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Abstract In this study, a shear deformable shell ele-
ment is developed based on the elastic middle surface
approach using the absolute nodal coordinate formula-
tion (ANCF) for the large deformation analysis of thin
to moderately thick shell structures. The bilinear shape
function is used to define the global position vector
in the middle surface and the transverse gradient vec-
tor which defines the orientation and deformation of
the cross section within the element. The plane stress
assumption is used to remedy the Poisson’s thickness
locking exhibited in the ANCF shell element formu-
lated by the continuum mechanics approach, thus the
stress distribution along the shell thickness is assumed
to be constant. The cross-sectional frame is introduced
to define strains of the initially curved shell element
using the elastic middle surface approach. The curva-
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ture thickness and transverse shear lockings are allevi-
ated using the assumed natural strain method, while the
in-plane shear locking is removed using the enhanced
assumed strain method. Several numerical examples
are presented in order to demonstrate the performance
of the shear deformable ANCF shell element based
on the elastic middle surface approach developed in
this study. The developed element is compared with
the continuum mechanics-based ANCF shell element
to shed light on the nature of the thickness locking
exhibited in the bilinear shell element and its locking
remedies.

Keywords Flexible multibody dynamics · Absolute
nodal coordinate formulation · Large deformation ·
Shell element

1 Introduction

The absolute nodal coordinate formulation (ANCF) has
been widely used in the large deformation analysis of
flexible multibody systems [16,38]. This flexible body
formulation uses global position vectors and their gra-
dients as element degrees of freedom [36–38], and it
leads to the constant mass matrix for fully nonlinear
dynamics problems while ensuring the exact model-
ing of rigid body dynamics. The use of three gradi-
ent vectors as degrees of freedom allows for the para-
meterization of both finite rotation and deformation
field of the infinitesimal volume within the element,
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1134 A. I. Valkeapää et al.

and it leads to the general motion description of a
deformable body in the three-dimensional space. This,
however, necessitates introducing high-order polyno-
mials, and the ANCF elements have a large num-
ber of degrees of freedom per node. Furthermore, as
in existing displacement-based finite elements, ANCF
elements suffer from element locking caused by the
inconsistent strain field obtained directly by the dif-
ferentiation of the assumed global displacement field,
exhibiting the lower rate of convergence of numeri-
cal solutions than expected. For this reason, substantial
efforts have been made in addressing the element lock-
ing problems of various types of ANCF elements. It
has been demonstrated that the use of only transverse
gradient nodal vectors allows for defining a consistent
strain field by employing various techniques for the
element locking alleviation [30,31].

Despite the successful development of shear deform-
able ANCF beam elements [30,31], there still exist
open issues regarding the element locking remedies
for shear deformable ANCF plate/shell elements. Var-
ious types of plate/shell elements have been proposed
in the context of the absolute nodal coordinate formu-
lation [9,11,12,21,22,26,28,29,32,33,48]. The fully
parameterized quadrilateral ANCF shell element was
proposed by Mikkola and Shabana [28], in which each
node has the global position vector coordinates and a
set of three gradient vector coordinates. Since the ele-
ment parameterization with the gradient vector coordi-
nates allows for modeling stretches of the cross section
along the gradient vectors, use of lower-order polyno-
mials for displacement field in the transverse direction
leads to the thickness locking [25,27,42]. The plate
element that has only transverse gradient vector coor-
dinates can be developed by removing the two tangen-
tial gradient vectors, allowing for retaining the trans-
verse shear and normal deformation of the cross sec-
tion. The quadrilateral shear deformable ANCF plate
element based on the transverse gradient parameteri-
zation was first proposed by Dmitrochenko et al. using
the selective reduced integration for the in-plane shear
locking and the modified Gaussian integration for the
transverse shear locking [10]. This element was fur-
ther enhanced to the initially curved shell element
with the continuum mechanics approach which allows
for considering various nonlinear material models by
Yamashita et al. [47]. The lockings of the continuum
mechanics-based shear deformable ANCF shell ele-
ment are addressed using the assumed natural strain

(ANS) and enhanced assumed strain (EAS) methods
[47]. In particular, it is demonstrated that the element
exhibits a severe locking problem associated with the
transverse normal strain due to the linear interpola-
tion of the transverse gradient vector in the transverse
direction. While the continuum mechanics-based shear
deformable ANCF shell element is capable of solving a
wide variety of challenging problems that involve non-
linear material models as well as thick shell structures,
the elastic forces can be evaluated efficiently with the
plane stress assumption for thin to moderately thick
shell structures while keeping the same element para-
meterization as shown in the literature [10]. However,
further generalization needs to be made in terms of the
elastic force formulation for an initially curved shell
element and its thickness locking remedies. It is, there-
fore, the objective of this study to generalize the bilinear
shear deformable ANCF plate element to the locking-
free initially curved shell element using the elastic mid-
dle surface approach for the large deformation analy-
sis of thin to moderately thick shell structures. Fur-
thermore, the shear deformable ANCF shell elements
based on the continuum mechanics approach [47] and
the elastic middle surface approach developed in this
study are compared to shed light on the nature of the
thickness locking exhibited in the bilinear ANCF shell
element and its locking remedies. Since the shell ele-
ment has no element discretization in transverse direc-
tion, the thickness lockings are fundamental and crucial
problems of the shear deformable shell element of the
absolute nodal coordinate formulation that need to be
properly addressed. For this reason, this issue is dis-
cussed with particular emphasis on the way the trans-
verse gradient vectors are interpolated in the absolute
nodal coordinate formulation, and it is shown that lock-
ing remedies presented in study allow for developing
the new locking-free 24-DOF shear deformable shell
element.

2 Kinematics of bilinear ancf shell element

As shown in Fig. 1, the shell element of the absolute
nodal coordinate formulation in this study consists of
four nodes. Each node has three position coordinates
and three coordinates associated with the transverse
position vector gradient. The global position vector ri

of a material point xi = [ xi yi zi ]T in element i can
be defined as [47]

123



The use of elastic middle surface approach 1135

Fig. 1 Kinematics of the
bilinear ANCF shell
element
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ri = ri
m(xi , yi ) + zi ∂ri

∂zi
(xi , yi ) (1)

where ri
m(xi , yi ) is the global position vector of the

middle surface of the element, and ∂ri/∂zi is the trans-
verse position vector gradient. The global position field
is interpolated using the following polynomial:

r i = a0 + a1xi + a2 yi + a3xi yi + zi (a4 + a5xi

+a6 yi + a7xi yi ) (2)

from which the global position vector of an arbitrary
material point in the shell element can be defined using
the bilinear shape function matrix Si

m(xi , yi ) as follows
[47]:

ri (xi , yi , zi ) = Si
m(xi , yi )ei

p + zi Si
m(xi , yi )ei

g (3)

where Si
m = [

Si
1I Si

2I Si
3I Si

4I
]
, I is a 3 × 3 identity

matrix; and the vectors ei
p and ei

g are the element nodal
coordinate vectors associated with the global position
and the transverse gradient, respectively. The preceding
equation can be re-expressed in the following simpler
form:

ri (xi , yi , zi ) = Si (xi , yi , zi )ei (4)

where the shape function matrix Si and the element
nodal coordinate vector ei are defined as [47]

Si =
[
Si

m zi Si
m

]
, ei = [(ei

p)
T (ei

g)
T ]T (5)

It is important to notice here that the element parame-
terization and the assumed global displacement field
defined in the ANCF shell element are essentially dif-
ferent from those of the degenerated shell elements [1].

For more details on the difference between the ANCF
and degenerated shell elements, one can refer to the lit-
erature [39], in which a fully parameterized ANCF shell
element [28] is used for comparison. The difference
between the fully parameterized shell element [28] and
the gradient deficient shear deformable bilinear shell
element considered in this study lies in the order of
polynomials introduced to the global position field of
the middle surface. The traverse position gradient vec-
tor is interpolated with the same bilinear polynomial in
the fully parameterized shell element as can be seen by
comparing the Eq. 2 to the following:

r i = a0 + a1xi + a2 yi + a3xi yi + a4(xi )2

+ a5(yi )2 + a6(xi )3 + a7(yi )3 + a8(xi )2 yi

+ a9xi (yi )2 + a10(xi )3 yi + a11xi (yi )3

+ zi
(

a12 + a13xi + a14 yi + a15xi yi
)

(6)

In the fully parameterized shell element, two addi-
tional gradient vectors tangent to the middle surface
are introduced as nodal coordinates, which ensures C1

continuity at the nodal points, while C0 continuity is
fulfilled in the bilinear shell element considered in this
study.

3 Formulation of generalized elastic forces with
elastic middle surface approach

Using the kinematic description introduced for the
shear deformable ANCF shell element, the general-
ized elastic forces are derived in this section. For mod-
eling shell structures with nonlinear material models,
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the general continuum mechanics approach has been
introduced to the bilinear shear deformable ANCF
shell element in the previous study, and it has been
shown that severe thickness locking is exhibited [47].
The plane stress assumption, on the other hand, has
been applied to the same element for modeling thin
to moderately thick plate element in the literature
[10] with the selective reduced integration for the in-
plane shear locking and the modified Gaussian inte-
gration for the transverse shear locking. However, it
is well known that use of one point selective inte-
gration leads to an extra zero energy mode, which is
not desirable for general multibody dynamics applica-
tions. Furthermore, the formulation is restricted to a
flat plate element. For this reason, in this section, the
elastic forces are generalized to those of the initially
curved shell element using the elastic middle surface
approach.

Using the Green–Lagrange strain tensor, the six
strain components in the middle surface of the shell
element i can be defined as follows:

Êi
m(xi , yi , 0) = 1

2

(
(Fi

m)T Fi
m − I

)
(7)

where Fi
m is the global position vector gradient tensor

at a material point in the middle surface of the shell
element i and is given as

Fi
m(xi , yi , 0) = ∂ri

∂Xi
= J̄i

m(Ji
m)−1 (8)

where J̄i
m and Ji

m are covariant base tensors of the mate-
rial point in the middle surface at the deformed and ref-
erence configurations, respectively. These tensors are
defined as

J̄i
m = ∂ri

∂xi

∣
∣∣∣
zi =0

= [
gi

1 gi
2 gi

3

]
(9)

where gi
1 = ∂ri

m/∂xi , gi
2 = ∂ri

m/∂yi , gi
3 =

∂ri/∂zi and

Ji
m = ∂Xi

∂xi

∣∣∣∣
zi =0

= [
Gi

1 Gi
2 Gi

3

]
(10)

where the vector Xi represents the global position vec-
tor of element i at the reference configuration and one
can define Gi

1 = ∂Xi
m/∂xi , Gi

2 = ∂Xi
m/∂yi and

Gi
3 = ∂Xi/∂zi , where Xi

m = Xi (xi , yi , 0) defined in
the middle surface. Substituting Eq. 8 into Eq. 7, one
can obtain [47]

Êi
m(xi , yi , 0) = (Ji

m)−T Ẽi
m(Ji

m)−1 (11)

where

Ẽi
m(xi , yi , 0) = 1

2

(
(J̄i

m)T J̄i
m − (Ji

m)T Ji
m

)
(12)

The Green–Lagrange strains given by Eq. 11 are trans-
formed to those defined with respect to the orthogonal
frame Ai

m defined at the reference configuration as fol-
lows:

Ei
m(xi , yi , 0) = (Bi

m)−T Ẽi
m(Bi

m)−1 ≡ εi
rs,

r, s = x, y, z (13)

where

Bi
m = (Ai

m)T Ji
m ≡ Bi

rs, r, s = 1, 2, 3 (14)

The tensor transformation given by Eq. 13 can be re-
expressed in terms of the engineering strain vector εi

m
and the covariant strain vector ε̃i

m as [47]

εi
m = (Ti

m)−T ε̃i
m (15)

where Ti
m is a 6 by 6 matrix is defined as

Ti
m =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

(Bi
11)

2 (Bi
12)

2 2Bi
11 Bi

12 (Bi
13)

2 2Bi
11 Bi

13 2Bi
12 Bi

13
(Bi

21)
2 (Bi

22)
2 2Bi

21 Bi
22 (Bi

23)
2 2Bi

21 Bi
23 2Bi

22 Bi
23

Bi
11 Bi

21 Bi
12 Bi

22 Bi
11 Bi

22 + Bi
12 Bi

21 Bi
13 Bi

23 Bi
11 Bi

23 + Bi
13 Bi

21 Bi
12 Bi

23 + Bi
13 Bi

22
(Bi

31)
2 (Bi

32)
2 2Bi

31 Bi
32 (Bi

33)
2 2Bi

31 Bi
33 2Bi

32 Bi
33

Bi
11 Bi

31 Bi
12 Bi

32 Bi
11 Bi

32 + Bi
12 Bi

31 Bi
13 Bi

33 Bi
11 Bi

33 + Bi
13 Bi

31 Bi
12 Bi

33 + Bi
13 Bi

32
Bi

21 Bi
31 Bi

22 Bi
32 Bi

21 Bi
32 + Bi

22 Bi
31 Bi

23 Bi
33 Bi

21 Bi
33 + Bi

23 Bi
31 Bi

22 Bi
33 + Bi

23 Bi
32

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(16)

The orthogonal frame Ai
m is defined using the cross-

sectional frame [43]. In the cross-sectional frame, the
unit vector along the Z -axis of the orthogonal frame Ai

m
is parallel to the third covariant base vector Gi

3, thus the
orthogonal frame describes the orientation of the cross
section of the shell. That is, the unit vector ki

s along the
Z -axis of the cross-sectional frame is defined as

ki
s = Gi

3∣∣Gi
3

∣∣ (17)

Two other axes are defined using Gram–Schmidt
orthogonalization procedure as follows:

ji
s = Gi

2 − ((Gi
2)

T ki
s)k

i
s∣∣Gi

2 − ((Gi
2)

T ki
s)ki

s

∣∣ and iis = ji
s × ki

s (18)
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from which, one has

Ai
m = [

iis ji
s ki

s

]
(19)

Since the orthogonal frame Ai
m is defined at the refer-

ence configuration, the orientation matrix is an identity
matrix if the element is initially flat.

Since the six strain components are defined in the
middle surface, the bending and twisting deformations
of the shell element need to be introduced. To this end,
the three curvature components defined with respect to
the orthogonal frame Ai

m are defined as

Ki
m(xi , yi , 0) = (Ci

m)−T K̃i
m(Ci

m)−1 ≡ κ i
rs,

r, s = x, y (20)

where Ci
m is a 2 by 2 matrix that can be extracted from

the matrix Bi
m and is defined by Ci

m ≡ Ci
rs = Bi

rs for
r, s = 1, 2. In the preceding equation, the matrix K̃i

m
is defined as

K̃i
m =

[
κ̃ i

xx − κ̃ i
0xx κ̃ i

xy − κ̃ i
0xy

κ̃ i
xy − κ̃ i

0xy κ̃ i
yy − κ̃ i

0yy

]

(21)

where

κ̃ i
xx =−

(
∂

∂xi

(
∂ri

∂zi

))T ∂ri
m

∂xi , κ̃ i
yy =−

(
∂

∂yi

(
∂ri

∂zi

))T ∂ri
m

∂yi

κ̃ i
xy = 1

2

(
−

(
∂

∂xi

(
∂ri

∂zi

))T ∂ri
m

∂yi −
(

∂
∂yi

(
∂ri

∂zi

))T ∂ri
m

∂xi

)

⎫
⎪⎪⎬

⎪⎪⎭

(22)

and

κ̃ i
0xx=−

(
∂

∂xi

(
∂Xi

∂zi

))T ∂Xi
m

∂xi , κ̃ i
0yy =−

(
∂

∂yi

(
∂Xi

∂zi

))T ∂Xi
m

∂yi

κ̃ i
0xy = 1

2

(
−

(
∂

∂xi

(
∂Xi

∂zi

))T ∂Xi
m

∂yi −
(

∂
∂yi

(
∂Xi

∂zi

))T ∂Xi
m

∂xi

)

⎫
⎪⎪⎬

⎪⎪⎭

(23)

Using Eqs. 15 and 20, the generalized elastic forces
Qi

k for the initially curved shell element can be defined
using the virtual work as follows:

δW i = −hi
∫

(δεi
p)

T Dpε
i
pd Ai

0−hi
∫

(δγi
t )

T Dγ γi
t d Ai

0

− hi
∫

δεi
zz Eεi

zzd Ai
0 −

∫
(δκi )T Dκκi d Ai

0

= (δei )T Qi
k (24)

where dAi
0 is the infinitesimal area of element i in the

reference configuration, and the following engineering
strain and curvature vectors are defined:

εi
p =[εi

xx εi
yy 2εi

xy]T , γi
t = [2εi

xz 2εi
yz]T ,

κi = [κ i
xx κ i

yy 2κ i
xy]T (25)

where εi
p represents the vector of the in-plane strains, γi

t

the vector of transverse shear strains and κi the vector
of curvatures. For a linear Hookean material model in
plane stress condition with constant shell thickness h,
the following matrices of elasticity are defined:

Dp = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤

⎦ ,

Dγ = E

2(1 + ν)

[
cxz 0
0 cyz

]
, Dκ = h3

12
Dp (26)

where E is Young’s modulus; ν Poisson’s ratio; cxz and
cyz the transverse shear strain distribution correction
factors. The integration is performed over the middle
surface of the element, and the stress distribution along
the thickness of the shell is assumed constant in this
model. This assumption can be considered a reason-
able approximation for thin shell structures with linear
Hookean material model. Since the elastic forces are
evaluated only in the middle surface, the total number
of integration points is less than that of the continuum
mechanics-based shell element [47].

4 Element locking and remedies

The bilinear interpolation of the middle surface and
transverse position vector gradient leads to several ele-
ment locking problems. Numerous approaches have
been proposed to remedy the poor elastic energy
description for the displacement-based finite elements
in the past. Reduced integration or selective reduced
integration [20,50] is one of the simplest methods to
improve element performance. However, the rank defi-
ciency may occur if uniform reduced integration is
applied [5,34]. The methods based on incompatible
modes [4,44], Hellinger–Reissner two field principle
[17] and Hu–Washizu three-field principle [19], and
discrete shear gap [7] can be considered as more gen-
eral approaches which do not require special numeri-
cal integration schemes to alleviate the element lock-
ing phenomena. These formulations have been cate-
gorized and reviewed by Yang et al. [49] and locking
remedies by Sze [24]. In this section, remedies for the
element lockings of the bilinear ANCF shell element
based on the elastic middle surface approach are dis-
cussed.
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Pure in-plane bending Element response

Fig. 2 Middle surface of the shell subjected to pure bending (left) depicting expected pure bending without shear strain and element
response (right) depicting artificial shear strain

4.1 In-plane normal/shear locking

The bilinear interpolation of the global position field
in the middle surface is not able to describe pure in-
plane bending without shear strains (see Fig. 2) [8]. An
enhancement of the middle surface strain field leads
to better approximation of shear strain distribution in
the middle surface. Using the enhanced assumed strain
(EAS) approach, the compatible in-plane strains in
the middle surface εic

p obtained by differentiating the
assumed global position vector are modified as follows
[2,40,41]:

εi
p = εic

p + εiEAS
p (27)

where εiEAS
p is the enhanced assumed strain vector

defined by

εiEAS
p (ξi ) = Gi (ξi )αi (28)

In the preceding equation, αi is the vector of internal
parameters that defines the assumed strain field of ele-
ment i , and the matrix Gi (ξi ) is defined as [2,40,41]

Gi (ξi ) =
∣∣Ji

0

∣∣
∣
∣∣Ji (ξi )

∣
∣∣
(Ti

0mp)
−T Ni (ξi ) (29)

where Ji (ξi ) and Ji
0 are, respectively, the position vec-

tor gradient tensor at the reference configuration evalu-
ated at the Gauss integration point ξi and that evaluated
at the center of the element (ξi = 0). Ti

0mp is the 3 by 3
transformation matrix defined by the sub-matrix of the
6 by 6 transformation matrix given by Eq. 16 associated
with the in-plane strain vector εi

p, and this matrix has
to be evaluated at the center of the element [2,40,41].
The explicit form of the transformation matrix is given
as follows:

Ti
mp0 =

⎡

⎣
(Bi

11)
2 (Bi

12)
2 2Bi

11 Bi
12

(Bi
21)

2 (Bi
22)

2 2Bi
21 Bi

22
Bi

11 Bi
21 Bi

12 Bi
22 Bi

11 Bi
22 + Bi

12 Bi
21

⎤

⎦

ξi =0

(30)

where Bi
rs = (Bi

m)rs = ((Ai
m)T Ji

m)rs, r, s = 1, 2 as
defined by Eq. 14. The matrix Ni (ξi ) consists of poly-
nomial terms of the enhanced strain field in parametric
domain. The simplest enhancement which introduces
four internal parameters αi is given as follows:

Ni (ξi ) =
⎡

⎣
ξ i 0 0 0
0 ηi 0 0
0 0 ξ i ηi

⎤

⎦ (31)

The effect of the number of internal parameters on the
elastic force accuracy is discussed in literature [2]. It is
important to notice here that the matrix Ni (ξi ) should
fulfill the following condition
∫

Ni (ξi )dξi = 0 (32)

such that the assumed stress vanishes over the reference
volume of the element, and it passes the patch test [41].

4.2 Transverse shear locking

Finite elements that are not able to describe pure bend-
ing without vanishing transverse shear strains will store
excessive shear strain energy. This makes the ele-
ments especially for thin structures behave stiffer than
expected. The absolute nodal coordinate formulation-
based finite elements are no exception to this rule. The
transverse shear locking can be avoided by the use
of reduced integration. However, in most cases, this
leads to extra zero energy modes [8]. Alternatively, a
more robust remedy without extra zero energy modes is
achieved by using a method of assumed strains which
was originally proposed by MacNeal for small dis-
placement analysis for the tri- and quadrilateral plate
as well as membrane elements [23]. Later, Bathe and
Dvorkin generalized this method for continuum shell
element [13] and for general mixed interpolation of
tensorial components (MITC) shell elements [3]. This
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The use of elastic middle surface approach 1139

method is known as assumed natural strain method
(ANS). In this approach, the covariant strains evalu-
ated at Barlow points are tied to assumed natural strain
interpolation points through the use of Lagrange mul-
tipliers. The Barlow points are unique points where
the strain field terms are exactly correct. These sam-
pling points for different plate elements are presented
in the literature [18]. In the bilinear shell element,
the covariant shear strain γ̃ i

yz for the element i is
zero where the coordinate yi is zero, and the covari-
ant shear strain γ̃ i

xz is zero where the coordinate xi

is zero. The extra zero energy modes can be avoided
by using a linear interpolation for the assumed natural
shear strains which will retain the correct rank of the
stiffness matrix. The linear interpolation requires tying
points that are located at the positions A, B, C and D
as shown in the Fig. 3. The assumed covariant natural
transverse shear strain field can be defined as follows:

γ̃ iANS
xz = 1

2

(
1 − ηi

)
γ̃ iC

xz + 1
2

(
1 + ηi

)
γ̃ i D

xz

γ̃ iANS
yz = 1

2

(
1 − ξ i

)
γ̃ i A

yz + 1
2

(
1 + ξ i

)
γ̃ i B

yz

⎫
⎬

⎭
(33)

where γ̃ iC
xz , γ̃ i D

xz , γ̃ i A
yz and γ̃ i B

yz are the covariant trans-
verse shear strains at the tying points.

4.3 Poisson’s thickness locking

The use of a linear interpolation of the global position
field along the shell thickness leads to thickness lock-
ing in the element. This is called Poisson’s thickness
locking because it is the Poisson’s ratio that introduces
the coupling of the in-plane strains to the transverse
normal strain. In the case of pure bending, the axial
strains due to bending are linearly distributed along the
thickness, and it leads to the linearly varying transverse
normal strain due to the coupling induced by Poisson’s
ratio. However, the use of the linear interpolation along
the thickness leads to constant thickness strains which
make the element behave overly stiff since the thick-
ness strain does not vanish on the neutral axis as shown
in Fig. 4. It is demonstrated in the previous study on
the continuum mechanics-based shear deformable shell
element that use of EAS allows for incorporating the
linearly varying transverse normal strain to alleviate the
Poisson’s thickness locking effectively [45–47]. On the
other hand, due to the plane stress assumption made in
the shell element discussed in this study, the in-plane
strains and the transverse normal strain are decoupled,

thus the Poisson’s thickness locking is not essentially
exhibited. This is one of the most economical ways of
treating the Poisson’s locking for applications where
the plane stress assumption is fulfilled. For thick shell
structures with nonlinear material models, this assump-
tion is no longer valid, and the continuum mechanics
approach needs to be used [47].

4.4 Curvature thickness locking

The transverse gradient vectors can be erroneously
elongated when the shell element is subjected to
bending and twisting deformation. Remedies for the
artificial elongation have been proposed by Gebhard
and Schweizerhof [14]. In the ANCF beam elements
[15,30,31], this artificial thickness strain have been
avoided by using Lobatto numerical integration for
the transverse direction strain components. Lobatto
integration includes the integration interval boundaries
which coincide with nodal points of the ANCF ele-
ments in the parametric domain. Therefore, the use
of Lobatto numerical integration points leads to same
thickness strain field evaluation as what is achieved
by the ANS method. However, ANS method is more
general and has been successfully applied to the shell
element by Betch and Stein [6]. As shown in the Fig. 3,
the covariant transverse normal strains at the four nodal
points are interpolated by the Lagrange polynomial as
follows [6]:

ε̃iANS
zz = SiANS

1 ε̃i1
zz + SiANS

2 ε̃i2
zz + SiANS

3 ε̃i3
zz + SiANS

4 ε̃i4
zz

(34)

where ε̃k
zz indicates the compatible transverse normal

strain at node k and SANS
k is the shape function associ-

ated with it.

4.5 Modified generalized elastic forces

The enhancement of the in-plane strains using the EAS
method as well as the application of the ANS method to
the transverse normal and transverse shear strains leads
to the following modified expression of the virtual work
of the elastic forces:

δW i = −hi
∫

(δεi
p)

T Dp(ε
ic
p + εiEAS

p )d Ai
0

− hi
∫

(δγiANS
t )T Dγ γiANS

t d Ai
0

− hi
∫

δεiANS
zz EεiANS

zz d Ai
0
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Fig. 3 Tying points for the
assumed natural stain
method applied to remedy
transverse shear and
curvature thickness lockings

OO

Y

Z

X

Transverse shear strain tying point 
Through thickness strain tying point 

̃

̃

̃

̃

Pure bending Element response

Fig. 4 Shell subjected to pure bending (left) depicting expected through thickness strain and element response (right) depicting Poisson’s
thickness locking

−
∫

(δκi )T Dκκi d Ai
0

= (δei )T Qi
k (35)

The internal parameters αi introduced for the enhanced
assumed strain are determined iteratively such that the
following condition is fulfilled for each element [41]:

∫

Ai
0

(
∂εiEAS

p

∂αi

)T

Dp(ε
ic
p + εiEAS

p )d Ai
0 = 0,

i = 1, . . . , ne (36)

The equations of motion can be expressed as follows:

Mi ëi = Qi
k(e

i ,αi ) + Qi
e(e

i , ėi , t) (37)

where the vectors Qi
k and Qi

e are, respectively, the ele-
ment elastic and external force vectors; and the matrix
Mi is the constant element mass matrix [47]. The pre-
ceding equations of motion are solved at each time step
together with Eq. 36 to determine the nodal coordinates
and the internal parameters. For details on the solution
procedure, one can refer to the literature [47].

5 Numerical examples

In this section, several numerical examples are pre-
sented in order to demonstrate the use of the shear
deformable ANCF shell element based on the elastic
middle surface approach.

5.1 Cantilevered square plate subjected to distributed
transverse force

In the first example, the basic element performance is
evaluated using linear static problems. As shown in
Fig. 5, a cantilevered plate is subjected to the distrib-
uted transverse load. The length L and width W of
the plate are assumed to be 1.0 and 1.0 m, while the
Young’s modulus E and Poisson’s ratio ν are assumed
to be 2.1 × 1011 Pa and 0.3, respectively. In order to
discuss the effect of the slenderness ratio on the numer-
ical solutions obtained using the moderately thick shell
element developed in this investigation, the following
three scenarios are considered:
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L 

H

W 1.0 mYY 

Z 

X O 

qz

Fig. 5 Cantilevered square plate subject to distributed transverse
force

(A) Thin plate (L/H = 1,000); thickness H =
10−3 m and distributed load qz = 5 × 10−2 N/m

(B) Moderately thick plate (L/H = 100); thick-
ness H = 10−2 m and distributed load qz =
5 × 101 N/m

(C) Thick plate (L/H = 10); thickness H = 10−1 m
and distributed load qz = 5 × 104 N/m

The linear analytical solution of the free-end transverse
deflection based on thin plate theory is given as [35]

(δz)exact = qz L3

3D
(38)

where qz is the distributed transverse load, and D is the
plate stiffness constant defined by D = E H3/12(1 −
ν2). In the preceding three different scenarios, the
distribution loads are chosen such that the transverse
deflections in the analytical solution based on the thin
plate theory become (δz)exact = 8.667 × 10−4 m to
ensure small deformation. The numerical solutions for
the thin, moderately thin and thick plates are summa-
rized in Tables 1, 2 and 3, respectively. The numeri-
cal results of the proposed ANCF shell element based
on the elastic middle surface approach (denoted as
ANCF EMS shell in the tables) are compared with
those obtained using the continuum mechanics-based
ANCF shell element (denoted as ANCF CM shell in
the tables) proposed in the literature [47] and ANSYS
SHELL181 based on the mixed interpolation of ten-
sorial components (MITC) shell element. As observed
from Tables 1 and 2, the numerical results and the rate
of convergence for the three different models are the
same, and the element locking is not exhibited. On the

other hand, numerical results of the continuum mechan-
ics ANCF shell model in the thick shell problem shown
in Table 3 differ from those of the elastic middle surface
shell element and SHELL181. This is attributed to the
fact that the slenderness ratio of the shell is small (i.e.,
the shell is thick), and the plane stress assumption made
in the EMS ANCF shell element and SHELL181 is no
longer valid in this problem. The numerical results of
ANCF CM shell element are compared with those of
the solid shell element in ANSYS (SOLSH190) which
consists of layers of translational nodal coordinates at
the top and bottom surfaces of the element to capture the
thickness deformation of the shell structure in Table 3.
It is observed that the numerical results of ANCF CM
shell element agree well with those of the solid shell
element SOLSH190 which allows for modeling thick
shell structures, while ANCF EMS shell is equivalent
to MITC shear deformable shell element SHELL181
which leads to efficient solutions to moderately thick
shell problems. It is important to notice here that the
number of Gaussian integration points per EMS ele-
ment presented in this study is 4 (2 × 2), while that of
CM element is 8 (2×2×2), which is two times greater
than that of EMS element. This allows the EMS ele-
ment to provide efficient solutions to problems involv-
ing thin to moderately thick shell structures with linear
material models.

5.2 Cantilevered quarter cylinder subjected to
transverse point force

In the next problem, an initially curved shell struc-
ture is considered as discussed in literature [47]. The
radius of curvature and the thickness are, respectively,
assumed to be 1.0 and 0.01 m, while Young’s modulus
and Poisson’s ratio are assumed to be 2.1 × 108 Pa and
0.3, respectively. The vertical point force Fz defined
at the corner of the shell is assumed to be 20 N. As
shown in Fig. 6, the quarter cylinder shell is subjected
to large deformation at the static equilibrium state. To
measure the accuracy, the error is defined by a devia-
tion of the vertical deflection at the force application
point on the plate from that of the reference solution
obtained by ANSYS SHELL181 with 100 × 100 ele-
ments. The numerical convergence of the solution is
presented in Fig. 7. In the moderately thick shell prob-
lems, numerical results obtained by the proposed EMS
ANCF shell element agree well with those of ANCF
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Table 1 Deflection of the
cantilever thin plate
(L/H = 1,000) subjected
to transverse distributed
load with mesh refinement
of n × n = 2m × 2m,

m = 0 . . . 5

Analytical solution =
−8.6667 × 10−4 m based
on thin plate theory

Thin plate ANCF EMS shell (proposed) ANCF CM shell [47] ANSYS SHELL181

1 × 1 −6.5000 × 10−4 −6.5002 × 10−4 −6.5001 × 10−4

2 × 2 −8.1250 × 10−4 −8.1247 × 10−4 −8.1250 × 10−4

4 × 4 −8.5313 × 10−4 −8.5312 × 10−4 −8.5313 × 10−4

8 × 8 −8.6328 × 10−4 −8.6328 × 10−4 −8.6328 × 10−4

16 × 16 −8.6582 × 10−4 −8.6581 × 10−4 −8.6582 × 10−4

32 × 32 −8.6646 × 10−4 −8.6645 × 10−4 −8.6646 × 10−4

64 × 64 −8.6661 × 10−4 −8.6662 × 10−4 −8.6661 × 10−4

Table 2 Deflection of the
cantilever moderately thick
plate (L/H = 100)
subjected to transverse
distributed load with mesh
refinement of n × n =
2m × 2m, m = 0 . . . 5

Analytical solution =
−8.6667 × 10−4 m based
on thin plate theory

Moderately thick ANCF EMS shell (proposed) ANCF CM shell [47] ANSYS SHELL181

1 × 1 −6.5007 × 10−4 −6.5006 × 10−4 −6.5008 × 10−4

2 × 2 −8.1257 × 10−4 −8.1256 × 10−4 −8.1258 × 10−4

4 × 4 −8.5320 × 10−4 −8.5319 × 10−4 −8.5320 × 10−4

8 × 8 −8.6335 × 10−4 −8.6334 × 10−4 −8.6336 × 10−4

16 × 16 −8.6589 × 10−4 −8.6588 × 10−4 −8.6589 × 10−4

32 × 32 −8.6653 × 10−4 −8.6652 × 10−4 −8.6653 × 10−4

64 × 64 −8.6669 × 10−4 −8.6668 × 10−4 −8.6669 × 10−4

Table 3 Deflection of the
cantilever thick plate
(L/H = 10) subjected to
transverse distributed load
with mesh refinement of
n × n = 2m × 2m,

m = 0 . . . 5

Analytical solution =
−8.6667 × 10−4 m based
on thin plate theory

Thick plate ANCF EMS shell
(proposed)

ANCF CM
shell [47]

ANSYS
SHELL181

ANSYS SOLSH190

1 × 1 −6.5743 × 10−4 −6.5619 × 10−4 −6.5743 × 10−4 −6.5620 × 10−4

2 × 2 −8.1993 × 10−4 −8.1869 × 10−4 −8.1993 × 10−4 −8.1869 × 10−4

4 × 4 −8.6055 × 10−4 −8.5931 × 10−4 −8.6055 × 10−4 −8.5932 × 10−4

8 × 8 −8.7071 × 10−4 −8.6947 × 10−4 −8.7071 × 10−4 −8.6947 × 10−4

16 × 16 −8.7325 × 10−4 −8.7201 × 10−4 −8.7325 × 10−4 −8.7201 × 10−4

32 × 32 −8.7388 × 10−4 −8.7264 × 10−4 −8.7388 × 10−4 −8.7265 × 10−4

64 × 64 −8.7404 × 10−4 −8.7280 × 10−4 −8.7404 × 10−4 −8.7280 × 10−4

CM shell, and the linear rate of convergence is ensured,
which implies that the element locking is not exhibited
in the large deformation problem of the initially curved
shell structure.

5.3 Natural frequencies of free interface (FFFF)
square plate

The eigenfrequency analysis of a square plate with
completely free boundaries analyzed in the litera-
ture [35] is discussed. The eigenfrequency analysis

is a simple and effective way to verify that lockings
are removed without leading to spurious zero eigen-
modes. The dimensionless natural frequencies defined
by 
 = ω/ω0 with ω0 = π2

√
D/ρH L4 are used,

where D = E H3/12(1−ν2), ρ, H and L are the plate
stiffness constant, material density, height and length
of the plate, respectively. The first ten nonzero dimen-
sionless natural frequencies are summarized in Table 4.
In all of the cases, six rigid body modes with zero nat-
ural frequencies are obtained in the analysis, and spuri-
ous modes are not exhibited. The numerical results are
compared with the analytical solutions [35]. The pro-
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Fig. 6 Initial and deformed
configurations of
cantilevered quarter
cylinder subjected to a
transverse tip load

Fig. 7 Numerical convergence of the vertical deflection error at
the force application point of the quarter cylinder shell

posed shell element leads to better rate of convergence
in eigenfrequencies in comparison to the higher-order
fully parameterized ANCF element which suffers from
element lockings [26].

5.4 Quarter cylinder pendulum

The nonlinear dynamics of an initially curved shell is
analyzed in the last numerical example to demonstrate
the performance of the ANCF EMS shell element. A
quarter cylinder that has the same dimension as the one

in Sect. 5.2 is used. The total mass, Young’s modulus
and Poisson’s ratio are assumed to be 5 kg, 2.1 × 107

Pa and 0.3, respectively. Newmark-β method is used
for time integration with automatic time stepping, and
an error tolerance of 1E−5 is assumed. One corner
of the quarter cylinder is connected to the ground by
a spherical joint. The global X, Y and Z -positions at
the corner of the shell are shown in Figs. 8, 9 and 10
for different number of elements (16 × 16, 32 × 32
and 64 × 64). The reference solution is obtained using
ANSYS SHELL181 with 100 × 100 elements. It is
observed from these figures that the results obtained
using the ANCF EMS shell element agree well with the
reference solution obtained using ANSYS SHELL181.

6 Summary and conclusions

In this investigation, a shear deformable ANCF shell
element is developed based on the elastic middle sur-
face approach for the large deformation analysis of
thin to moderately thick shell structures. To this end,
the bilinear ANCF plate element is generalized to the
locking-free initially curved shell element using the
elastic middle surface approach. The developed ele-
ment is compared with the continuum mechanics-based
shear deformable ANCF shell element to shed light
on the nature of the thickness locking exhibited in the
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Table 4 First ten
dimensionless
eigenfrequencies
Ω = ω/ω0 with
ω0 = π2

√
D/ρH L4 and

D = E H3/12
(
1 − ν2

)
of

the free (FFFF) square plate
elements and mesh
refinement of n × n =
2m × 2m , m = 0 . . . 4

No. 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 Analytical
solution [35]

1 1.4360 1.4379 1.3990 1.3685 1.3463 1.3646

2 101.7252 2.3478 2.1170 2.0173 1.9813 1.9855

3 101.7288 3.1995 2.7252 2.5265 2.4658 2.4591

4 101.7605 4.0377 3.8008 3.6025 3.5361 3.5261

5 115.9857 4.0377 3.8008 3.6025 3.5361 3.5261

6 115.9857 7.3672 7.3443 6.7028 6.3213 6.1900

7 138.6329 98.8893 8.4368 6.7522 6.3213 6.1900

8 138.6543 98.8898 8.4368 6.7522 6.5046 6.4528

9 141.3197 101.7244 8.6664 7.4742 7.1231 7.0181

10 141.3197 101.7288 10.5056 8.5233 7.9828 7.8191

Fig. 8 Global X -position of quarter-cylindrical shell pendulum

Fig. 9 Global Y -position of quarter-cylindrical shell pendulum

Fig. 10 Global Z -position of quarter-cylindrical shell pendulum

bilinear shell element and its locking remedies. The use
of transverse position vector gradients and its interpo-
lation with low-order polynomials leads to thickness
lockings which makes the element behave overly stiff,
leading to the lower rate of convergence of numerical
solutions. Since the shell element has no element dis-
cretization in transverse direction, the thickness lock-
ings are fundamental and crucial problems of the shear
deformable shell element of the absolute nodal coordi-
nate formulation. The thickness lockings can be cate-
gorized into Poisson’s locking and curvature locking.
Poisson’s locking is caused by the erroneous transverse
normal strain distribution induced by the coupling with
the in-plane strains. While it has been shown that the
enhanced assumed strain is required to incorporate the
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linearly varying transverse normal strain in the con-
tinuum mechanics approach, the Poisson’s locking can
be automatically removed with the use of plane stress
assumption in the elastic middle surface approach for
thin to moderately thick shell structures. The curva-
ture locking, on the other hand, is caused by erroneous
elongation of the transverse gradient vectors when the
shell element is in bending and twisting. This locking
can be alleviated by the assumed natural strain as has
been applied to the continuum mechanics-based shell
element [47]. In this approach, the covariant transverse
normal strains at the four nodal points are interpolated
to better approximate the transverse normal strain dis-
tribution. The developed element leads to an efficient
finite element solution due to no requirement of integra-
tion in the transverse direction in the large deformation
analysis of moderately thick multibody shell structures.
Numerical examples indicate expected linear rate con-
vergence of numerical solutions.
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