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Abstract This paper considers the multistage anti-
windup (AW) design for linear systems with satura-
tion nonlinearity, with the objective of enlarging the
domain of attraction of the resulting closed-loop sys-
tem. We present results for both static and dynamic AW
compensation gains, in terms of linear matrix inequal-
ities. Iterative algorithms are established to obtain the
AW compensation gains that maximize the estimate
of the domain of attraction. In addition, a particle
swarm optimization-based systematic method is pro-
posed to determine the design point of the multistage
AW scheme and to set the initial conditions of the estab-
lished iterative algorithms. Using the proposed method,
benefits of the multistage AW on the domain of attrac-
tion are illustrated through a benchmark example.

M. Ran (B) · Q. Wang
School of Automation Science and Electrical Engineering,
Beihang University, Beijing 100191, China
e-mail: rmppinbo@asee.buaa.edu.cn

Q. Wang
e-mail: wangqing@buaa.edu.cn

C. Dong
School of Aeronautic Science and Engineering, Beihang
University, Beijing 100191, China
e-mail: dongchaoyang@buaa.edu.cn

M. Ni
Chinese Society of Astronautics, Beijing 100048, China
e-mail: niml@bice.org.cn

Keywords Multistage anti-windup · Saturation
nonlinearity · Domain of attraction · Particle swarm
optimization

1 Introduction

It has been well recognized that saturation nonlinear-
ity affects virtually all practical control systems. Due
to saturation, the actual plant input will be different
from the controller output, which causes performance
degradation and may even induce instability. Design-
ing a high-performance controller for dynamic sys-
tems subject to saturation nonlinearity has received
an increasing attention in academia and industry over
the past several decades [1–6]. Various design meth-
ods for dealing with saturation nonlinearity have been
developed, which can be generally classified into two
broad classes: the one-step approach and the two-step
approach. The one-step approach is an approach that
takes the saturation nonlinearity explicitly into account
when designing controllers. Although this methodol-
ogy is satisfactory in principle, it has often been criti-
cized for its conservatism [3]. In the two-step approach,
a nominal controller which not accounts for the satura-
tion nonlinearity is first designed to achieve some nom-
inal performance requirements. Then, a compensation
term is added to the nominal controller to minimize
the adverse effects of saturation. Such an approach is
called anti-windup (AW) and the compensation term is
referred to as AW compensator. In this paper, we con-
centrate on the design of the AW compensator.
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In traditional AW design, a single AW compensator
(or set of gains) is designed and set to be activated
as soon as saturation occurs. Almost all AW designs
were based on this paradigm (e.g., [7–10]). However,
in recent years, several AW schemes that use different
activation mechanisms have been proposed in the lit-
erature. In [11,12], a modified AW scheme called as
delayed AW was proposed. The delayed AW is not to
activate the AW compensator immediately when sat-
uration is encountered, but instead to allow saturated
actuators act unassisted up to a pre-designed point. Wu
and Lin [13,14] proposed a modified AW scheme oppo-
site to the delayed AW, which is referred to as antici-
patory AW. Considering the system dynamical nature,
the basic idea of the anticipatory AW is to activate the
AW compensator in anticipation of actuator saturation.
Further modification of the AW scheme can be found
in [15,16], in which the proposed AW scheme consists
of two AW compensators: one activated at the occur-
rence of actuator saturation (immediate AW compen-
sator) and the other activated in delayed of actuator
saturation (delayed AW compensator).

The modified AW schemes mentioned above add
not too much complexity, but indeed have the potential
of further improving the closed-loop performance in
tracking reference signals. Except the transient perfor-
mance, enlarging the domain of attraction of the system
with saturation nonlinearity is also an important index
to measure the improvement in AW design [17–21].
In [22], a linear matrix inequality (LMI)-based analy-
sis approach has been developed to enlarge the domain
of attraction of the closed-loop system under a pre-
designed nominal controller. Based on the work of [22],
several improved analysis approaches have been pro-
posed to reduce the conservativeness of the resulting
domains [23,24]. Typically, it has been shown that the
anticipatory AW could obtain a larger domain of attrac-
tion than the delayed AW and the traditional AW, both
in static case [13] and in dynamic case [25]. We note
that the effects of using multiple sets of AW gains on
domain of attraction still remain an open problem.

In this paper, we further investigate the possible ben-
efits of the multistage AW scheme proposed in [15,16],
in terms of domain of attraction. Our work is based
on extending the AW synthesis approach established
in [22,26] to include a static immediate AW com-
pensator and a static/dynamic delayed AW compen-
sator. The actual saturation element is modeled as a
time-varying gain, and the artificial saturation element

in the multistage AW scheme is modeled by poly-
topic representation method. Then, iterative LMI-based
algorithms are established to design the AW compen-
sators that lead to the largest estimate of the domain
of attraction of the resulting closed-loop system. Both
static and dynamic AW compensation gains are con-
sidered. Finally, a population-based optimization tech-
nique, particle swarm optimization (PSO), is utilized
to determine the design point of the multistage AW
scheme and to search for the best initialization of the
established iterative algorithms. Unlike the traditional
methods, in which these free design parameters can
only be selected by trial and error according to the com-
putational results, the PSO-based approach provides a
systematic way to determine these parameters.

The remainder of this paper is organized as follows.
In Sect. 2, we give a general description of the mul-
tistage AW scheme. In Sect. 3, we establish the LMI-
based iterative algorithms to design the AW compensa-
tion gains that maximize the estimate of the domain of
attraction. Section 4 presents the PSO-based parame-
ter selection method. Section 5 presents the simulation
results of a well-known numerical example. A brief
conclusion in Sect. 6 ends the paper.

The notation in this paper is standard. R is the
set of real numbers. AT is the transpose of real
matrix A. The matrix inequality A > B(A ≥ B)
means that A and B are square Hermitian matri-
ces and A − B is positive (semi-)definite. I and
0 denote the identity matrix and zero matrix with
appropriate dimensions, respectively. A block diagonal
matrix with sub-matrices X1, X2, . . . , X p in its diag-
onal will be denoted by diag{X1, X2, . . . , X p}. For a
non-Hermitian real matrix, He(A) = A + AT.

2 Problem statement

Consider the following linear plant with saturation non-
linearity

P :
{

ẋ p = Apx p + Bpsath(u)
y = C px p

(1)

where x p ∈ R
n p is the plant state, u ∈ R

nu is the con-
trol input, y ∈ R

ny is the measured output, and Ap, Bp,
and C p are real constant matrices of appropriate dimen-
sions. The function sath(u) : R

nu → R
nu is the stan-

dard decentralized saturation function defined as
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Multistage AW synthesis: enlargement of the domain of attraction 1545

Fig. 1 Multistage AW
scheme: P,C, AW and
AWd are the plant, the linear
controller, the immediate
AW compensator, and the
delayed AW compensator,
respectively

sath(u) = [
sath1(u1), . . . , sathnu (unu )

]T
,

sathi (ui ) = sign(ui )min
{

hi , |ui |
}

(2)

with h = diag{h1, . . . , hnu }, hi is the saturation limit
for i th input.

Assume that a linear controller of the form

C :
{

ẋc = Acxc + Bc y
u = Ccxc + Dc y

(3)

has been designed. Here, xc ∈ R
nc is the controller

state, and Ac, Bc,Cc, and Dc are real constant matri-
ces of appropriate dimensions. The linear controller
guarantees the stability of the closed-loop system and
meets some performance requirements in the absence
of actuator saturation.

In the traditional AW design, a correction term pro-
portional to the difference between the controller output
and the actual plant input q = u − sath(u) is added to
the linear controller, that is,{

ẋc = Acxc + Bc y − Eq
u = Ccxc + Dc y

(4)

where E is the static AW compensation gain. It is
straightforward to see that the compensator is activated
as soon as saturation occurs (i.e., q �= 0).

In [16], the multistage AW scheme that consists of an
immediate AW compensator and a delayed AW com-
pensator was proposed (see Fig. 1). An artificial satura-
tion element with a higher saturation bound h/gd was
added; here, 0 < gd < 1 is a design variable speci-
fied by designer. When the two AW compensators both
have static gains, the resulting compensated controller
can be written as{

ẋc = Acxc + Bc y − Eq − Edqd

u = Ccxc + Dc y
(5)

where q = ud − û, qd = u − ud, and E and Ed are
the immediate AW compensation gain and the delayed
AW compensation gain, respectively.

Letting the delayed AW compensator has dynamic
gains, that is,{

ẋaw = Aawxaw + Bawqd

η = Cawxaw + Dawqd
(6)

where xaw ∈ R
naw is the delayed AW compensator

state, Aaw, Baw,Caw, and Daw are real constant matri-
ces of appropriate dimensions, η is the output of the
compensator, then the compensated controller can be
correspondingly written as{

ẋc = Acxc + Bc y − Eq + η

u = Ccxc + Dc y
(7)

In this paper, we will evaluate how the multistage
AW scheme affects the size of the achievable domain of
attraction of the closed-loop system. Both the controller
(5) and (7) will be considered. For simplicity, we first
concentrate on single actuator plants, and the results
can be readily extended to multiactuator plants, to be
presented latter.

3 Multistage AW compensation gain design

3.1 Static AW gains

To rewrite the closed-loop system depicted in Fig. 1,
we first replace the actual saturation element with the
following time-varying gain k(t),

k(t) = û(t)

ud(t)
(8)
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When |u| < h, no saturation occurs, k(t) = 1. When
h ≤ |u| < h/gd, only the actual saturation is in effect,
gd < k(t) ≤ 1. When |u| ≥ h/gd, both satura-
tion elements are activated, k(t) = gd. Thus, we have
k(t) ∈ [gd, 1]. Considering sath/gd (u) = h

gd
sat1(

gd
h u),

the closed-loop system can be written as{
ẋ = (A − B F)x + B1sat1(F1x)
u = Fx

(9)

where

x =
[

x p

xc

]
,

A =
[

Ap 0
BcC p Ac

]
, B =

[
0
Ed

]
,

B1 =
[

Bpk h
gd

(Ed − E + E K ) h
gd

]
,

F = [
DcC p Cc

]
, F1 = gd

h
F.

Remark 1 Modeling the saturation element as a time-
varying gain has been attempted before [11,13]. In
this paper, the synthesis results will be formulated and
solved as some LMI-based optimization problems. Due
to linearity, we only need to check the resulting LMIs
on the extreme values of k(t):1 and gd.

Define the symmetric polyhedron L (F1) = {x ∈
R

n p+nc || f1i x | ≤ 1, i = 1, 2, . . . , nu}, where f1i is the
i th row of the matrix F1. Note that L (F1) stands for
the unsaturated zone of the closed-loop system (9).

Similar to [22,26], we use a contractively invari-
ant ellipsoid to estimate the domain of attraction of
the closed-loop system. Define V (x) = xT Px, P ∈
R
(n p+nc)×(n p+nc) is a positive definite matrix. The ellip-

soid Ω(P) = {x ∈ R
n p+nc |xT Px ≤ 1} is said to be

contractively invariant if ∀x ∈ Ω(P)\0,

V̇ (x) = 2xT P((A − B F)x + B1sat1(F1x))<0 (10)

Clearly, if Ω(P) is contractively invariant, then it is
inside the domain of attraction of the closed-loop sys-
tem.

For any two matrices F1, H ∈ R
nu×(n p+nc) and a

vector v ∈ V ,V = {v ∈ R
nu | vi = 1 or 0}, denote

M(v, F1, H) = diag{v1, v2, . . . , vnu }F1

+ (I −diag{v1, v2, . . . , vnu })H (11)

Let hi be the i th row of the matrix H . We arrive at
the following lemma.

Lemma 1 Given an ellipsoid Ω(P), if there exists an
H ∈ R

nu×(n p+nc) such that
(A − B F + B1 M(v, F1, H))T P

+P (A − B F + B1 M(v, F1, H))
< 0, ∀v ∈ V , k ∈ {1, gd}

(12)

and Ω(P) ⊂ L (H), i.e., |hi x | ≤ 1, i = 1, 2, . . . , nu,
for all x ∈ Ω(P), thenΩ(P) is a contractively invari-
ant set of the closed-loop system (9).

Let χR = co{x1, x2, . . . , xl} be a reference shape
set. Here, x1, x2, . . . , xl are some priori given points
in R

n p+nc , co{·} denotes the convex hull of a set. With
Lemma 1, we can choose the largest ellipsoid through
the following optimization problem:

max
P>0,H

α,

s.t. (a) αχR ⊂ Ω(P),
(b) (A−B F +B1 M(v, F1, H))T P+P(A−B F

+B1 M(v, F1, H))<0,∀v∈V , k ∈{1, gd},
(c) |hi x | ≤ 1, i = 1, 2, . . . , nu,∀x ∈ Ω(P).

(13)

Define Q = P−1, γ = α−2, and G = H Q.
Let the i th row of G be gi . Then, M(v, F1, H)Q =
M(v, F1 Q,G). The optimization problem (13) can be
rewritten as

min
Q>0,G

γ,

s.t. (a)

[
γ xT

i
xi Q

]
≥ 0, i = 1, 2, . . . , l,

(b) Q(A−B F)T+(A−B F)Q+MT(v, F1 Q,G)BT
1

+ B1 M(v, F1 Q,G) < 0, ∀v∈V, k ∈ {1, gd},
(c)

[
1 gi

gT
i Q

]
≥ 0, i = 1, 2, . . . , nu .

(14)

Note that the AW compensation gains E and Ed

are embedded in B and B1; thus, the optimization (14)
cannot be transformed into LMIs in terms of variables
E, Ed, Q, and G. Denote

P =
[

P1 P12

PT
12 P2

]
, M(v, F1, H) = [M1 M2] (15)

where P1 ∈ R
n p×n p , P12 ∈ R

n p×nc , P2 ∈ R
nc×nc ,M1

∈ R
nu×n p , and M2 ∈ R

nu×nc . Then, the condition (b)
in (13) can be changed to

Σ = He

[
Σ11 Σ12

Σ21 Σ22

]
< 0, ∀v ∈ V , k ∈ {1, gd}

(16)
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where

Σ11 = P1 Ap+P12 BcC p−P12 Ed DcC p+P1 Bpk
h

gd
M1

+ P12(Ed − E + Ek)
h

gd
M1,

Σ12 = P12 Ac − P12 EdCc + P1 Bpk
h

gd
M2

+ P12(Ed − E + Ek)
h

gd
M2,

Σ21 = PT
12 Ap+P2 BcC p−P2 Ed DcC p+PT

12 Bpk
h

gd
M1

+ P2(Ed − E + Ek)
h

gd
M1,

Σ22 = P2 Ac − P2 EdCc + PT
12 Bpk

h

gd
M2

+ P2(Ed − E + Ek)
h

gd
M2.

The inequality above is LMI in P1, E , and Ed. This
indicates that with fixed P12, P2, and H , one can deter-
mine the AW compensation gains E and Ed to make the
region {x p ∈ R

n p | xT
p P1x p ≤ 1} as large as possible.

Based on the above analysis and the iterative algorithm
in [22], we establish the following iterative algorithm.

Algorithm 1 (Iterative algorithm for determining AW
compensation gains E and Ed)

Step 1 For a given reference set χR and E = 0, Ed =
0, solve the optimization problem (14). Denote
the solution as γ0, Q0, and G0. Set χR =
γ

−1/2
0 χR .

Step 2 Set i = 1 and γopt = 1. Set E and Ed with
initial values E0 and E0

d , respectively.
Step 3 Solve the optimization problem (14) for γ, Q,

and G. Denote the solution as γi , Q, and G.
Step 4 Let γopt = γiγopt, χR = γ

−1/2
i χR, P = Q−1,

and H = G Q−1.
Step 5 IF |γi − 1| < δ, a predetermined tolerance,

GOTO Step 7, ELSE GOTO Step 6.
Step 6 Solve the following LMI optimization problem

min
P1>0,E,Ed

γ,

s.t. (a)

[
γ xT

i
xi P−1

]
≥ 0, i = 1, 2, . . . , l,

(b) Σ < 0, ∀v ∈ V , k ∈ {1, gd},
(c)

[
1 hi

hT
i P

]
≥ 0, i = 1, 2, . . . , nu .

(17)

Set the solution as E and Ed, and i = i + 1,
then GOTO Step 3.

Step 7 IF γopt ≤ 1, then α = γ
−1/2
opt and E and Ed

are feasible solutions and STOP, ELSE set E
and Ed with another initial values and GOTO
Step 2.

3.2 Combination of dynamic and static AW

With a static immediate AW compensator and a
dynamic delayed AW compensator, the closed-loop
system depicted in Fig. 1 can be written as{

ẋ = (A − B F)x + B1sat1(F1x)
u = Fx

(18)

where

x =
⎡
⎣ x p

xc

xaw

⎤
⎦ ,

A =
⎡
⎣ Ap 0 0

BcC p Ac Caw

0 0 Aaw

⎤
⎦ , B =

⎡
⎣ 0

−Daw

−Baw

⎤
⎦ ,

B1 =
⎡
⎢⎣

Bpk h
gd

(−E + Ek − Daw)
h
gd

−Baw
h
gd

⎤
⎥⎦ ,

F = [
DcC p Cc 0

]
, F1 = gd

h
F.

Define the ellipsoid Ω(P) = {x ∈ R
n p+nc+naw | xT

Px ≤ 1} and letχR = co{x1, x2, . . . , xl}be a reference
shape set. Here, x1, x2, . . . , xl are some priori given
points in R

n p+nc+naw . Based on Lemma 1, we arrive
at the following optimization problem to enlarge the
estimate of the domain of attraction of the closed-loop
system (18),

max
P>0,H

α,

s.t. (a) αχR ⊂ Ω(P),
(b) (A−B F +B1 M(v, F1, H))T P+P(A−B F

+B1 M(v, F1, H))<0,∀v∈V , k ∈{1, gd},
(c) |hi x | ≤ 1, i = 1, 2, . . . , nu,∀x ∈ Ω(P).

(19)

where hi is the i th row of the matrix H, H ∈
R

nu×(n p+nc+naw).
Define Q = P−1, γ = α−2, and G = H Q. Let the

i th row of G be gi . The optimization problem (19) can
be rewritten as
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min
Q>0,G

γ,

s.t. (a)

[
γ xT

i

xi Q

]
≥ 0, i = 1, 2, . . . , l,

(b) Q(A−B F)T+(A−B F)Q+MT(v, F1 Q,G)BT
1

+B1 M(v, F1 Q,G) < 0, ∀v ∈ V, k ∈ {1, gd},

(c)

[
1 gi

gT
i Q

]
≥ 0, i = 1, 2, . . . , nu .

(20)

Note that the optimization problem above is linear
in terms of variables Q and G. Next, define

P =
⎡
⎢⎣

P1 P12 P13

PT
12 P2 P23

PT
13 PT

23 P3

⎤
⎥⎦ ,

M(v, F1, H) = [M1 M2 M3] (21)

where P1 ∈ R
n p×n p , P12 ∈ R

n p×nc , P13 ∈ R
n p×naw ,

P2 ∈ R
nc×nc , P23 ∈ R

nc×naw , P3 ∈ R
naw×naw ,M1 ∈

R
nu×n p ,M2 ∈ R

nu×nc , and M3 ∈ R
nu×naw . Then, con-

dition (b) in (19) is equivalent to

Θ = He

⎡
⎣Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

⎤
⎦ < 0,

∀v ∈ V , k ∈ {1, gd} (22)

where

Θ11 = P1 Ap + P12 BcC p − P12 Daw DcC p

− P13 Baw DcC p P1 Bpk
h

gd
M1

+ P12(−E + Ek − Daw)
h

gd
M1 − P13 Baw

h

gd
M1,

Θ12 = P12 Ac − P12 DawCc − P13 BawCc P1 Bpk
h

gd
M2

+ P12(−E + Ek − Daw)
h

gd
M2 − P13 Baw

h

gd
M2,

Θ13 = P12Caw + P13 Aaw P1 Bpk
h

gd
M3

P12(−E + Ek − Daw)− P13 Baw
h

gd
M3,

Θ21 = PT
12 Ap + P22 BcC p − P22 Daw DcC p

− P23 Baw DcC p PT
12 Bpk

h

gd
M1

+ P22(−E + Ek − Daw)
h

gd
M1 − P23 Baw

h

gd
M1,

Θ22 = P22 Ac − P22 DawCc − P23 BawCc + PT
12 Bpk

h

gd
M2

+ P22(−E + Ek − Daw)
h

gd
M2 − P23 Baw

h

gd
M2,

Θ23 = P22Caw + P23 Aaw PT
12 Bpk

h

gd
M3

+ P22(−E + Ek − Daw)
h

gd
M3 − P23 Baw

h

gd
M3,

Θ31 = PT
13 + PT

23 BcC p − PT
23 Daw DcC p

− P33 Baw DcC p PT
13 Bpk

h

gd
M1

+ PT
23(−E + Ek − Daw)

h

gd
M1 − P33 Baw

h

gd
M1,

Θ32 = PT
23 Ac − PT

23 DawCc − P33 BawCc PT
13 Bpk

h

gd
M2

+ PT
23(−E + Ek − Daw)

h

gd
M2 P33 Baw

h

gd
M2,

Θ33 = PT
23Caw + P33 Aaw PT

13 Bpk
h

gd
M3

+ PT
23(−E + Ek − Daw)

h

gd
M3 − P33 Baw

h

gd
M3.

The inequality above is linear in terms of variables
P1, E, Aaw, Baw,Caw, and Daw. Thus, we arrive at the
following iterative algorithm to design the static imme-
diate AW compensation gain and the dynamic delayed
AW compensation gains to make the estimate of the
domain of attraction of the closed-loop system (18) as
large as possible.

Algorithm 2 (Iterative algorithm for determining AW
compensation gains E, Aaw, Baw,Caw, and Daw)

Step 1 For a given reference setχR and E = 0, Aaw =
0, Baw = 0,Caw = 0, and Daw = 0, solve the
optimization problem (20). Denote the solution
as γ0, Q0, and G0. Set χR = γ

−1/2
0 χR .

Step 2 Set i = 1 and γopt = 1. Set E, Aaw, Baw,Caw,
and Daw with initial values E0, A0

aw, B0
aw,C0

aw,
and D0

aw, respectively.
Step 3 Solve the optimization problem (20) for γ, Q,

and G. Denote the solution as γi , Q, and G.
Step 4 Let γopt = γiγopt, χR = γ

−1/2
i χR, P = Q−1,

and H = G Q−1.
Step 5 IF |γi − 1| < δ, a predetermined tolerance,

GOTO Step 7, ELSE GOTO Step 6.
Step 6 Solve the following LMI optimization problem
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min
P1>0,E,Aaw,Baw,Caw,Daw

γ,

s.t. (a)

[
γ xT

i
xi P−1

]
≥ 0, i = 1, 2, . . . , l,

(b) Θ < 0, ∀v ∈ V , k ∈ {1, gd},
(c)

[
1 hi

hT
i P

]
≥ 0, i = 1, 2, . . . , nu .

(23)

Set the solution as E, Aaw, Baw,Caw, and Daw,
and i = i + 1, then GOTO Step 3.

Step 7 IF γopt ≤ 1, then α = γ
−1/2
opt and E, Aaw, Baw,

Caw, and Daw are feasible solutions and STOP,
ELSE set E, Aaw, Baw,Caw, and Daw with
another initial values and GOTO Step 2.

Remark 2 For multiple input systems (i.e., nu > 1),
the time-varying gain k(t) and the design variable gd

defined before, respectively, become the following nu×
nu diagonal matrices:

K (t) = diag
{
k1(t), k2(t), . . . , knu (t)

}
,

Gd = diag
{
gd1, gd2 , . . . , gdnu

}
where ki (t) ∈ [gdi , 1]. Here, 0 < gdi < 1, i =
1, 2, . . . , nu , is the design point chosen for the i th actu-
ator. Define

K = {
K (t) = diag

{
k1(t), k2(t), . . . , knu (t)

}
| ki (t) = gdi or 1

}
(24)

Due to linearity, any K (t) can be represented as a linear
combination of extreme values evaluated at the corners
of the parameter hypercube K ,

K (t) =
2nu∑
i=1

αi (t)K
i

(25)

where K
i ∈ K , i = 1, 2, . . . , 2nu , and αi (t) ≥ 0 with∑2nu

i=1 αi (t) = 1. Then, in the optimization problems
established in this paper, we only need to check the

LMIs at the vertices obtained from K (t) (i.e., K
i ∈

K , i = 1, 2, . . . , 2nu ).

Remark 3 Different from [15,16], in which the authors
validated the superiority of the multistage AW scheme
by comparing the tracking performance, the results in
this section allow one to further investigate the possi-
ble benefits of the multistage AW scheme in enlarg-
ing the domain of attraction of the resulting closed-
loop system. On the other hand, since the multistage
AW scheme consists of a traditional AW loop and
a delayed AW loop, the obtained results can be also
readily extended to the traditional AW scheme and the

delayed AW scheme. Let Ed = 0, then Algorithm 1 will
be reduced to the algorithm obtained in [22] which is
for the traditional AW scheme. Let E = 0, then Algo-
rithm 1 will be reduced to the algorithm obtained in
[13] which is for the static delayed AW scheme, and
Algorithm 2 will be reduced to the algorithm obtained
in [25] which is for the dynamic delayed AW scheme.

4 PSO-based parameter selection

It should be pointed out that the multistage AW scheme
can provide better results than the traditional AW
scheme, but strongly depends on the choice of the
design point Gd. However, no systematic method that
determines Gd is available in the literature until now.
On the other hand, it is well recognized that for the non-
linear optimization problems solved by Algorithms 1
and 2, the optimization results depend on the given
initial conditions. In the original paper [22], the initial-
ization was left to be given by trial and error based on
the obtained optimization results. Such a problem also
exists in [23]. In a recent research [24], Li and Lin use
an optimal solution from the work of [19] as the ini-
tialization, but such a selection does not guarantee the
globality of the solution either.

On the other hand, PSO is a population-based global
optimization technique developed by Kennedy and
Eberhart [27]. In PSO, the system is initialized with a
population of random solutions and searches for optima
by updating generations. In recent several years, PSO
has become quite popular in control engineering [28–
32]. As far as our knowledge goes, no work of applying
PSO to anti-windup problems has been reported in the
literature before. In this paper, we use the PSO algo-
rithm to decide the design point Gd and to give the
initialization values of the established iterative algo-
rithms. With the application of PSO algorithm, one can
obtain an optimal selection of the design point Gd and
the initialization values of the iterative algorithms, in a
relatively more systematic way. In addition, the algo-
rithm is easy to be implemented, and its benefits will
grow when the dimension of the problem increases.
For example, for a system with nc = 10 and nu = 10,
there will be 210 elements in Gd, E0, and E0

d (510 ele-
ments in Gd, E0, A0

aw, B0
aw,C0

aw, and D0
aw), and thus, it

is almost impossible to determine these parameters by
trial and error. However, the PSO algorithm is a compu-
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tational intelligence-based technique that is not largely
affected by the size of the optimization problem [33].

In PSO, each particle is treated as a potential solu-
tion of the optimization problem and initialized with
a random position and velocity. Then, all the particles
“fly” in the search space to track the feasible solutions.
During the fly progress, a particle will track two best
positions: One is the best position so far found by the
particle itself, and the other is the best position so far
found by the swarm. The search path is different for
each particle, thus, guarantees that a wide area of the
search space is explored, and increases the chance of
finding the optimal solution. The i th particle in the
swarm updates its velocity and position according to
the following iterative equations:

vk+1
i j = ωvk

i j + c1r1

(
pk

i j − xk
i j

)

+ c2r2

(
pk

gj − xk
i j

)
(26)

xk+1
i j = xk

i j + vk+1
i j (27)

where i = 1, 2, . . . , N , N is the population size, j =
1, 2, . . . , D, D is the dimension of the search space,
k = 1, 2, . . . , kmax, kmax is the maximum iteration, vk

i j

and xk
i j are the velocity and position of j th dimension

of particle i at iteration k, respectively, pk
i j is the best

position of j th dimension found by article i until itera-
tion k, pk

gj is the best position of j th dimension found
by the swarm until iteration k, r1 and r2 are indepen-
dent random numbers between 0 and 1, c1 and c2 are
learning factors, and ω is the inertia weight specify-
ing how much the current velocity will affect the new
velocity vector. The inertia weight ω at iteration k can
be given as [34]

ωk = ωstart − ωstart − ωend

kmax
× k (28)

where ωstart and ωend are the initial value and terminal
value of ω, respectively.

Here, we take the case where the two AW compen-
sators both have static gains as example to demonstrate
the implementation of PSO. As we hope to obtain a
largest domain of attraction, the objective function in
PSO algorithm can be straightforward defined as

J = 1

αopt
(29)

The decision variables are the design point Gd =
diag{gd1, . . . , gdnu

} and the given initial values E0 =

[e0
i j ]nc×nu and E0

d = [e0
d,i j ]nc×nu , and in PSO algo-

rithm, they will be expressed as

X = [
gd1 , . . . , gdnu

, e0
11, . . . , e0

ncnu
, e0

d,11, . . . , e0
d,ncnu

]
(30)

To prevent the values of the obtained AW compensation
gains E and Ed from being too large, we can constrain
E = [ei j ]nc×nu and Ed = [ed,i j ]nc×nu element-by-
element by setting

ϕi j ≤ ei j ≤ ψi j , ϕd,i j ≤ ed,i j ≤ ψd,i j (31)

Accordingly, in the PSO algorithm, the search range
for the design point Gd is set to be gdi ∈ (0 1), i =
1, 2, . . . , nu , and for the AW compensation gains E
and Ed,it is set to be ei j ∈ [ϕi j ψi j ] and ed,i j ∈
[ϕd,i j ψd,i j ], i = 1, 2, . . . , nc, j = 1, 2, . . . , nu ,
respectively.

Thus, the PSO-based iterative algorithm to decide
Gd, E0, and E0

d can be stated as follows:

Algorithm 3 (Iterative algorithm for determining Gd,

E0, and E0
d)

Step 1 Set the swarm population size N , the maximal
search speed Vmax, the maximum search itera-
tion number kmax, the initial and terminal val-
ues of inertia weight ωsatrt and ωend, and the
search range of the decision variables. Initial-
ize the position and velocity of each particle.

Step 2 Set p1
i j = x1

i j and p1
g j = p1

mj , where p1
mj sat-

isfies J (p1
mj ) = min{J (p1

1 j ), . . . , J (p1
N j )}.

Step 3 Set k = k + 1. Update the velocity and the
position of each particle, and the inertia weight
ω according to (26), (27), and (28), respec-
tively. If vk

i j > Vmax, then vk
i j = Vmax. If

vk
i j < −Vmax, then vk

i j = −Vmax. Constrain
the position of each particle in the given search
range.

Step 4 For each particle, calculate the objective func-
tion (29) using Algorithm 1.

Step 5 Update the particle itself best position and the
swarm best position, respectively, according to

pk+1
i j =

{
pk

i j , if J
(

pk
i j

)
≤ J

(
xk+1

i j

)
xk+1

i j , else
(32)

pk+1
g j =

⎧⎪⎪⎨
⎪⎪⎩

pk
gj , if J

(
pk

gj

)
≤ min{

J
(

pk+1
1 j

)
, . . . , J

(
pk+1

N j

)}
,

pk+1
mj , else

(33)
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where pk+1
mj satisfies J (pk+1

mj ) = min{J (pk+1
1 j ), . . . ,

J (pk+1
N j )}.

Step 6 If the number of iteration k reaches the max-
imum value kmax, then GOTO next step, else
GOTO Step 3.

Step 7 The latest swarm best position pkmax
g j is an opti-

mal solution to Gd, E0, and E0
d , and J (pkmax

g j )

is the optimal objective function value.

Remark 4 When applying PSO, several settings must
be taken into account to facilitate the convergence and
avoid fall into local optimal. The search range of the
decision variables is decided by the optimization prob-
lem itself. For example, in this paper, the design point
gdi , i = 1, 2, . . . , nu , is constrained by 0 < gdi < 1,
and the AW compensation gains can be limited by
±100. Vmax is the parameter that limits the velocity of
the particles. If the value of Vmax is too high, the par-
ticles may fly past good solutions. If the value of Vmax

is too small, the particles’ movements are limited and
may not explore sufficiently beyond local solutions. In
general, Vmax is set at 10–20 % of the search range of
the variable on each dimension [35]. The learning fac-
tors are often set to be c1 = c2 = 2. Population sizes of
20–50 are most common. The inertia weight controls
the exploration property of the algorithm: a larger ω
leads to a more global behavior, and a smaller ω results
in facilitating a more local behavior. In general, ωstart

and ωend are set to be 0.9 and 0.4, respectively.

5 Numerical example

We consider here a benchmark example also studied in
[22]. The plant and linear controller matrices are given
by

Ap =
[−0.1 0

0 −0.1

]
, Bp =

[
1.5 4
1.2 3

]
,

C p =
[

1 0
0 1

]
,

Ac =
[

0 0
0 0

]
, Bc =

[−1 0
0 −1

]
,

Cc =
[

0.3333 0
0 −0.1

]
,

Dc =
[−3.333 0

0 1

]
.

We first consider the case that all the AW compen-
sation gains are static. Let χR = [0.6 0.4 0 0]T and
δ = 10−4, and constrain each element of the com-
pensation gains by ±100. Figure 2 demonstrates the
obtained ellipsoids by different settings of the design
point Gd and the initialization E0 and E0

d . We see that
the obtained ellipsoids strongly depend on the given
values of Gd, E0, and E0

d . As there are 10 elements
in these three parameters, it is not easy to find the best
group of Gd, E0, and E0

d that leads to the largest domain
of attraction by a trail and error method.

Then, we use Algorithm 3 to decide Gd, E0, and E0
d .

The settings of PSO algorithm are listed in Table 1. The
search range of gdi , i = 1, 2, is (0, 1). The search range
of e0

i j and e0
d,i j , i = 1, 2, j = 1, 2, is [−100 100].Vmax

is set to be 15 % of the search range. We run Algo-
rithm 3 for 10 times, and the evolution histories of the
objective function are depicted in Fig. 3. Based on the
optimization results, we select

Gd = diag{0.9752, 0.9747},
E0 =

[
70.9697 36.4084
55.8063 65.0102

]
,

E0
d =

[
18.2149 45.6080
18.2149 84.7193

]
,

which, leads to α = 81.9708, and

E =
[

70.3940 83.1007
1.2076 −84.3258

]
,

Ed =
[

83.6765 −83.7532
96.1066 −99.8825

]
,

P1 = 10−3 ×
[

2.8254 2.4486
2.4486 2.6776

]
.

Plotted in Fig. 4 are the obtained ellipsoids, and a
state trajectory that starts from a point on its bound.
Also plotted in the figure in a dotted line is the ellipsoid
obtained in [22]. It can be observed that the multistage
AW scheme achieves a significantly larger domain
of attraction than the traditional AW scheme. System
response corresponding to the trajectory is depicted in
Figs. 5 and 6. As these figures suggest, both the immedi-
ate AW compensator and the delayed AW compensator
are in effect.

We next consider the situation when the delayed
AW compensator has dynamic gains. Also let χR =
[0.6 0.4 0 0]T, δ = 10−4, and constrain each element
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Fig. 2 Ellipsoids with different settings of Gd, E0, and E0
d .

Solid line is with Gd = diag{0.80 0.80}, dotted line is
with Gd = diag{0.90 0.90}, dash-dotted line is with Gd =
diag{0.95 0.95}, and dashed line is with Gd = diag{0.98 0.98}.
a E0 =

[
50 50
50 50

]
, E0

d =
[

10 10
10 10

]
, b E0 =

[
10 10
10 10

]
, E0

d =

[
50 50
50 50

]
, c E0 =

[
20 20
20 20

]
, E0

d =
[

80 80
80 80

]
, d E0 =[

80 80
80 80

]
, E0

d =
[

20 20
20 20

]

Table 1 Settings of PSO algorithm

Population size N Maximal iteration kmax Learning factors c1 and c2 Initial inertia weight ωstart Terminal inertia weight ωend

30 100 2 0.9 0.4
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Fig. 3 Convergence of the objective function for 10 optimiza-
tions
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Fig. 4 Ellipsoids and a trajectory that starts from a point on the
boundary of the larger ellipsoid

of the compensation gains by ±100. Using Algorithm
3, we choose

Gd = diag{0.9979, 0.9968},
E0 =

[−39.9210 61.8891
40.9158 51.4248

]
,

A0
aw =

[−81.3937 97.8870
−83.1400 77.6196

]
,

B0
aw =

[−63.8194 13.8084
83.0660 80.0112

]
,

0 10 20 30 40 50
−10

0

10

20

30

40

Time (sec)

x 1

0 10 20 30 40 50
−10

0

10

20

30

Time (sec)

x 2

Fig. 5 Time history of the plant state

C0
aw =

[
83.1783 −77.0453

−34.1644 72.50488

]
,

D0
aw =

[
99.9305 −98.4908
69.2371 −2.4055

]
,

which, leads to α = 109.4719, and

E =
[

38.1685 23.8691
34.7836 −45.4089

]
,

Aaw =
[−49.6898 −66.3143

18.2308 −53.6246

]
,

Baw =
[

8.0438 −24.0927
98.9166 −61.6883

]
,

Caw =
[−9.4493 51.9200

−99.3915 −49.4815

]
,

Daw =
[−86.1278 86.9735

−98.9582 95.6214

]
,

P1 = 10−3 ×
[

1.6143 −1.4575
−1.4575 1.6822

]
.

The obtained ellipsoid is plotted in Fig. 7. We note
that letting the delayed AW compensator to be dynamic
leads to a larger domain of attraction than that obtained
by two static AW compensators. The dashed curves
in Fig. 7 are the state trajectories with the state initial
conditions on the boundary of the ellipsoid and the con-
troller initial state [xT

c (0) xT
aw(0)]T = [0 0]T. Clearly,

all trajectories converge to the origin.
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Fig. 6 Plant input: solid line is the time history of u, dashed line
is the time history of ud, and dotted line is the time history of û.
a u1, b u2

6 Conclusion

This paper considered the multistage AW design for
linear systems with saturation nonlinearity, with the
objective of enlarging the domain of attraction of the
resulting closed-loop system. Iterative algorithms were
established to obtain the AW compensation gains, and a
PSO-based symmetric method was proposed to decide
the parameters that cannot be easily determined before.
Simulation results confirmed that the multistage AW
scheme has the potential of leading to larger domain
of attraction than the traditional AW scheme, and PSO
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−60

−40

−20
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20

40

60

x
1

x 2

Fig. 7 Ellipsoid and state trajectories

algorithm can be a useful compensatory tuner in mul-
tistage AW design.
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