
Nonlinear Dyn (2015) 80:1091–1108
DOI 10.1007/s11071-015-1929-0

ORIGINAL PAPER

Effect of multi-phase optimal velocity function on jamming
transition in a lattice hydrodynamic model with passing

Arvind Kumar Gupta · Sapna Sharma ·
Poonam Redhu

Received: 29 May 2014 / Accepted: 14 January 2015 / Published online: 29 January 2015
© Springer Science+Business Media Dordrecht 2015

Abstract In this paper, we study the effect of multi-
phase optimal velocity function on a density differ-
ence lattice model with passing. The effect of reaction
coefficient is examined through linear stability analysis
and shown that it can significantly enlarge the stability
region on the phase diagram for any rate of passing.
Using nonlinear stability analysis, the critical value of
passing constant is obtained and found independent
of reaction coefficient. Below this critical value for
which kink soliton solution of mKdV equation exists.
By varying the density, multiple phase transitions are
analyzed, which highly depend on the sensitivity, reac-
tion coefficient and passing constant. It is observed that
the number of stages in multi-phase transitions closely
related to the number of the turning points in the optimal
velocity function. The theoretical findings are verified
using numerical simulation, which confirm that phase
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diagrams of multi-phase traffic in the case of passing
highly depend on the choice of optimal velocity func-
tion as well as on other parameters such as sensitivity,
reaction coefficient and rate of passing.
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1 Introduction

In recent years, due to rapid increase of automobiles on
the roads, the problem of traffic congestion has attracted
considerable attention of scientists and researchers.
Therefore, a considerable variety of traffic models
[1–14] have been discussed to study the complex phe-
nomena as a typical example of nonequilibrium sta-
tistical physics of self-driven many-particle systems.
Nagatani [15] firstly introduced a lattice hydrodynamic
model in which drivers adjust their velocity according
to the observed headway. Later, many extended ver-
sion of Nagatani’s lattice model have been developed
by considering different factors such as density dif-
ference effect [16], backward effect [17], lateral effect
of the lane width [18], effect of passing rate [19] and
anticipation effect of potential lane changing [20]. Most
of the above-cited models describe some traffic phe-
nomena only on single-lane or two-lane highway. Fur-
thermore, Nagatani also extended his original lattice
model to two-lane traffic system and analyzed the lane-
changing behavior [21]. After that, some improvements
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have been made to validate the model under real traffic
situations, and accordingly, many relatively more rea-
sonable models have been developed. In this direction,
some modifications have also been proposed by con-
sidering optimal current difference [22], density differ-
ence effect [23] and effect of driver’s anticipation [24]
in two-lane system. Recently, Gupta and Redhu [25]
developed a new model by considering driver’s antic-
ipation effect in sensing relative flux (DAESRF) in a
two-lane system.

Generally in all the above models, traffic character-
istics have been studied using linear as well as nonlinear
analysis and the density wave in the congestion region
is defined in terms of mKdV equation. It is shown that
the jamming transition is similar to the conventional
phase transition having two traffic phases and one coex-
isting phase: free flow, homogeneous congested flow
and inhomogeneous flow. However, the fundamental
models fail to validate the empirical evidence [26].

In lattice hydrodynamic models, the neutral stability
curve highly depends on the optimal velocity function
that often chosen as a simple hyperbolic tangent func-
tion of the density, depicting the simple acceleration
of a vehicle. As a result, all the existing models exhibit
the conventional jamming transitions between two traf-
fic phases corresponding to gas, liquid and gas–liquid
transition. In the car-following model, Nagatani [27]
also pointed out that a driver accelerates or deceler-
ates his/her vehicle by the use of the accelerator, gear
lever or brake. As a result, a vehicle’s behavior is more
complex than the simple optimal velocity function. In
this direction, Nagai et al. [28] investigated the effect
of stepwise accelerations on the jamming transition in
the extended car-following model. Li et al. [29] ana-
lyzed the effect of modified multi-phase optimal veloc-
ity function on phase transition in a lattice hydrody-
namic model. But, upto our knowledge, the effect of
multi-phase optimal velocity model has not been stud-
ied in traffic systems with passing. In this paper, from
the viewpoint of lattice hydrodynamic traffic flow, we
firstly extend a more accurate DDLM lattice model
to consider the passing effect and then investigate the
influence of a multi-phase optimal velocity function on
traffic phase transition.

The paper is organized as follows: In the follow-
ing section, a more realistic lattice model considering
the density difference effect between the leading and
the following lattice with passing for a single lane is
proposed. In Sect. 3, the linear stability analysis is per-

formed for the proposed model. Section 4 is devoted
to the nonlinear analysis in which mKdV equation
is derived. Numerical simulations are carried out in
Sect. 5, and finally, conclusions are given in Sect. 6.

2 Proposed model

Nagatani [15] introduced the first lattice hydrodynamic
model by incorporating both the ideas of car-following
models and macroscopic models to analyze the density
wave of traffic flow and is given by

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1) = 0, (1)

∂t (ρ jv j ) = a[ρ0V (ρ j+1) − ρ jv j ], (2)

where j indicates site- j on the one-dimensional lattice;
ρ j and v j , respectively, represent the local density and
velocity at site- j at time t ; ρ0 is the average density;
a(= 1/τ) is the sensitivity of drivers; and V (.) is called
optimal velocity function.

Later, the above model is further modified by Tian
et al. [16] by introducing density difference term in the
evolution equation as follows:

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1) = 0, (3)

∂t (ρ jv j ) = a[ρ0V (ρ j+1)−ρ jv j ]+λ(ρ j − ρ j−1)/ρ0,

(4)

where λ is the reaction coefficient to the density dif-
ference. The stable region of the above density differ-
ence lattice model (DDLM) in the phase diagram was
found larger than that of Nagatani’s model, and vehicle
dynamics also become more realistic than Nagatani’s
model. On the other hand, to make the model more
realistic, Nagatani extended his model to consider the
passing effect in one-dimensional traffic flow. The con-
tinuity equation remains preserved even in the passing
case while the evolution equation is modified by look-
ing at the difference of traffic currents on site- j and
j + 1. When the traffic current on site- j is larger than
the current on site- j + 1, passing occurs and is propor-
tional to the difference between the optimal currents at
site- j and j +1. However, the above-discussed density
difference effect was not considered in the Nagatani’s
model with passing. In view this, we proposed a new
evolution equation with consideration of density differ-
ence effect on one-dimensional traffic flow when pass-
ing is allowed as follows:

123



Effect of multi-phase optimal velocity function 1093

∂t (ρ jv j ) = a[ρ0V (ρ j+1(t)) − ρ jv j (t)]
+ λ(ρ j − ρ j−1)/ρ0

+ aγ
[
ρ0V (ρ j+1(t)) − ρ0V (ρ j+2(t))

]
,

(5)

where γ is a passing constant. By taking the difference
form of Eqs. (3) and (5) and eliminating speed v j , the
evolution equation of density is obtained as

∂2
t ρ j (t) + a∂tρ j (t) + aρ2

0

[
V (ρ j+1(t)) − V (ρ j (t))

]

−λ�2ρ j−1(t) + aγρ2
0 [2V (ρ j+1(t)) − V (ρ j+2(t))

−V (ρ j (t))] = 0, (6)

where �ρ j (t) = ρ j+1(t) − ρ j (t), V ′(ρ j ) = dV/dρ j .
It is clear from the above Eq. (6) that the density

at any site not only depends on forward and backward
lattice but also significantly affected by the choice of
optimal velocity function. In almost all lattice hydro-
dynamic models, the following conventional two-phase
optimal velocity function depicting the simple acceler-
ation of a vehicle is adopted as

V (ρ) = Vmax

2

[
tanh

(
1

ρ
− 1

ρc

)
+ tanh

(
1

ρc

)]
, (7)

where, Vmax and ρc denote the maximal velocity and
the safety critical density, respectively. This optimal
velocity function is monotonically decreasing and has
an upper bound and an inflection point at ρ = ρc = ρ0.
The above optimal velocity function is able to explain
the simple jamming transitions among the free traffic,
inhomogeneous traffic and congested traffic. However,
real traffic flow shows very complex traffic behavior
than that of two-phase traffic. Moreover, a driver accel-
erates or decelerates his/her vehicle by the use of the
accelerator, gear lever or brake, which leads to a more
complex vehicle’s behavior than the simple optimal
velocity function. In this direction, Nagai et al. [28]
also investigated the effect of stepwise accelerations by
choosing multi-phase optimal velocity function on the
jamming transition in a car-following model. The fol-
lowing two-stage (three-phase) optimal velocity model
is proposed:

V (ρ) = Vmax

4

i=2∑

i=1

[
tanh

(
αi

ρ
− αi

ρci

)
+ tanh

(
αi

ρci

)]
.

(8)

For simplicity, the following parameters are chosen:
α1 = α2 = 2.0, ρc1 = 0.15, and ρc2 = 0.25. Note
that the modified optimal velocity function (8) has two
turning points (inflection points). This is in accordance
with the fact that a driver accelerates or decelerates
his/her vehicle by the use of the accelerator, gear lever
or brake, so the discontinuous accelerations, to some
extent, lead to the occurrence of more than one turning
point in the optimal velocity function.

3 Linear stability analysis

To investigate the effect of density difference on traf-
fic flow when passing is allowed, we conducted lin-
ear stability analysis in this section. The traffic density
and optimal velocity under uniform traffic condition
are taken as ρ0 and V (ρ0), respectively, where ρ0 is a
constant. Hence, the steady-state solution of the homo-
geneous traffic flow is given by

ρ j (t) = ρ0, V (ρ j (t)) = V (ρ0). (9)

Let y j (t) be a small perturbation to the steady-state
density on site- j . Then,

ρ j (t) = ρ0 + y j (t). (10)

Substituting ρ j (t) = ρ0 + y j (t) in Eq. (6), we obtain

∂2
t y j (t) + a∂t y j (t) + aρ2

0 V ′(ρ0)�y j (t)

− λ�2 y j−1(t) − aγρ2
0 V ′(ρ0)�

2 y j (t) = 0, (11)

where �y j (t) = y j+1(t) − y j (t).
Putting y j (t) = exp(ik j + zt) in Eq. (11), we get

z2 + az + aρ2
0 V ′(ρ0)(e

ik − 1) + λ(2 − eik − e−ik)

+ aγρ2
0 V ′(ρ0)(2eik − e2ik − 1) = 0, (12)

where k denotes the phase of the perturbation and i is
an imaginary number. Inserting z = z1(ik)+ z2(ik)2...

into Eq. (12), we obtained the first- and second-order
terms of the coefficient ik and (ik)2, respectively, as

z1 = − ρ2
0 V ′(ρ0), (13)

z2 = − z2
1

a
− ρ2

0 V ′(ρ0)

2
+ λ

a
+ γρ2

0 V ′(ρ0). (14)
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Fig. 1 Phase diagram in parameter space (ρ, a) for a γ = 0.06, and b γ = 0.3, respectively

When z2 < 0, the uniform steady-state flow becomes
unstable for long-wavelength waves. For z2 > 0, the
uniform flow will remain stable. Thus, the neutral sta-
bility curve is given by

a = −2ρ2
0 V ′(ρ0)

1 − 2γ
+ 2λ

ρ2
0 V ′(ρ0)(1 − 2γ )

. (15)

The instability condition for the homogeneous traffic
flow can be described as

a <
2(λ − ρ4

0 V ′2(ρ0))

(1 − 2γ )ρ2
0 V ′(ρ0)

. (16)

When γ = 0, the results of instability condition is
same as in Ref. [16]. Equation (16) clearly shows that
reaction coefficient λ plays an important role in stabiliz-
ing the traffic flow when passing is considered. Curves
in Fig. 1a, b are the neutral stability curves with two
turning points in the phase space (ρ, a) corresponding
to γ = 0.06 and γ = 0.3, respectively, for differ-
ent values of λ. The apex of each curve indicates the
critical points [ρc1, ac(λ)] and [(ρc2 , ac(λ)]. It can be
easily depicted from the figure that the amplitude of
these curves decreases with an increase in λ, which
means that larger value of λ leads to enlargement of
stable region, and hence, the traffic jam is suppressed
efficiently. On comparing Fig. 1a, b, it is found that

the stable region reduces for larger value of the passing
coefficient.

4 Nonlinear stability analysis

In this section, we investigate the evolution characteris-
tics by using the method of long-wavelength expansion
to describing the collective motion on coarse-grained
scales. Assuming, X = ε( j + bt) and T = ε3t as the
slow variables for scaling parameter ε (0 < ε << 1)

near the critical point, where b is a constant to be deter-
mined. Let the density at site- j near the critical point
be

ρ j (t) = ρc + εR(X, T ). (17)

By expanding Eq. (6) to fifth order of ε with the help of
Eq. (17), we obtain the following nonlinear equation:

ε2
[
b + ρ2

c V ′] ∂X R + ε3
[

b2

a
+ ρ2

c V ′

2
(1 − 2γ ) − λ

a

]
∂2

X R

+ ε4
[
∂T R + ρ2

c V ′

6
(1 − 6γ )∂3

X R + ρ2
c V ′′′

6
∂X R3

]

+ ε5
[

2b2

a
∂T ∂X R +

(
ρ2

c V ′

24
− λ

12a
− 7

12
ρ2

c V ′γ
)

∂4
X R

+ ρ2
c V ′′′

12
(1 − 2γ )∂2

X R3
]

= 0, (18)
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Table 1 The coefficients gi of the model

g1 g2 g3

(
1−6γ

6 )(−ρ2
c V ′) ρ2

c V ′′′
6

ρ2
c V ′(1−2γ )

2

g4 g5

b2(1−6γ )(−ρ2
c V ′)

3ac

+ (1−14γ )ρ2
c V ′

24 − λ
12ac

ρ2
c V ′′′
12

(
1 − 2γ − 4b2

ac

)

where V ′ = dV (ρ)
dρ

|ρ=ρc and V ′′′ = d3V (ρ)

dρ3 |ρ=ρc . In the
neighborhood of critical point ac, we define

ac = a(1 + ε2), (19)

and choosing b = −ρ2
c V ′. Eliminating second- and

third-order terms of ε into Eq. (18), we get

ε4(∂T R − g1∂
3
X R + g2∂X R3)

+ ε5(g3∂
2
X R + g4∂

4
X R + g5∂

2
X R3) = 0, (20)

where the coefficients gi (i = 1, 2, . . . , 5) are shown in
Table 1. In order to derive the standard mKdV equation,
we make the following transformations in Eq. (20):

T ′ = g1T, R =
√

g1

g2
R′, (21)

with the existence condition as g1 > 0. After applying
the above transformation, Eq. (20) becomes

∂T R′ − ∂3
X R′ + ∂X R′3 + εM[R′] = 0, (22)

where M[R′] = 1
g1

(
g3∂

2
X R′ + g1g5

g2
∂2

X R′3 + g4∂
4
X R′

)
.

After ignoring the O(ε) terms in Eq. (22), we get stan-
dard mKdV equation whose desired kink soliton solu-
tion is given by

R′
0(X, T ′) = √

c tanh

√
c

2
(X − cT ′). (23)

In order to determine the value of propagation velocity
for the kink–antikink solution, it is necessary to satisfy
the solvability condition:

(R′
0, M[R′

0]) ≡
∫ ∞

−∞
d X R′

0 M[R′
0] = 0, (24)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

γ

Se
ns

iti
vi

ty

Kink jam

Chaotic jam

No jam

λ = 0.4

λ = 0
λ = 0.1

λ = 0.2

λ = 0.3

Fig. 2 Phase diagram in parameter space (γ, a)

with M[R′
0] = M[R′]. By solving Eq. (24), the selected

value of c is

c = 5g2g3

2g2g4 − 3g1g5
. (25)

Hence, the kink–antikink solution is given by

ρ j,m(t) = ρc + ε

√
g1c

g2
tanh

(√
c

2
(X − cg1T )

)
,

(26)

with ε2 = ac
a − 1 and the amplitude A of the solution

is

A =
√

g1

g2
ε2c. (27)

The above kink solution exists only for

0 ≤ γ < 0.1667, (28)

For γ ≥ 0.1667, the mKdV equation (22) cannot be
derived from the above nonlinear analysis. Fig. 2 shows
the phase diagram in parameter space (γ, a) for dif-
ferent values of λ. Curves ac = 2(1 − λ)/(1 − 2γ ),
predicated by the linear stability analysis, represent
the phase boundaries between no jam and kink jam
for γ < 0.1667 and no jam with chaotic jam for
γ ≥ 0.1667. The modified Korteweg de Varies equa-
tion (22) has a kink–antikink soliton solution only for
γ < 0.1667; therefore, there exist only two regions no
jam and kink jam for γ < 0.1667 in the phase plane. It
is also clear from Fig. 2 that kink region reduces with
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Fig. 3 Density profiles at time t = 20,200 s when γ = 0.06 for λ = 0; a a = 1.72, b a = 1.2 and c a = 0.8, respectively

an increase in the value of λ for γ < 0.1667. These
findings are in accordance with the results obtained in
Ref. [25] that traffic jam suppressed efficiently by con-
sidering driver’s anticipation effect. For γ ≥ 0.1667,
based upon the kinds of density wave, the unstable
region is further divided into two subregions: kink
jam and chaotic jam. The boundary between kink and
chaotic jam is the line a = 2(1−λ)/(1−2γ ). It is worth
to mention here that for λ = 0, the results are similar to
those obtained in Ref. [19]. The reaction coefficient λ

also plays an important role when passing rate is high
(γ ≥ 0.1667). The increase in the value of λ enlarges

the free flow region while the chaotic and kink jam
region reduces.

5 Numerical simulation

To check the effect of multi-phase optimal velocity
function on the jamming transition of traffic flow when
passing is allowed and validate linear as well as nonlin-
ear stability analysis, numerical simulation is carried
out for the proposed model under periodic boundary
conditions. We use nonrandom initial conditions and
defined density in terms of a step function as:
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Fig. 4 Density profiles at time t = 20,200 s when γ = 0.06 for λ = 0.2; a a = 1.72, b a = 1.2 and c a = 0.8, respectively

ρ j (1) = ρ j (0) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0; j �= L
2 , L

2 + 1

ρ0 − σ ; j = L
2

ρ0 + σ ; j = L
2 + 1

where σ is the initial disturbance and constant and L is
the total number of sites taken as 100. The value of the
parameters are chosen as : σ = 0.05 and Vmax = 2.0.
From nonlinear stability analysis, it is derived that kink
soliton solution of mKdV equation exists only for 0 ≤
γ < 0.1667. Therefore, we presented the discussion
on results for two different range of γ .
Case 1: 0 ≤ γ < 0.1667

First, we investigate the density profile by varying
initial density after sufficiently long time, namely
2 × 104 s steps for different sets of λ and sensitivity
on traffic system when passing is allowed at a smaller
rate.

If the sensitivity is more than ac(λ), the traffic flow
is stable and density evolves in time to a uniform pro-
file regardless of any disturbance in the initial pro-
file. There does not occur any type of phase transition
in such case for any choice of initial density. When
a < ac(λ), the complex behavior of traffic flow is
observed. Figures 3 and 4 show the density profiles

123



1098 A. K. Gupta et al.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

ρ
j
(t)

J
j(t)

a = 1.72
ρ

0
 = 0.15

ρ
0
 = 0.25

(a)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

ρ
j
(t)

J
j(t)

a = 1.2ρ
0
 = 0.15

ρ
0
 = 0.25

(b)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

ρ
j
(t)

J
j(t)

ρ
0
 = 0.15

ρ
0
 = 0.25

a = 0.8

(c)

Fig. 5 Plot of q j (t) against ρ j (t) when γ = 0.06 for λ = 0; a a = 1.72, b a = 1.2 and c a = 0.8, respectively

for different sensitivities corresponding to two differ-
ent values of λ = 0 and 0.2, respectively, by varying
the initial densities as ρ j (0) = 0.1, 0.15, 0.2, 0.25, and
0.3. At ρ j (0) = 0.1, the stability criterion is satisfied
and the traffic is in stable state (Phase I) exhibiting the
homogeneous free flow. With an increase in the initial
density to ρ j (0) = 0.15, the traffic becomes unstable
representing the coexisting phase of Phases I and II.
The initial disturbances lead to the kink–antikink soli-
ton which propagates in the backward direction. For
an intermediate initial density ρ j (0) = 0.2, the traffic

again becomes homogeneous exhibiting the stable state
(Phase II). Further increase in density leads to the sec-
ond homogeneous coexisting phase of Phases II and III.
At ρ j (0) = 0.3, the traffic again becomes stable and
results in the homogeneous congested state (Phase III).
Here, the phase transitions occur in four stages: For low
density, the dynamic phase transitions occur from free
flow (Phase I) to intermediate homogeneous congested
traffic (Phase II) through inhomogeneous traffic (coex-
istence of Phase I and II). While for the high density,
the phase transitions occur from intermediate homo-
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Fig. 6 Plot of q j (t) against ρ j (t) when γ = 0.06 for λ = 0.2; a a = 1.72, b a = 1.2 and c a = 0.8, respectively

geneous congested traffic (Phase II) to homogeneous
congested traffic (Phase III) through inhomogeneous
traffic (coexistence of Phase II and III). It is worth to
mention that there exist tri-stable states which repre-
sent the novel characteristic of many-particle system.
Here, the traffic dynamics display the characteristics of
three-phase traffic along with two coexisting phases.

It is also clear from the Figs. 3 and 4 that increase in λ

leads to decrease in the amplitude of the density waves
in both the coexisting regions. This verifies the fact that
λ has a stabilizing effect on traffic flow. The effect of
sensitivity on traffic flow for two different values of

λ can also be observed from the Figs. 3a–c and 4a–c.
The amplitude of the density waves increases with a
decrease in the sensitivity for any value of λ. It is to be
noted that in second coexisting region density waves
amplified largely as compared to those occurred in first
coexisting region. In addition, one can observe from the
figure that the amplitude of the density wave in second
coexisting region is always larger than that of in the first
coexisting region for all values of λ and sensitivity. It is
due to the fact that initial small amplitude disturbance
can evolve into congested flow more easily in the high
density region where the traffic flow is more unstable.
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Fig. 7 Plots of flow q(t) versus density ρ(t), when λ = 0, correspond to the panels in Fig. 3, respectively

Figures 5 and 6 show the plot of instant current
J j (t) against instant density ρ j (t). Here, the solid line
represents the multi-phase optimal flow-density curve.
Since, in a homogeneous traffic, all the fundamental
variables are identical, the homogeneous traffic flow
is represented by a single point on the dotted curve,
while both the inhomogeneous traffic states are repre-
sented by a loop (limit cycle) in Figs. 5 and 6. It is due
to the fact that the current oscillates around the mean
value with constant amplitude. The left and right limit
cycles in Figs. 5 and 6 correspond to ρ j (0) = 0.15 and
ρ j (0) = 0.25, respectively. The upper and lower points

of the limit cycles represent the coexisting phases corre-
sponding to the dynamical behavior of vehicles exhibit-
ing the kink–antikink in Figs. 3 and 4. It can also be
deduced from the figure that as the amplitude of den-
sity waves reduces with an increase in sensitivity and
λ, the limit cycles corresponding to both the coexisting
phases shrink leading toward the homogeneous flow.

Now, we analyse the fundamental diagram of traf-
fic flow corresponding to the panel of Figs. 3 and
4. Figures 7 and 8 show the plots of traffic current
against density by averaging the number of vehicles
passing from lattice site j over sufficiently long time,
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Fig. 8 Plots of flow q(t) versus density ρ(t), when λ = 0.2, correspond to the panels in Fig. 4, respectively

namely 15,000–20,000 s. The dotted curve represents
the theoretical fundamental diagram. For a > ac(λ),
the numerical traffic currents completely matches with
the theoretical fundamental curve as the density will
remain homogeneous spatially. For a = 1.72, the simu-
lation results slightly deviates from the theoretical fun-
damental curve in the coexisting regions. This deviation
increases with a decrease in the sensitivity. For a = 1.2,
the numerical traffic current on one hand matches with
the fundamental curve in three different regions repre-
senting the free flow, homogeneous intermediate flow
and the homogeneous congested flow while on the other

hand deviates in two disjoint regions representing the
coexisting phases. This deviation is due to the occur-
rence of traffic jams in these regions. In general, traffic
is classified in to five different states as shown in Figs. 7
and 8. It is to be noted that with decreasing sensitiv-
ity, the deviation from the theoretical curve increases
as more and more stronger traffic jam in the form of
high-amplitude kink–antikink density wave is formed.
Moreover, the traffic current does not decrease highly
with density in the second coexisting region for smaller
values of sensitivity. It is to mention that the devia-
tion reduces with an increase in λ. The region of free
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(a) (b)

(c)

Fig. 9 Density profiles at time t = 20,200 s when γ = 0.3 for λ = 0; a a = 3.5, b a = 2.5 and c a = 2.0, respectively

flow turns wide, and the amplitude of density waves is
weakened with the increase in λ, which means that λ

enhances the stability of traffic flow even in multi-phase
model with passing.
Case 2: γ ≥ 0.1667

We investigate the traffic states by varying the traffic
density and sensitivity after sufficiently long time with
higher rate of passing (γ = 0.3). For a > 5.0, the traf-
fic flow remains stable against any disturbance in the
initial profile. When a < 5.0, traffic shows the com-
plex behavior and dynamical phase transitions occur.

Figs. 9 and 10 depict the density profile for two differ-
ent values of λ = 0 and 0.2, respectively, by varying
the initial density as ρ0 = 0.1, 0.15, 0.2, 0.25, 0.3. It is
clear from the figures that the pattern of density profiles
is different for small values of a as compare to those
for larger value of a. Contrary to the case I, based on
the sensitivity, two different types of phase transitions
occur in four stages. The tri-stable phases, i.e., phase I,
II and III, exist for any value of sensitivity and λ. While
in the unstable region that is represented by the coexist-
ing phase of phases I, II and II, III, the nature of the den-
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(a) (b)

(c)

Fig. 10 Density profiles at time t = 20,200 s when γ = 0.3 for λ = 0.2; a a = 3.5, b a = 2.5 and c a = 2.0, respectively

sity profile depends on the sensitivity. For larger values
of the sensitivity in both the coexisting phase, the den-
sity waves band with one another, break up and prop-
agate in backward direction, resulting in the chaotic
flow. When sensitivity becomes smaller than a critical
value, the unstable traffic flow is represented by kink–
antikink density waves. It is also clear from the Fig. 2
that the critical value of sensitivity decreases with an
increase in λ. Here, the traffic displays characteristics
of three-phase traffic along with two distinct coexisting
phases depending on sensitivity. Parallel to the case I,
λ plays a stabilizing role on the density waves as the

amplitude of the density wave decreases with λ for any
value of sensitivity. It is also clear from the Figs. 9 and
10 that the amplitude of the kink–antikink and chaotic
density waves in the second coexisting region is always
larger than that of in the first coexisting region for any
value of λ and sensitivity.

To further classify traffic states, we draw phase-
space plots of density difference ρ(t)−ρ(t −1) against
ρ(t) for t = 15,000 − 20,000 s, in the inset of Figs. 9
and 10. The pattern in the inset of Fig. 9c represents
the set of dispersed points in the phase-space plot. For
larger values of a, the pattern exhibits the limit cycle
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Fig. 11 Plot of q j (t) against ρ j (t) when γ = 0.3 for λ = 0; a a = 3.5, b a = 2.5 and c a = 2.0, respectively

shown in Figs. 9a and 10a–b. It corresponds to the peri-
odic traffic behavior. As the sensitivity increases, the
pattern exhibits dispersed plots around a closed loop,
which corresponds to the irregular traffic behavior. This
chaotic behavior exhibits the characteristics of chaos.
The points on the right and left ends represent, respec-
tively, the states within the traffic jams and within the
freely moving phase. It is also clear from the Figs. 9
and 10 that the traffic flow becomes chaotic for rel-
atively smaller values of a when λ is large. More-
over, The amplitude of density waves decreases with
an increase in λ in both types of coexisting regions.

From these results, we can conclude that kink as well as
chaotic region exist in the unstable region on the phase
plane which also satisfies theoretical results shown in
Fig. 2.

Now, we analyse the effect of λ and sensitivity on
instant current J j (t) with respect to instant density
ρ j (t). Figs. 11 and 12 show the variation of instant
current J j (t) against instant density ρ j (t) with time
corresponding to the panel of Figs. 9 and 10, respec-
tively. When the sensitivity is smaller than the criti-
cal value, the density waves are of kink–antikink type
and the traffic flow is represented by a limit cycle as
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Fig. 12 Plot of q j (t) against ρ j (t) when γ = 0.3 for λ = 0.2; a a = 3.5, b a = 2.5 and c a = 2.0, respectively

shown in Figs. 11b–c and 12c, where the left and right
loops correspond to ρ j (0) = 0.15 and ρ j (0) = 0.25,
respectively. When the sensitivity becomes larger than
the critical value, the density waves are chaotic in
nature and the traffic flow is represented by dispersed
plots around a closed loop as shown in Figs. 11a and
12a–b. Points in this region represent the coexisting
phases corresponding to the dynamical behavior of
vehicles exhibiting the chaotic wave in Figs. 9 and 10.
It is to be noted that since the amplitude of density
waves in both the coexisting phases reduces with an
increase in sensitivity and λ, the limit cycle and chaotic

region approach to a single point on the fundamental
curve.

Figures 13 and 14 show the plots of traffic current
against density by averaging the number of vehicles
passing from lattice site- j over sufficiently long time,
namely 15,000 − 20,000 s. For a > ac(λ), the numer-
ical traffic current completely matches with the theo-
retical fundamental curve as the density will remain
homogeneous spatially. For a ≤ ac(λ), the numerical
traffic current on one hand matches with the fundamen-
tal curve in three different regions representing the free
flow, homogeneous intermediate flow and the homo-
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Fig. 13 Plots of flow q(t) versus density ρ(t), when λ = 0, correspond to the panels in Fig. 9, respectively

geneous congested flow while on the other hand devi-
ates in two disjoint regions representing the coexisting
phases. In this case, traffic is also classified into five
different states as shown in Figs. 13 and 14. The devia-
tion from the theoretical curve increases with decreas-
ing sensitivity, as more and more stronger traffic jam
in the form of high-amplitude kink–antikink or chaotic
density wave is formed. The deviation reduces with
an increase in λ even in the case of higher rate of
passing.

Therefore, it is reasonable to conclude that the multi-
phase optimal velocity function plays a significant role

in one-dimensional lattice hydrodynamic model with
passing. The results also imply that the reaction coeffi-
cient can stabilize the traffic flow effectively in a multi-
phase lattice hydrodynamic model for all possible rates
of passing.

6 Conclusion

We proposed a new one-dimensional density differ-
ence lattice hydrodynamic model of traffic flow with
passing by incorporating multi-phase optimal veloc-
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Fig. 14 Plots of flow q(t) versus density ρ(t), when λ = 0.2, correspond to the panels in Fig. 10, respectively

ity function. The nature of traffic flow has been ana-
lyzed through linear and nonlinear analysis. The exis-
tence of multi-critical points is shown. Through nonlin-
ear stability analysis, we derived the mKdV equation
to describe the traffic jam near the critical point and
found the condition for which kink soliton solution
of mKdV equation exists. The effect of multi-phase
optimal velocity function with two turning points on
density waves as well as on fundamental diagram with
respect to sensitivity has been discussed for smaller
and larger rate of passing. It is concluded that model

with two turning points displays three-phase traffic and
exhibits multiple phase transitions with increasing den-
sity. Based on the passing rate, the complex behavior
of traffic flow is explained in terms of multiple phase
transitions. We have shown that the reaction coefficient
significantly enhances the stability of traffic flow for
any value of passing constant even in the case of multi-
phase optimal velocity model. The simulation results
are compared and found in good accordance with the
theoretical findings, which verifies that our considera-
tion is reasonable.
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