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Abstract By applying the variational approach, the
analytical expression of dipole breathers is obtained in
nonlinear media with an exponential-decay nonlocal
response. The parameters of the width, the amplitude,
the phase-front curvature, and the phase of the complex
amplitude of the dipole breathers are all given in analyt-
ical expressions. It is found that the input power plays
a key role in the evolution of dipole breathers, whose
magnitude decides the change of the beam width (com-
pressed or broadened) during propagation. The physi-
cal reason for the evolution of dipole breathers is ana-
lyzed in detail. Numerical simulations are also carried
out, and the analytical solutions are in good agreement
with numerical simulations.

Keywords Nonlocal nonlinearity · Variational
approach · Dipole breather · Propagation dynamics

1 Introduction

Nonlinear equations are very interesting because they
can describe some real situations in science and engi-
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neering [1–10]. As a class of solutions of nonlinear
equations, soliton solutions have unique characters and
have been investigated widely. In optics, spatial solitons
are self-trapped optical beams without shape change
which exist in nonlinear media by virtue of the balance
between diffraction and nonlinearity. Some of them
have been realized in experiments and been applied to
optical communications, light-controlled switch, and
so on. The propagation dynamics of optical solitons
are described by the well-known nonlinear Schrödinger
equation (NLSE) [1]. Although NLSE has been studied
extensively in the past several decades, these researches
almost focus on the local nonlinearity. In 1997, Snyder
and Mitchell proposed the nonlocal nonlinear model
and gave the soliton and the breather solutions of the
nonlocal nonlinear Schrödinger equation, i.e., accessi-
ble solitons [3]. The nonlocality allows the refractive
index of a material at a particular point to be related
to the beam intensity over a finite volume surround-
ing that point, which is distinctly different from the
conventional local nonlinearity. Subsequently various
soliton solutions of the nonlocal nonlinear Schrödinger
equation are obtained in theory, such as Gaussian and
higher-order Gaussian solitons [3–7], vortex solitons
[11–14], dark solitons [15,16], dipole solitons [17,18],
surface solitons [19,20], and so on. Their propaga-
tion dynamics is studied deeply, even some have been
observed in experiments [11,16,19].

On the other hand, although some analytical solu-
tions can be obtained by solving nonlinear equa-
tions directly, it is indeed a difficult task. Variational
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1082 Z.-J. Yang et al.

approach is a valid method to solve some nonlinear
equations, and it is introduced into optics firstly by
Anderson [21]. For the nonlocal nonlinear Schrödinger
equation, some soliton solutions are obtained by apply-
ing this method [15,18,20,22,23]. Recently, Aleksić et
al. [24] studied the fundamental solitons in (1 + 2)-
dimensional highly nonlocal nematic liquid crystals
using the variational approach. The (1+1)-dimensional
nematic liquid crystals can be reduced to the nonlin-
ear media with an exponential-decay nonlocal response
phenomenologically [25]. Although many solitons and
breathers have been found in theory and even been
observed in experiments, to the best of our knowl-
edge, almost all previous investigations on solitons and
breathers in nonlinear media with a nondifferentiable
nonlocal response are based on numerical simulations,
and no one clearly gives the analytical expression of
dipole breathers in such media and investigate them
thoroughly. The analytical results can provide more
information and can be applied to investigating the
beam dynamics conveniently. In this paper, the analyti-
cal expression of dipole breathers is obtained in nonlin-
ear media with an exponential-decay nonlocal response
by applying the variational approach. We mainly focus
on the evolution of the width of dipole breathers. Some
simulations are carried out to prove the validity of our
analytical results.

2 Nonlocal nonlinear Schrödinger equation and its
variational equations

The propagation dynamics of optical beams in nonlocal
nonlinear media is governed phenomenologically by
the nonlocal nonlinear Schrödinger equation [1,4,25,
26]

2ik
∂Φ

∂ Z
+ ∂2Φ

∂ X2 + 2k2ηΦ

×
∫ +∞

−∞
Ri (X − X ′)|Φ(X ′, Z)|2dX ′ = 0,

(1)

where Φ(X, Z) is the complex amplitude of paraxial
beams, k is the wave number in the media without non-
linearity, η is a material constant (η > 0 or η < 0
corresponds to a focusing or defocusing material), Z is
the longitudinal coordinate (i.e., the propagation direc-
tion), X and X ′ are the transverse coordinates, and Ri

is the symmetrical real spatial nonlocal response func-

tion of the media. The last term on the left in Eq. (1)
represents the nonlinearity. If Ri = 0, i.e., the last term
on the left in Eq. (1) is ignored, and Eq. (1) reduces
to the paraxial wave equation in free space, which has
been thoroughly investigated in the past decades. If Ri

is a delta function, the above equation degenerates to
the well-known nonlinear Schrödinger equation in the
local nonlinear media.

For the convenience of discussion in the following,
we simplify Eq. (1) using the normalized parameters

z = Z

zR
, (2a)

x = X

w0
, (2b)

φ = kw0
√

ηΦ, (2c)

where w0 is the beam waist width of a Gaussian beam,
zR = kw2

0 is the Rayleigh distance of a Gaussian beam.
As a result, Eq. (1) reduces to

i
∂φ

∂z
+ 1

2

∂2φ

∂z2 +φ

∫ +∞

−∞
R(x − x ′)|φ(x ′, z)|2dx ′ =0,

(3)

where R(x) = w0 Ri (X), and
∫ +∞
−∞ R(x − x ′)|dx ′ =

1. Here, we take the response function as a spatial
exponential-decay nonlocal response, i.e.,

R(x) = 1

2wm
exp

(
− |x |

wm

)
, (4)

where wm represents the characteristic length of the
nonlocality. If wm → 0, R becomes a delta function,
i.e., the local case. If wm → ∞, it represents the case of
strongly nonlocality. If wm ∼ w0, it is the general non-
local case. This exponential-decay nonlocal response
can be encountered in nematic liquid crystals or in dif-
fusion models [25,26].

Equation (3) can be regarded as an Euler–Lagrange
equation which corresponds to the variational problem

δ

∫ +∞

0

∫ +∞

−∞
L

(
φ, φ∗, ∂φ

∂x
,
∂φ∗

∂x
,
∂φ

∂z
,
∂φ∗

∂z

)
dxdz = 0

(5)

with the Lagrangian density given by

L = i

2

(
φ∗ ∂φ

∂z
− φ

∂φ∗

∂z

)
− 1

2

∣∣∣∣∂φ

∂x

∣∣∣∣
2

+ 1

2
|φ|2

∫ +∞

−∞
R(x − x ′)

∣∣φ(x ′)
∣∣2 dx ′. (6)
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Fig. 1 Normalized electronic field distributions of φ(x) with
different beam waists at the initial position. The red solid curve,
the green dashed curve, and the blue dash-dotted curve represent,
respectively, w(0) = 1.0, 1.5, and 2.0. (Color figure online)

Substituting Eq. (6) into Eq. (5), the reduced variational
problem is obtained as follows

δ

∫ +∞

0
[L]dz = 0, (7)

where

[L] =
∫ +∞

−∞
L

(
φ, φ∗, ∂φ

∂x
,
∂φ∗

∂x
,
∂φ

∂z
,
∂φ∗

∂z

)
dx . (8)

We employ the following ansatz as the trial solution
of dipole breathers

φ(x, z)=a(z)x exp

[
− x2

2w(z)2 +ic(z)x2 + iθ(z)

]
,

(9)

where a(z), w(z), c(z), and θ(z) denote the amplitude,
the width, and the phase-front curvature, the phase of
the complex amplitude of the dipole breathers, respec-
tively. They are all allowed to vary with propagation
distance. If the soliton case is considered, a(z) and w(z)
are constants independent of z, c(z) ≡ 0, and θ(z) can
be expressed as θ(z) = βz with β being the prop-
agation constant. Figure 1 shows the electronic field
distributions of φ(x) with different beam waists at the
initial position.

Generally speaking, substituting Eqs. (6) and (9) into
Eq. (8), one can obtain [L], and then follow the common
process of variational approach to get the parameters
a(z), w(z), c(z) and θ(z). Thus, the analytical solution
of dipole breathers can be obtained finally. However,
the analytical expression of [L] cannot be obtained
because of the complication in mathematics, especially

the integration induced by R. For the strongly nonlocal
case, we can expand the response function into power
series at the origin. If it is expanded into the second
order, the response function is expressed as

R(x) 	 1

2wm

(
1 − |x |

wm
+ x2

2w2
m

)
. (10)

Substituting Eqs. (6), (9) and (10) into Eq. (8), one
can obtain the analytical expression of [L],

[L] = −1

4

√
πa2w3

(
3w2 dc

dz
+ 2

dθ

dz

)

− 3

8

√
πa2w(1 + 4c2w4)

+ a4w6

64w3
m

(4πw2
m − 7

√
2πwmw + 6πw2). (11)

The corresponding Euler–Lagrangian equations are
expressed as

∂[L]
∂θ

+ ∂

∂z

(
∂[L]
∂θz

)
= 0, (12)

∂[L]
∂c

+ ∂

∂z

(
∂[L]
∂cz

)
= 0, (13)

∂[L]
∂a

+ ∂

∂z

(
∂[L]
∂az

)
= 0, (14)

∂[L]
∂w

+ ∂

∂z

(
∂[L]
∂wz

)
= 0. (15)

Substituting Eq. (11) into Eqs. (12)–(15), we get

2w
da

dz
+ 3a

dw

dz
= 0, (16)

2w
da

dz
+ a

(
5

dw

dz
− 4cw

)
= 0, (17)

a2w5

w3
m

(4πw2
m − 7

√
2πwmw + 6πw2)

−12
√

π(1 + 4c2w4)

− 8
√

πw2
(

3w2 dc

dz
+ 2

dθ

dz

)
= 0, (18)

− 24
√

πa2w2
mw5 + 49

√
2a2wmw6 − 48

√
πa2w2

+ 24w3
m

(
1 + 20c2w4 + 10w4 dc

dz
+ 4w2 dθ

dz

)
= 0.

(19)
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Based on Eqs. (16), (17), (18) and (19), we obtain

d

dz

(√
π

2
a2w3

)
= 0, (20)

dw

dz
= 2cw, (21)

dθ

dz
= 3

4w3(6
√

2πw − 7w + m)

×
[

5 − 3w3 d2w

dz2 + 6
√

2πw2
(

w3 d2w

dz2 − 3

)

+ 8
√

2πw2
m

(
w3 d2w

dz2 − 1

)]
, (22)

d2w

dz2 = 1

w3 − 7a2w3

24
√

2w2
m

+
√

πa2w4

4w3
m

. (23)

Equation (20) reveals the energy conservation when
the dipole breathers propagate in the media, which can
be explained as follows. The input power of dipole
breathers is P0 = ∫ +∞

−∞ |φ(x, z)|2dx = √
πa2w3/2,

and one can get
√

πa2w3/2 = constant based on Eq.
(20), which indicates the power of dipole breathers keep
invariant during propagation, i.e., the energy conserva-
tion.

In theory, solving Eqs. (20)–(23), one can get the
expressions of a(z), w(z), c(z), and θ(z), and then the
analytical expression of dipole breathers is obtained. In
the following section, Eqs. (20)–(23) are solved and the
evolution of dipole breathers is investigated in detail.

3 Solution of dipole breathers and their
propagation dynamics

We first consider the special case of dw/dz =
d2w/dz2 = 0, i.e., the width of dipole breathers keeps

invariant during propagation, which is the soliton case.
Combining Eqs. (20) and (23), the soliton power is
obtained as follows [18]

Ps = 24
√

πw3
m

w3
0(7

√
2wm − 12

√
πw0)

, (24)

where w0 = w(0) is the beam waist width at the initial
position. The soliton power is much different from the
soliton power of Snyder–Mitchell model or Gaussian
nonlocal response [3–7]. Figure 2 shows the variation
of the soliton power with the beam waist and the charac-
teristic length of the nonlocality. It is found that the soli-
ton power becomes larger and larger with wm increas-
ing or w0 decreasing.

We now focus on the general case, i.e., the breather
case, which is the emphasis of this paper. For this case,
the beam width w(z) varies during propagation, which
is described by Eq. (23). If we assume that w and
z are, respectively, equivalent to the spatial and tem-
poral coordinates of a particle in classical mechanics,
Eq. (23) is equivalent to Newton’s second law for the
motion of an one-dimensional particle with the equiv-
alent mass 1 acted by the equivalent force F , and

F = 1

w3 − 7P0

12
√

2πw2
m

+ P0w

2w3
m

. (25)

Because F is a conservative force, the equivalent poten-
tial V (w) = − ∫

Fdw is obtained as follows

V = 1

2w2 + 7P0w

12
√

2πw2
m

− P0w
2

4w3
m

+ C0, (26)

where C0 is an integral constant, and P0 = ∫ +∞
−∞ |φ(x,

z)|2dx is the input power. If we define the initial con-
dition V (w0) = 0, then

Fig. 2 Variations of the
soliton power with the
nonlocal characteristic
length and the beam waist. a
Variations in Ps with wm ; b
variations in Ps with w0
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Fig. 3 Equivalent potential
V (left column) and
equivalent force F (right
column) for three typical
input powers with
wm = 10, w0 = 1. The
input power is P0 = 0.8Ps
for (a) and (b); P0 = Ps for
(c) and (d); P0 = 1.2Ps for
(e) and (f)
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(f)

C0 = − 1

2w2
0

− 7P0w0

12
√

2πw2
m

+ P0w
2
0

4w3
m

. (27)

Therefore, the equivalent potential takes the form

V = w2
0 − w2

2w2
0w

2
+ 7P0(w − w0)

12
√

2πw2
m

− P0(w
2 − w2

0)

4w3
m

.

(28)

Figure 3 illustrates the equivalent potential V and
the equivalent force F for three typical input powers.
When the input power is equal to the soliton power,
the particle locates at the balance position of V = 0
and F = 0, and the system is situated at a station-
ary state corresponding to the soliton state (see Fig.
3c, d). When the input power is not equal to the

soliton power, the balance between the nonlinearity
and the beam diffraction is destroyed, and the dipole
breathers come into being. If P0 < Ps , the nonlin-
earity is weaker than the diffraction, as a result, the
beam width becomes wide firstly under the competi-
tion of the two effects. When the beam width increases
to wb at the bottom of the potential well, the direction
of the equivalent force reverses, but the beam width
increases continually due to inertia, up to its maximum.
Subsequently, the beam width decreases gradually and
varies periodically (see Fig. 3a, b). If P0 > Ps , the
process is similar except the beam width is compressed
firstly, as the nonlinearity is stronger than the diffraction
(see Fig. 3e, f).

123
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In order to further understand the evolution of the
beam width, we calculate the analytical expression of
the beam width. We expand the equivalent potential
V (w) into the second order with respect to the balance
position wb at the bottom of the potential well,

V (w) 	 V (wb) + V ′(wb)(w − wb)

+1

2
V ′′(wb)(w − wb)

2

= −
(

1

2w2
0

− 1

2w2
b

− P0w
2
0

4w3
m

+ P0w
2
b

4w3
m

+ 7P0w0

12
√

2πw2
m

− 7P0wb

12
√

2πw2
m

)

−
(

1

w3
b

+ P0wb

2w3
m

− 7P0

12
√

2πw2
m

)
(w − wb)

+
(

3

2w4
b

− P0

4w3
m

)
(w − wb)

2, (29)

where V ′ = dV/dw and V ′′ = d2V/dw2. Because the
point of wb is a steady and balance point, one can get
V ′ = 0 and V ′′ > 0. According to V ′ = 0, we obtain

w4
b − 7wm

6
√

2π
w3

b + 2w3
m

P0
= 0. (30)

Equation (30) can be rewritten as a standard quartic
equation

w4
b + aw3

b + bw2
b + cwb + d = 0, (31)

where

a = − 7wm

6
√

2π
,

b = 0,

c = 0,

d = 2w3
m

P0
.

Following the traditional process of solving a quartic
equation, one can get the solution of wb,

wb = −1

2

⎛
⎝a

2
−

√
a2

4
+ t

⎞
⎠ − √

Δ, (32)

where

Δ =
⎛
⎝a

2
−

√
a2

4
− b + t

⎞
⎠

2

− 4

⎛
⎝ t

2
+

√
t2

4
− d

⎞
⎠ ,

t =
⎛
⎝q

2
+

√
q2

4
+ p3

27

⎞
⎠

1
3

+
⎛
⎝q

2
−

√
q2

4
+ p3

27

⎞
⎠

1
3

,

p = ac − 4d,

q = a2d − 4bd + c2.

As we know, a quartic equation has several solutions;
however, it requires that the solution must be a real root
and V ′′ > 0 due to the physical reason. Equation (32)
is the only exact solution satisfying all conditions.

Because the dipole breather is regarded as a particle
with the mass being 1, the total energy of the equiva-
lent particle is E = T + V , where T = (dw/dz)2/2
is the kinetic energy. Under the on-waist incident con-
dition, we have the initial conditions dw/dz|z=0 = 0
and V (w0) = 0. According to E = T + V = 0 at the
initial position and Eq. (28), we obtain the following
differential equation for w(z),(

dw

dz

)2

+ V ′′(wb)[(w − wb)
2 − (w0 − wb)

2] = 0,

(33)

where

V ′′(wb) = 3

w4
b

− P0

2w3
m

.

Solving Eq. (33), we get the analytical expression of
the beam width of dipole breathers,

w(z) = wb + (w0 − wb) cos

(√
3

w4
b

− P0

2w3
m

z

)
.

(34)

Comparing with the breather solutions for Gaussian
response or Snyder–Mitchell model [3–7], the width
variation in dipole breathers in this paper is different,
although they are all periodical. For Gaussian response
or Snyder–Mitchell model, the period of the width vari-
ation is proportional to

√
P0, while the period becomes

more complicated for the exponential-decay response,
and it is proportional to (3/w4

b − P0/2w3
m)1/2. Figure 4

shows the evolutions of the width of dipole breathers
with different input powers during propagation. The
solid curves are plotted using our analytical solution,
and the dashed curves are the results of numerical sim-
ulations directly based on Eq. (3). It can be found
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Dynamics of dipole breathers 1087

Fig. 4 Evolutions of the
width of dipole breathers
with different input powers
during propagation. The
input powers in (a), (b), (c),
and (d) are, respectively,
1.0P0, 1.15P0, 1.5P0, 0.85P0,
and 0.5P0. The red solid
curve and the green dashed
curve represent the
analytical results and the
numerical results,
respectively. The other
parameters are wm = 10
and w0 = 1. (Color figure
online)

z

w
(z

)

0 2 4 6 8 10

0.9

1 (b)

z

w
(z

)

0 2 4 6 8 10
0.5

1

1.5

(a)

z

w
(z

)

0 2 4 6 8 10

0.8

1
(c)

z

w
(z

)

0 2 4 6 8 10

1

1.1

(d)

z

w
(z

)

0 2 4 6 8 10

1

1.5

(e)

that the solitons appear when P0 = Ps , namely the
width keeps invariant during propagation (see Fig. 4a).
When P0 > Ps , the width of dipole breathers decreases
firstly because the high input power leads to a strong
self-focusing. The narrower the width, the stronger
the diffraction. With the width decreasing gradually,
the diffractions become stronger and stronger compar-
ing with the self-focusing induced by the nonlinearity.
As a result, after the width arrives at its minimum, it
increases and varies periodically. The periodical vari-
ation in the width is the homeostasis between the non-
linearity and the diffraction (see Fig. 4b, c). When
P0 < Ps , the evolution of the width is similar to the

case of P0 > Ps , except that the width increases firstly
since the nonlinearity is weaker than the diffraction at
the beginning (see Fig. 4d, e). These results agree with
the results obtained by using the theory of the equiva-
lent potential and the equivalent force.

In addition, we find that the analytical results are in
good agreement with the numerical calculations when
the beam width is much smaller than the characteristic
length of the nonlocality, i.e., under the condition of
the strong nonlocality (see Fig. 4b, c). When the beam
width becomes wider and wm is fixed, the degree of
nonlocality decreases and the analytical results become
somewhat inaccurate (see Fig. 4e).
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Combining Eqs. (20)–(23) and (34), after somewhat
complicated calculations, we get the solutions of a(z),
c(z), and θ(z),

a(z) = 2 4
√

8
√

3wmwm

[cos(βz)(w0 − wb) + wb]3

×
√

β2(w0−wb)[cos(βz)(w0 − wb)+wb]3 − 1

6
√

2π [cos(βz)(w0−wb)+wb] − 7wm
,

(35)

c(z) = β sin(βz)(wb − w0)

2[cos(βz)(w0 − wb) + wb] , (36)

θ(z) =
3arctanh

[√
w0−2wb

w0
tan (βz/2)

]
wb

β[w0(w0 − 2wb)] 3
2

+ 3 sin(βz)(wb − w0)

2βw0(w0 − 2wb)[cos(βz)w0−wb(cos(βz)−1)]

+ 3P0 sin(2βz)(w0 − wb)
2

32βw3
m

+ 3P0 sin(βz)(w0 − wb)
(
8wb − 7

√
2/πwm

)
32βw3

m

+ P0z

32w3
m

(
6w2

0 − 12w0wb + 18w2
b

− 21
√

2/πwbwm + 16w2
m

)
, (37)

where β =
√

3
2w4

b
− P0

4w3
m

and arctanh(·) denotes the

inverse hyperbolic tangent function. Thus, we obtain
the analytical expression of dipole breathers.

Figure 5 gives the evolutions of the phase-front cur-
vature of dipole breathers with different input powers
during propagation. It can be found that when P0 = Ps ,
the curvature equals zero, which means the cophasal
surface is a plane and the breathers become the solitons.
When P0 > Ps (P0 < Ps), the curvature radius is nega-
tive (positive) at the initial point, which represents that
the cophasal surface is concave (convex) and induces
the self-focusing (self-defocusing) of dipole breathers.
So the width decreases (increases) firstly. When the
breather arrives at its minimum (maximum) width, the
sign of the curvature radius reverses; hence, the varia-
tion of the width also reverses.

In the above, the response function is only expanded
into second order. However, when the characteristic
length of the nonlocality keep invariant and the width
of dipole breathers increases (i.e., the degree of non-
locality becomes weaker), the analytical solutions are
invalid gradually (see Figs. 4e and 5e). If we expand
the response function into higher order, the more exact

solutions can be obtained. Of course, more complicated
calculations will be encountered. As an example, we
expand the response function into sixth and tenth order,
i.e.,

R(6)(x) 	 1

2wm

(
1 − |x |

wm
+ x2

2w2
m

− 1

3!
|x |3
w3

m

+ 1

4!
|x |4
w4

m
− 1

5!
|x |5
w5

m
+ 1

6!
|x |6
w6

m

)
, (38)

R(10)(x) 	 1

2wm

(
1 − |x |

wm
+ x2

2w2
m

− 1

3!
|x |3
w3

m

+ 1

4!
|x |4
w4

m
− 1

5!
|x |5
w5

m
+ 1

6!
|x |6
w6

m
− 1

7!
|x |7
w7

m

+ 1

8!
|x |8
w8

m
− 1

9!
|x |9
w9

m
+ 1

10!
|x |10

w10
m

)
. (39)

After tedious calculations, we obtain the soliton power

P(6)
s = 48

√
2πw7

m

w3
0

(28w5
m − 24

√
2πw0w

4
m

+76w2
0w3

m

− 28
√

2πw3
0w

2
m + 52w4

0wm − 13
√

2πw5
0),

(40)

P(10)
s = 80640

√
2πw11

m

w3
0

(47040w9
m

− 40320
√

2πw0w
8
m + 127680w2

0w7
m

− 47040
√

2πw3
0w

6
m + 87360w4

0w
5
m

− 21840
√

2πw5
0w

4
m + 30016w6

0w
3
m

− 5880
√

2πw7
0w

2
m + 6592w8

0wm

− 1085
√

2πw9
0). (41)

P(6)
s is more exact than P(2)

s = Ps , and P(10)
s is more

exact than P(6)
s .

In order to illustrate the improvement of the analyti-
cal soliton powers by expanding the response function
into higher orders, we present the comparison between
the analytical results and the numerical ones in Fig. 6.
One can find that if wm = 10, P(2)

s is valid approx-
imately when w0 < 3, which is the case of strong
nonlocality. However, P(6)

s is valid when w0 < 8, and
P(10)

s is still valid when w0 = 10, which is already the
case of general nonlocality.
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Fig. 5 Evolutions of the
phase-front curvature of
dipole breathers with
different input powers
during propagation. The
parameters are the same as
those in Fig. 4
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Fig. 6 Variations in the soliton power with the beam waist by
expanding the response function into different orders. The trian-
gles denote the numerical results. The parameter wm = 10

4 Conclusions

In conclusion, we have investigated the dipole breathers
in nonlinear media with a spatial exponential-decay
nonlocality. The analytical expression of dipole
breathers is given by using the variational approach.
It is found that the evolution of the width is periodi-
cal and the input power affects the dynamics of dipole
breathers greatly. The magnitude of the input power
decides the change of the beam width (compressed or
broadened). The physical reason for the evolution of
dipole breathers is analyzed in detail. Numerical simu-
lations are also performed, and the results confirm our
analytical solutions.
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