μωn) and ω = ωn − κa2

max,
respectively. And the stability of the periodic solution
can be determined by the method in Ref. [41].

5 Small vibration around equilibrium positions

Frequency response Eq. (34) is similar to that of Duff-
ing oscillator. It is obvious that the softening-type or

hardening-type behavior of the system depends on the
sign of κ . Positive κ can lead to softening-type behav-
ior, while negative one can lead to hardening-type
behavior.

When the resonator vibrates in the neighborhood of
(0, 0), Eq. (19) can be simplified as aq = 0, ac =
α − 8γ, ω2

n = 1 − 4γ, f = 2γρ. At this point,
κ = 3(8γ − α)/(8

√
1 − 4γ ). If α > 8γ , the system

exhibits hardening-type behavior. If α < 8γ , the sys-
tem exhibits softening-type behavior. A special case
with α = 8γ needs to be mentioned here. At this point,
the system exhibits linear-like behavior. That may be
an ideal state for MEMS designers. Besides, the equiv-
alent natural angular frequency ωn is also an important
factor in design process. As is known to us, ωn is only
the function of γ . The increase of γ can reduce the
value of ωn . Notice that γ must satisfy γ < 0.25 in
order to keep ωn > 0. When the system has no stable
equilibrium position, ωn drops to zero and pull-in is
triggered. This result coincides with the former static
bifurcation analysis.

Next, the vibration properties in the neighbor-
hood of two nonzero stable equilibrium positions
(±xe,1, 0) are investigated. According to the expres-
sions of Eq. (19), one can notice that: aq(xe,1) =
−aq(−xe,1), ac(xe,1) = ac(−xe,1), ω2

n(xe,1) = ω2
n

(−xe,1), f (xe,1) > f (−xe,1), and κ(xe,1)=κ(−xe,1).
From these expressions, it is obvious that around any
equilibrium position: (1) The equivalent natural angu-
lar frequencies are the same; (2) the values of κ are
the same; and (3) the vibration amplitude around left
equilibrium position is smaller than that around right
one.

Based on the analysis in Sect. 3, the value of κ can be
qualitatively classified into two cases. As is shown in
Fig. 6a, when 0 < α < 2 and 0 < γ < 0.25, the system
has only one stable equilibrium position (0, 0). κ may
be negative, zero or positive. If α > 2 and 0 < γ < M ,
as is shown in Fig. 6b, the value of κ holds to be neg-
ative when 0 < γ < 0.25 (hardening-type behavior)
and positive when 0.25 < γ < M (softening-type
behavior).

In order to validate the above analysis, long-time
integration (LTI) of Eq. (3) is used to obtain some
numerical solutions (discrete points), compared with
the analytical solution derived from the method of mul-
tiple scales (MMS). Figure 7 corresponds to the situa-
tion in Fig. 6a, while Fig. 8 corresponds to situation in
Fig. 6b. One can see that they have good agreements.
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Fig. 6 The value of κ

versus γ under different
(α, γ ) combinations.
a 0 < α < 2, 0 < γ < 0.25,
b α > 2, 0 < γ < M,

Fig. 7 Frequency response
curves obtained using LTI
and MMS for 0 < α < 2 :
α = 0.8, μ = 0.005 (solid
line stable; dashed line
unstable; dotted-dashed line
backbone curve)

Fig. 8 Frequency response
curves obtained using LTI
and MMS for
α > 2 : α = 3, μ = 0.005
(solid line stable; dashed
line unstable; dotted-dashed
line backbone curve).
a γ = 0.08, ρ = 0.0026,
b γ = 0.26, ρ = 0.00013

Next, the effect of the γ on the equivalent natural
angular frequency ωn under different α is shown in
Fig. 9. When α < 2, ωn = √

1 − 4γ . The maxi-
mum of ωn is equal to 1, which corresponds to no-DC-
voltage situation. As the increase of γ, ωn gradually
decreases. When α > 2 and 0 < γ < 0.25, the vari-
ation of ωn is the same as former case. When α > 2
and γ > 0.25, ωn first increases and then dramatically

decreases as the increase of γ . If inertial effects of this
type of resonator are neglected, the system will undergo
pull-in when γ = M , and the equivalent natural angu-
lar frequency ωn sudden drops to zero. If transients due
to inertial effects are taken into account, then pull-in γ

will be smaller than M . Different parameter combina-
tions can lead to different frequency ranges. In Fig. 9,
ωn is not more than 1 if α < 2 and may be greater
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Fig. 9 Variation of the equivalent natural angular frequency ωn
versus γ under different α (dotted-dashed line the value of γ

when V (±xe,2) = 0)

than 1 if α > 2. This characteristic may be useful for
MEMS designers if they want to enlarge the working
frequency of the resonator.

6 Numerical results

In this section, case studies of a microbeam [53] are
done to investigate the effect of some physical parame-
ters on the vibration of the system. The main geometric
and material parameters of a microbeam are given in
Table 2. The equivalent principle between a one degree-
of-freedom microbeam model and a distributed mass
model can be realized based on first mode assump-
tion [51]: m = 0.396ρmwhl, k1 = 125.1EI/l3, k3 =
0.767k1/h2, where I = wh3/12 is the moment of
inertia. Through the analysis, one can obtain α =
0.767d2

0 /h2. According to α = 2, the critical value
of initial gap width d0 can be derived as d0 ≈ 1.615 h.
When d0 > 1.615 h, the microbeam may exhibit the
case as mentioned in region II.

Table 3 shows four cases with different initial
gap widths and DC voltages. Based on the analysis
in former section, the softening-type behavior (ST)
or hardening-type behavior (HT) can be predicted.
Numerical results are obtained through LTI of Eq. (1).
As is shown in Fig. 10, the analytical solutions agree
well with the numerical results.

The situation with α < 2 is one interesting case
that needs to be investigated. As is known to us, the
nonlinearity due to cubic stiffness and electrostatic

Table 2 Geometric and material parameters of a microbeam
[53]

Parameters Values

Dimension: length l, width w and
thickness h (µm)

400 × 45 × 2

Density ρm (kg/m3) 2.33 × 103

The permittivity of the gap medium εd (F/m) 8.85 × 10−12

Young’s modulus E (N/m2) 1.65 × 1011

Damping coefficient c (kg/s) 8.96 × 10−8

Natural frequency f0 = ω0/(2π) (Hz) 85,898.3

Table 3 Simulation cases

Case Initial gap
width d0
(µm)

DC Voltage
Vdc (V)

α γ ST/HT

1 2 4 0.767 0.016 HT

2 2 12 0.767 0.148 ST

3 5 30 4.794 0.059 HT

4 5 65 4.794 0.278 ST

force can lead to nonlinear vibration of the microres-
onator. However, if α satisfies α = 8γ , the system
approximately exhibit linear-like behavior. Given that
the microbeam is predesigned and the dimension and
material are fixed, the effects of the initial gap width
and DC voltage on linear-like behavior are studied as
shown in Fig. 11. Blue lines are some contour lines
of the equivalent natural angular frequency, while red
line represents κ = 0. Obviously, the intersections of
these two types of lines correspond to a linear-like state
with certain ωn . According to MEMS design require-
ment, a linear-like state can be realized by analyzing
Fig. 11. For example, an initial gap width d0 = 2µm is
designed and the DC voltage is approximately calcu-
lated as Vdc = 9.653V (red point in Fig. 11). Then, the
equivalent angular natural frequency is approximately
equal to 0.785, which corresponds to 67.45 kHz. The
frequency response curves under different AC voltage
are shown in Fig. 12, which verifies the correctness of
our theoretical analysis.

Next, the effect of the DC voltage Vdc on equivalent
natural frequency fn( fn = ω0ωn/2π) under different
initial gap widths d0 is investigated (Fig. 13). When
d0 is small enough, the operating stroke of Vdc is rela-
tively small. Tiny change of Vdc will lead to dramatic
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Fig. 10 Frequency
response curves obtained
using LTI and MMS under
different simulation cases
(solid line stable; dashed
line unstable; dotted-dashed
line backbone curve).
a Case 1, b Case 2, c Case
3, d Case 4

change of fn , but fn is always smaller than f0. As
the increase of d0, the operating stroke of DC voltage
becomes larger and larger. When d0 > 1.615h, as the
increase of Vdc, fn becomes smaller and smaller until
it is equal to zero. Continue to increase DC voltage,
fn first increases and then dramatically decreases to
zero. Here, one attractive characteristic is that the upper
limit of fn may be greater than f0. This reflects that the
MEMS working frequency can be enlarged. However,
one should be noticed that it needs more DC voltage
output and the vibration of the resonator will deviate
from the origin.

7 Summary and conclusions

This paper presented the static and dynamic investiga-
tions of a doubly clamped microresonator actuated by

two symmetrical electrodes. Static bifurcation analy-
sis was carried out to investigate the variation of equi-
librium positions when system parameters changed.
Through analysis, bifurcation sets and phase portraits
of the Hamiltonian system were obtained and static
pull-in positions and parameter relationships were the-
oretically derived. Due to the distinct nonlinearity of
electrostatic force, the phase portraits might have obvi-
ous difference in region II (Fig. 2), although the number
of equilibrium positions was the same. Whereafter, this
attractive feature was explained from the viewpoint of
potential energy, and dynamic pull-in condition of this
type of microresonator was identified.

Under small perturbations, the resonator might
vibrate in the neighborhood of the origin or new center
at either side of the origin. In order to grasp the nonlin-
ear vibration characteristic of the system, the method
of multiple scales was applied to obtain approximate
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Fig. 11 The effects of the initial gap width and DC voltage on
linear-like behavior of the microresonator. (Color figure online)

Fig. 12 Frequency response curves obtained using LTI and
MMS under different AC voltages (dotted-dashed line backbone
curve)

frequency response equation. Results show that beyond
static or dynamic pull-in instability, different parameter
combinations may lead to hardening-type or softening-
type behavior. An interesting feature is that, if α < 2,
the system may vibrate in a linear-like state around
the origin. This property may be useful for MEMS
designers. When α > 2, the vibration around the origin

Fig. 13 Variation of the equivalent natural frequency fn versus
DC voltage Vdc under different initial gap widths d0 (dotted-
dashed lines the value of Vdc when V (±xe,2) = 0)

exhibits hardening-type behavior and that around the
new center at either side of the origin exhibits softening-
type behavior. Under the same AC loading, the vibra-
tion amplitude around left center is smaller than that
around the right one. Moreover, the equivalent natural
frequency of the system was discussed as well. The
nondimensional natural frequency may be greater than
1, which means the working frequency can be enlarged.
Finally, simulation results of case studies based on orig-
inal dimensional equation were used to verify the cor-
rectness of the present theoretical results.
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Appendix

The proof of X3 > 1 when � > 0 can be summarized
as follows.

The derivative of X3 with respect to γ can be written
as

dX3

dγ
=

3
√

η1 + 6
√

3αη2 − 3
√

η1 − 6
√

3αη2√
3η2

(35)

where η1 = −(1 + α)3 + 54α2γ and η2 =√−[(1 + α)3 − 27α2γ )]γ .
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As γ > (1 + α)3/(27α2) ≥ 0.25, it is clear
that η1 > (1 + α)3 > 0 and η2 > 0, leading to
dX3
dγ

> 0. According to the continuity of X3 to γ as

γ ≥ (1 + α)3/(27α2), it is clear that X3 > X3|γ=0.25,
where the expression of X3|γ=0.25 can be given by

X3|γ=0.25

=α
[
4 + 22/3 (B1+i B2)

1/3 + 22/3 (B1−i B2)
1/3]−2

6α

(36)

where B1 = 21α2−6α−2α3−2
α3 and B2 = 3

√
3
√

(α−2)2(1+4α)

α4 .

If α = 2, B2 = 0 and X3|γ=0.25 = 3
2 , else α �=

2, X3|γ=0.25 can be rewritten as

X3|γ=0.25 = 4α + 4(1 + α) cos(ϕ) − 2

6α
(37)

where ϕ = 1
3 arccos( B1√

B2
1 +B2

2

), 0 ≤ ϕ < π
3 .

The property 1
2 < cos(ϕ) ≤ 1 leads to 1 <

X3|γ=0.25 ≤ 4α+1
3α

. It is obvious that X3 > 1. �
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