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Abstract This paper investigates the control of
chaotic systems in the presence of unknown system
parameters and external disturbance. We first investi-
gate the control of a class of special chaotic systems
and then discuss the control of general chaotic systems.
Some robust criteria are proposed based on adaptive
control scheme. By introducing proper auxiliary vari-
ables, the stability of the closed-loop system is proved
using Lyapunov stability theory. As an example to illus-
trate the application of the proposed method, the control
of the Rössler chaotic system is also investigated via a
single input. Some numerical simulations are given to
demonstrate the robustness and efficiency of the pro-
posed approach.

Keywords Adaptive control · Unknown parameter ·
External disturbance · Single input

1 Introduction

Chaotic systems occur in many real-word scientific
and engineering problems. Such systems have complex
dynamic behaviors that possess some special features,
such as being extremely sensitive to tiny variations
of initial conditions, having bounded trajectories in
the phase space with a positive leading Lyapunov
exponent, and so on. After the pioneering work of
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Ott et al. [1] and Pecora and Carroll [2], research
efforts have investigated chaos control and chaos syn-
chronization problems in many physical chaotic sys-
tems [1–22]. Nowadays, different techniques and meth-
ods have been proposed to achieve chaos control and
chaos synchronization such as sliding mode control [3],
active control [4], adaptive control [5], feedback con-
trol [6], backstepping method [7], impulsive control
[8], H∞ approach [9]. However, most of the above-
mentioned works on chaos control and synchronization
have focused on chaotic system without model uncer-
tainties and external disturbance. But in practical situa-
tions, some or all of the system parameters are unknown
and even changing from time to time. Moreover, chaotic
systems are unavoidably affected by external distur-
bance. Therefore, the control and synchronization of
chaotic systems in the presence of unknown system
parameters and external disturbance are an important
issue. On the other hand, most of the publications con-
cern on chaos control and synchronization are only
valid for some particular chaotic systems. However,
from the point of practical applications, it is expected
that the control and synchronization scheme can be
used for more chaotic systems.

Moreover, some of the above-mentioned control
methods and many other existing control approaches
need several controllers to realize control or synchro-
nization. From the points of practical applications, it
is well known that the controllers to realize control or
synchronization must be simple, efficient, and easy to
implement. The fewer the number of the designed con-
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trollers, the better the control method. Thus, it is desired
to design a scalar controller to control or synchronize
chaotic systems.

Motivated by the above discussion, the control of
general chaotic systems with unknown system para-
meters and external disturbance is investigated in this
paper. Main innovative contributions of this paper are
itemized as follows: (a) The control of a class of spe-
cial chaotic systems is considered. Some robust cri-
teria are proposed based on adaptive control scheme.
(b) By introducing proper coordinate transformations,
the control of general chaotic systems is studied. A
scalar controller to control general chaotic systems is
presented via adaptive control. (c) As an example to
illustrate the application of the proposed method, the
control of the Rössler chaotic system is also investi-
gated by using a single input.

This paper is organized as follows: In Sect. 2, we
discuss the control of a class of special chaotic sys-
tems. The control of general chaotic systems is inves-
tigated in Sect. 3. Section 4 includes several numerical
examples to demonstrate the effectiveness of the pro-
posed approach; finally, some conclusions are shown
in Sect. 5.

2 The control scheme of a class of special chaotic
systems

In this section, we consider the the control of the fol-
lowing chaotic systems:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,
...

ẋn = f (x)T θ + g(x) + d(t),

(1)

where x = (x1, x2, . . . , xn)T ∈ Rn is the state variable,
f (x) = ( f1, f2, . . . , fm)T ∈ Rm×1 and g(x) ∈ R
are functions of x , θ = (θ1, . . . , θm)T is the unknown
parameter, d(t) is the external disturbance.

Remark 1 It is well known that the general strict-
feedback system is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = g1(x1)x2 + f1(x1),

ẋ2 = g2(x1, x2)x3 + f2(x1, x2),
...

ẋn−1 = gn−1(x1, x2, . . . , xn−1)xn

+ fn−1(x1, x2, . . . , xn−1),

ẋn = fn(x1, x2, . . . , xn),

(2)

where fi , gi (i = 1, 2, . . . , n−1) are smooth functions.
Obviously, system (1) is the special case of (2).

Remark 2 There are many famous chaotic systems
which can be expressed or transformed into the form
(1), such as the Genesio–Tesi system [10], the Duffing
system [11].

The Duffing system and Genesio–Tesi system have
been studied thoroughly in the literatures [11–16].
Chaos synchronization by driving parameter for two
uncoupled identical chaotic double Duffing systems
was presented in [11]. The synchronization or anti-
synchronization of two uncoupled systems were
obtained via replacing two corresponding parameters
of the identical systems by the same function of chaotic
state variables of a third chaotic system. In paper
[12], a new method to control and synchronize chaotic
Genesio system was proposed. A nonlinear feedback
controller was designed to make the controlled sys-
tem be stabilized at origin and two Genesio systems
be synchronized. In paper [13], the authors consid-
ered the stabilization of Genesio–Tesi chaotic sys-
tem. A dynamic controller was proposed via using
the Lyapunov stability theory, and the existence con-
dition of such controllers was derived in terms of lin-
ear matrix inequalities (LMIs). The stabilization and
synchronization of Genesio–Tesi system were inves-
tigated in [14]. A single variable feedback controller
was presented via the well-known LaSalle invariance
principle. Paper [15] concerned with the problem of
synchronization controller design for Genesio–Tesi
chaotic systems with plant uncertainties and dead-
zone input. Paper [16] studied the chaotic dynamics
of fractional-order Genesio–Tesi system. A necessary
condition for the occurrence of chaos was theoretically
obtained. Further, chaos synchronization of fractional-
order Genesio–Tesi system was investigated via two
different control strategies.

Obviously, the above results presented in papers
[11–16] are under the same assumption that all the
system’s parameters are known in advance. It is well
known that in practical situations, the values of para-
meters of chaotic systems is hard to exactly determine
in advance. Moreover, the above results are valid for
the Duffing system or the Genesio–Tesi system but
not for other chaotic systems. In a practical sense, it
is desired that the control and synchronization scheme
can be used for more chaotic systems. Thus, it is easy
to see that compared with those special chaotic sys-
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tems studied in [11–16] systems (1) have more research
values.

In the literatures, the dimensions of most of the
chaotic systems are not greater than 4. Based on this
consideration, in this section, we only discuss the con-
trol of system (1) with n = 2, 3, 4, respectively.
Other chaotic systems with n ≥ 5 may be discussed
in the same way. In the following, we first consider
the control of four-dimensional chaotic system by the
adaptive control approach and then discuss the three-
dimensional and two-dimensional systems.

2.1 The control of four-dimensional systems

The controlled four-dimensional systems are described
as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = f (x)T θ + g(x) + d(t) + u(t),

(3)

where x = (x1, x2, x3, x4)
T ∈ R4 is the state vari-

able, f (x) ∈ Rm×1 and g(x) ∈ R are functions of x ,
θ = (θ1, . . . , θm)T is the unknown parameter, d(t) is
the external disturbance, u(t) is the controller to be
designed.

The control goal considered in this subsection is to
design a adaptive controller u such that lim

t→+∞ xi = 0,

i = 1, 2, 3, 4.

For this end, we introduce the following auxiliary
variables:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z1 = x1,

z2 = x2 + c1z1,

z3 = x3 + c2z2,

z4 = x4 + c3z3,

(4)

where ci > 0, i = 1, 2, 3 are constants and satisfy the
following inequality constraints:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1 − |c2
1−1|
2 − c2

1c2
2 > 0,

c2 − c1 − |c2
1−1|
2 − 1

2 |1 − c2(c2 − c1)| > 0,

c3 − c2 − c2
1c2
2 − 1

2 |1 − c2(c2 − c1)| > 0.

(5)

Remark 3 Inequalities (5) have many feasible solu-
tions, for example, c1 = 1, c2 = 1.5, c3 = 4 is one
of the feasible solutions.

From (4), it is easy to see that limt→+∞ zi = 0
implies that limt→+∞ xi = 0, i = 1, 2, 3, 4. Thus, in
the following, we will design suitable controller u such
that limt→+∞ zi = 0, i = 1, 2, 3, 4.

Throughout this paper, we make the following
assumption.

Assumption 1 The unknown parameter vector θ and
the disturbance d(t) are all bounded, i.e., there exist
constants � and d such that ‖θ‖ ≤ �, |d(t)| ≤ d.

In order to derive our results, we introduce two Lem-
mas which will be used in the proof of Theorem 1.

Lemma 1 δθ (‖θ̂‖)θ̃T θ̂ ≤ �2 − 3
4‖θ̃‖2, where θ̂ is the

estimated value of θ , θ̃ = θ − θ̂ and δθ (y) = δ(
y
�

),

δ(y) =

⎧
⎪⎨

⎪⎩

0, y < 1

y − 1, y ∈ [1, 2]

1, y > 2

Proof By the definition of δθ (y), it is easily to obtain

δθ (‖θ̂‖)θ̃T θ̂ ≤ θ̃T θ̂ = θ̃T (θ − θ̃ )

≤ ‖θ̃‖‖θ‖ − ‖θ̃‖2 ≤ �‖θ̃‖ − ‖θ̃‖2

= �‖θ̃‖ − 1

4
‖θ̃‖2 − 3

4
‖θ̃‖2

= −
(

� − 1

2
‖θ̃‖

)2

+ �2 − 3

4
‖θ̃‖2

≤ �2 − 3

4
‖θ̃‖2.

�	
Lemma 2 δθ (‖θ̂‖)θ̃T θ̂ ≤ 0.

Proof Let us consider the following two cases:

(a) If ‖θ̂‖ ≤ �, then by the definition of δθ (y) it
is easily to see that δθ (‖θ̂‖) = 0. Therefore,
δθ (‖θ̂‖)θ̃T θ̂ = 0.

(b) If ‖θ̂‖ > �, then δθ (‖θ̂‖) > 0. Thus,

δθ (‖θ̂‖)θ̃T θ̂ = δθ (‖θ̂‖)(θ − θ̂ )T θ̂

= δθ (‖θ̂‖)(θT θ̂ − ‖θ̂‖2)

≤ δθ (‖θ̂‖)(‖θ‖‖θ̂‖ − ‖θ̂‖2)

= δθ (‖θ̂‖)‖θ̂‖(‖θ‖ − ‖θ̂‖) < 0.

�	
Hence, in any case δθ (‖θ̂‖)θ̃T θ̂ ≤ 0. This completes
the proof of Lemma 2.
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Theorem 1 Under Assumption 1, if the adaptive con-
trol law is designed by:

u(t) = −g − z3 − c3z4 + c3(c3 − c2)z3

+ c3c2(c2 − c1)z2 + c3c2c2
1z1 − f T θ̂

− sgn(z4)d − c4z4, (6)

and the parameter estimate law is given as:

˙̂
θ = f z4 − δθ (‖θ̂‖)θ̂ , (7)

then lim
t→+∞ xi = 0, i = 1, 2, 3, 4, where c4 > 0, sgn(·)

denotes the Sign function.

Proof It follows from Eq.(4) that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż1 = z2 − c1z1,

ż2 = z3 − (c2 − c1)z2 − c2
1z1,

ż3 = z4−(c3−c2)z3−c2(c2−c1)z2−c2c2
1z1,

ż4 = ẋ4 + c3z4 − c3(c3 − c2)z3

− c3c2(c2 − c1)z2 − c3c2c2
1z1.

(8)

�	

Let us construct a Lyapunov function in the form:

V = 1

2
z2

1 + 1

2
z2

2 + 1

2
z2

3 + 1

2
z2

4 + 1

2
θ̃T θ̃ . (9)

The derivative of V along the trajectory of system (8)
is given by

V̇ = z1 ż1 + z2 ż2 + z3 ż3 + z4 ż4 + θ̃T ˙̃
θ

= z1(z2 − c1z1) + z2[z3 − (c2 − c1)z2 − c2
1z1]

+ z3[z4−(c3−c2)z3−c2(c2−c1)z2−c2c2
1z1]

+ z4[ẋ4 + c3z4 − c3(c3 − c2)z3

− c3c2(c2 − c1)z2 − c3c2c2
1z1] + θ̃T ˙̃

θ

= z1z2−c1z2
1+z2z3−(c2−c1)z

2
2−c2

1z1z2+z3z4

− (c3 − c2)z
2
3 − c2(c2 − c1)z2z3 − c2c2

1z1z3

+ z4[ẋ4 + c3z4 − c3(c3 − c2)z3

− c3c2(c2 − c1)z2 − c3c2c2
1z1] + θ̃T ˙̃

θ

≤ −c1z2
1 − (c2 − c1)z

2
2 − (c3 − c2)z

2
3

+ |c2
1 − 1||z1||z2| + |c2c2

1||z1z3|
+ |1 − c2(c2 − c1)||z2z3| + z4[ f T θ + g

+ d(t) + u(t) + z3 + c3z4

− c3(c3 − c2)z3 − c3c2(c2 − c1)z2 − c3c2c2
1z1]

+ θ̃T ˙̃
θ

Substituting u(t) into the above inequality and noting
that 2|ab| ≤ (a2 + b2), one gets

V̇ ≤ −c1z2
1 − (c2 − c1)z

2
2 − (c3 − c2)z

2
3

+ |c2
1 − 1|

2
(z2

1 + z2
2) + c2

1c2

2
(z2

1 + z2
3)

+ 1

2
|1 − c2(c2 − c1)|(z2

2 + z2
3) − c4z2

4

+ z4[ f T (θ − θ̂ ) + d(t) − sgn(z4)d] + θ̃T ˙̃
θ

= −
[

c1 − |c2
1 − 1|

2
− c2

1c2

2

]

z2
1 − [(c2 − c1)

− |c2
1 − 1|

2
− 1

2
|1 − c2(c2 − c1)|

]

z2
2

−
[

(c3 − c2) − c2
1c2

2
− 1

2
|1 − c2(c2 − c1)|

]

z2
3

− c4z2
4 + z4[ f T (θ − θ̂ )

+ d(t) − sgn(z4)d] + θ̃T ˙̃
θ

= −d1z2
1 − d2z2

2 − d3z2
3 − c4z2

4 + z4[ f T (θ − θ̂ )

+ d(t) − sgn(z4)d] + θ̃T ˙̃
θ,

where d1 = c1 − |c2
1−1|
2 − c2

1c2
2 > 0, d2 = (c2 − c1) −

|c2
1−1|
2 − 1

2 |1 − c2(c2 − c1)| > 0, d3 = (c3 − c2) −
c2

1c2
2 − 1

2 |1 − c2(c2 − c1)| > 0.

Using the estimate law (7), it follows that

V̇ ≤ −d1z2
1 − d2z2

2 − d3z2
3 − c4z2

4 + z4[d(t)

− sgn(z4)d] + δθ (‖θ̂‖)θ̃T θ̂ . (10)

In view of Lemma 1 and note that z4[d(t) −
sgn(z4)d] ≤ 0, we derive

V̇ ≤ −d1z2
1 − d2z2

2 − d3z2
3 − c4z2

4 − 3

4
‖θ̃‖2 + �2

≤ −2 min {d1, d2, d3, c4}
(

1

2
z2

1 + 1

2
z2

2 + 1

2
z2

3

+1

2
z2

4

)

− 3

2
× 1

2
‖θ̃‖2 + �2

= −c0V + d0,

where c0 = min{2 min{d1, d2, d3, c4}, 3
2 }, d0 = �2.

Hence,

V (t) ≤ V (0)e−c0t + d0

c0
(1−e−c0t ) ≤ V (0)e−c0t + d0

c0
.

From the above expression, it is easy to see that
V (t) is uniformly bounded. On the other hand, by using
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Lemma 2 and inequality (10) the following is obtained:

V̇ ≤ −d1z2
1 − d2z2

2 − d3z2
3 − c4z2

4.

It is derived from the above inequality that,

z2
1 ≤ 1

d1
(−V̇ − d2z2

2 − d3z2
3 − c4z2

4) ≤ − V̇

d1
.

Integrating at both sides of the above inequality, from
zero to t , and dividing by t , gives

1

t

∫ t

0
z2

1dt ≤ − V (t) − V (0)

d1t
. (11)

Since V is uniformly bounded, then

lim
t→+∞

V (t) − V (0)

t
= 0.

Taking limits at both sides of inequality (11) we get

lim
t→+∞

1

t

∫ t

0
z2

1dt ≤ 0.

Keep in mind that z2
1 ≥ 0, we have limt→∞ z1 =

0. In the same way, we can show limt→∞ z2 =
limt→∞ z3 = limt→∞ z4 = 0. By using Eq.(4), we
have limt→+∞ xi = 0, i = 1, 2, 3, 4, which ends the
proof of Theorem 1.

Now, let us consider the special case: θ is known in
advance and d(t) = 0. In this case, it is easy to have
the following corollary.

Corollary 1 Suppose θ is known in advance and
d(t) = 0, if the control law is designed by:

u(t) = −g − z3 − c3z4 + c3(c3 − c2)z3

+ c3c2(c2 − c1)z2 + c3c2c2
1z1 − f T θ − c4z4,

(12)

then limt→+∞ xi = 0, i = 1, 2, 3, 4, where c4 > 0,
sgn(·) denotes the Sign function.

2.2 The control of three-dimensional systems

The controlled three-dimensional systems are given as:
⎧
⎪⎨

⎪⎩

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = f (x)T θ + g(x) + d(t) + u(t),

(13)

where x = (x1, x2, x3)
T ∈ R3 is the state variable,

f (x) ∈ Rm×1 and g(x) ∈ R are functions of x ,
θ = (θ1, . . . , θm)T is the unknown parameter, d(t) is

the external disturbance, u(t) is the controller to be
designed.

In order to force the states of system (13) to converge
to zero, the following auxiliary variables is introduced:
⎧
⎪⎨

⎪⎩

z1 = x1,

z2 = x2 + z1,

z3 = x3 + c1z2,

(14)

where c1 > 1 is a constant.
Obviously limt→+∞ zi = 0 means that limt→+∞

xi = 0, i = 1, 2, 3. Therefore, in the following,
we will design appropriate controller u such that
limt→+∞ zi = 0, i = 1, 2, 3. Similar to Theorem 1,
we have Theorem 2.

Theorem 2 Under Assumption 1, if the adaptive con-
trol law is designed as:

u(t) = −c1[z3 − (c1 − 1)z2 − z1] − z2 − c2z3

− f T θ̂ − sgn(z3)d − g, (15)

and the parameter estimate law is given as:

˙̂
θ = f z3 − δθ (‖θ̂‖)θ̂ , (16)

then limt→+∞ xi = 0, i = 1, 2, 3 where c2 > 0,
sgn(·) denotes the Sign function.

Proof In view of Eq.(14), it follows that
⎧
⎪⎨

⎪⎩

ż1 = z2 − z1,

ż2 = z3 − (c1 − 1)z2 − z1,

ż3 = ẋ3 + c1[z3 − (c1 − 1)z2 − z1].
(17)

�	
Choose the following Lyapunov function candidate:

V = 1

2
z2

1 + 1

2
z2

2 + 1

2
z2

3 + 1

2
θ̃T θ̃ .

The derivative of V along the trajectory of (17) is:

V̇ (t) = z1 ż1 + z2 ż2 + z3 ż3 + θ̃T ˙̃
θ

= z1(z2 − z1) + z2[z3 − (c1 − 1)z2 − z1]
+ z3{ẋ3 + c1[z3 − (c1 − 1)z2 − z1]} + θ̃T ˙̃

θ

= z1z2 − z2
1 + z2z3 − (c1 − 1)z2

2 − z1z2

+ z3{ f T θ + g + d(t) + u(t)

+ c1[z3 − (c1 − 1)z2 − z1]} + θ̃T ˙̃
θ

= −z2
1−(c1−1)z2

2+z3{ f T θ+g+d(t)+u(t)

+ c1[z3 − (c1 − 1)z2 − z1] + z2} + θ̃T ˙̃
θ.
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Substituting (15) into the above inequality, one gets

V̇ ≤ −z2
1 − (c1 − 1)z2

2 − c2z2
3 + z3[ f T (θ − θ̂ )

+ d(t) − sgn(z3)d] + θ̃T ˙̃
θ.

The remainder is similar to the proof of Theorem 1 and
omitted here.

Corollary 2 Suppose θ is known in advance and
d(t) = 0, if the control law is designed by:

u(t) = −c1z3 + c1(c1 − 1)z2 + c1z1 − z2

− c2z3 − f T θ − g, (18)

then limt→+∞ xi = 0, i = 1, 2, 3, where c2 > 0,
sgn(·) denotes the Sign function.

2.3 The control of two-dimensional systems

The controlled two-dimensional systems can be des-
cribed as
{

ẋ1 = x2,

ẋ2 = f (x)T θ + g(x) + d(t) + u(t),
(19)

where x = (x1, x2)
T ∈ R2 is the state variable,

f (x) ∈ Rm×1 and g(x) ∈ R are functions of x ,
θ = (θ1, . . . , θm)T is the unknown parameter, d(t) is
the external disturbance, u(t) is the controller.

Follow the same line of Theorem 1, we have the
following auxiliary variables:
{

z1 = x1,

z2 = x2 + z1.
(20)

It is easy to see that limt→+∞ zi = 0 means that
limt→+∞ xi = 0, i = 1, 2. Therefore, in the follow-
ing, we will find appropriate controller u such that
limt→+∞ zi = 0, i = 1, 2.

Theorem 3 Under Assumption 1, if the adaptive con-
trol law is designed by:

u(t) = −(c1 + 1)z2 − f T θ̂ − sgn(z2)d − g, (21)

and the parameter estimate law is given as:

˙̂
θ = f z2 − δθ (‖θ̂‖)θ̂ , (22)

then limt→+∞ x1 = limt→+∞ x2 = 0, where c1 > 0,
sgn(·) denotes the Sign function.

Proof The proof of Theorem 3 is similar to that of
Theorem 1, and we omit it here. �	

3 The control of general chaotic systems

By transforming general chaotic systems into form (1),
the control of general chaotic systems is discussed via
the mentioned method proposed in the previous sec-
tions. In this section, we only discuss the control of
the three-dimensional chaotic systems. As for the other
chaotic systems, their control schemes can be easily
derived in the same way.

Consider the three-dimensional general chaotic sys-
tems which is described as
⎧
⎪⎨

⎪⎩

ẋ1 = f1(x),

ẋ2 = f2(x),

ẋ3 = f3(x)θ + f4(x) + d(t) + u(t),

(23)

where x1, x2, x3 are state variables, x = (x1, x2, x3)
T ,

f1(x) ∈ R, f2(x) ∈ R, f3(x) ∈ Rm×1, f4(x) ∈ R,
θ = (θ1, . . . , θm)T is the unknown parameter, d(t) is
the external disturbance, u(t) is the controller to be
designed.

The main aim of this section is to design proper
controller u such that limt→+∞ x1 = limt→+∞ x2 =
limt→+∞ x3 = 0.

Suppose f1(x) is a twice differentiable function. In
order to use the results obtained in Section 2, we make
the following transformation:

x1 = y1, f1(x) = y2, ḟ1(x) = y3.

System (23) is then turned into
⎧
⎨

⎩

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = g1(x)θ + g2(x) + g3(x, d) + g4(x, u).

(24)

For systems (23) and (24), we make the following
assumptions:

Assumption 2 Suppose limt→+∞ y1 = limt→+∞
y2 = limt→+∞ y3 = 0 implies limt→+∞ x1 =
limt→+∞ x2 = limt→+∞ x3 = 0.

Assumption 3 There exists a constant d such that
|g3(x)d| ≤ d.

The following Theorem ensures that the origin of
system (24) is globally asymptotically stable, which
means that limt→+∞ x1 = limt→+∞ x2 = limt→+∞
x3 = 0.

Theorem 4 Under Assumptions 1–3, if the adaptive
control law is designed as:
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g4(x, u) = −c1[z3 − (c1 − 1)z2 − z1] − z2 − c2z3

− g1(x)T θ̂ − sgn(z3)d − g2(x), (25)

and the parameter estimate law is given as:

˙̂
θ = f z3 − δθ (‖θ̂‖)θ̂ , (26)

then limt→+∞ xi = 0, i = 1, 2, 3 where z1 = y1, z2 =
y2 + z1, z3 = y3 + c1z2, and c1 > 1, c2 > 0.

Proof The proof is straightforward which is omitted
here. �	

In the following, we take the Rössler chaotic system
as an example to show the application of Theorem 4.

The Rössler system is one of the famous chaotic
systems, its dynamic system is [17]:
⎧
⎪⎨

⎪⎩

ż1 = −z2 − z3,

ż2 = z1 + az2,

ż3 = b + z3(z1 − c),

(27)

where z1, z2, z3 are state variables, a, b, c are system’s
parameters. If a = b = 0.2 and c = 5.7 system (27) is
chaotic.

Let x1 = z2, x2 = z1, x3 = z3, Eq. (27) can be
transformed into:
⎧
⎪⎨

⎪⎩

ẋ1 = x2 + ax1,

ẋ2 = −x3 − x1,

ẋ3 = b + x3(x2 − c).

(28)

Suppose parameters b and c are unknown in advance,
and system (28) is affected by external disturbance
d(t). Thus, the controlled system (28) with unknown
parameters and external disturbance is rewritten as:
⎧
⎪⎨

⎪⎩

ẋ1 = x2 + ax1,

ẋ2 = −x3 − x1,

ẋ3 = b + x3(x2 − c) + d(t) + u,

(29)

where u is a controller to be designed.
For the end of designing a scalar controller u such

that limt→+∞ xi = 0, i = 1, 2, 3, we introduce the
following transformation:

x1 = y1, x2 + ax1 = y2, ẏ2 = y3.

By using system (29), it is derived that:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = −b+cx3︸ ︷︷ ︸
f T θ

+(a2−1)(x2+ax1)−x3x2−a(x1+x3)︸ ︷︷ ︸
g

− d(t) − u.

(30)

In order to get further results, we introduce a Lemma
which will be used in the proof of Theorem 5.

Lemma 3 If limt→+∞ y1 = limt→+∞ y2 =
limt→+∞ y3 = 0, then limt→+∞ x1 = limt→+∞ x2 =
limt→+∞ x3 = 0.

Proof By Noting that

x1 = y1, x2 + ax1 = y2,

y3 = ẏ2 = −x3 − x1 + a(x2 + ax1),

we know Lemma 3 is obviously true. �	
According to Lemma 3, it is easy to see that the

control problem of system (29) is equivalent to the
problem of proving limt→+∞ y1 = limt→+∞ y2 =
limt→+∞ y3 = 0.

Using the results obtained in Theorem 4, we have
Theorem 5.

Theorem 5 Under Assumption 1, if the adaptive con-
trol law is designed as:

u(t) = c1[z3 − (c1 − 1)z2 − z1] + z2 + c2z3

+ f T θ̂ + sgn(z3)d + g, (31)

and the parameter estimate law is given as:

˙̂
θ = f z3 − δθ (‖θ̂‖)θ̂ , (32)

then limt→+∞ yi = 0, i = 1, 2, 3 which implies that
limt→+∞ x1 = limt→+∞ x2 = limt→+∞ x3 = 0,

where c1 > 1, c2 > 0 and z1 = y1, z2 = y1 + y2, z3 =
y3 + c1z2, y1 = x1, y2 = x2 + ax1, y3 = −x3 − x1 +
a(x2 + ax1).

Proof The proof is trivial which is omitted here. �	
Remark 4 The control of Rössler system have been
discussed extensively in [18–21]. Note that the con-
trollers presented in [18–21] are all vectors; however,
the controller proposed in this paper is a scalar. From
the points of practical applications it is well known
that the controllers must be simple, efficient, and easy
to implement. The fewer the number of the designed
controllers, the better the control method. Thus, our
controller can be readily applied to real-world situa-
tions. Furthermore, the control schemes proposed in
[18–21] are under the assumption that system’s para-
meters are known exactly and no external disturbance
is affected; however, in this paper, this limitation has
been eliminated.
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Fig. 1 a The chaotic
attractor of system (28).
b Bifurcation diagram for
increasing c with
a = b = 0.2
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Fig. 2 The time response
of states x1, x2, x3
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4 Simulation results

In this section, we take the Rössler as an example to
demonstrate the effectiveness of the proposed design
method. The simulation results are carried out using
the MATLAB software. The fourth-order Runge–Kutta
integration algorithm was performed to solve the dif-
ferential equations.

Suppose parameters b and c are unknown in advance,
and system (28) is affected by external disturbance
d(t), where d(t)=sin(t). We assume a = b = 0.2 and
c = 5.7 such that system (28) is chaotic. The chaotic

attractor and the bifurcation diagram of system (28) are
shown in Fig. (1).

In our simulation, we set c1 = 2, c2 = 1,� =
1, d = 1. The adaptive control law is chosen as:

u(t) = c1[z3 − (c1 − 1)z2 − z1] + z2 + c2z3

+ f T θ̂ + sgn(z3)d + g, (33)

where z1 = x1, z2 = x1 + x2 + 0.2x1, z3 = −x3 −
x1 + 0.2(x2 + 0.2x1) + 2(x1 + x1 + 0.2x1), f T =
(−1, x3), θ̂

T = (b̂, ĉ), d = 1 and g = (0.22 − 1)(x2 +
0.2x1) − x3x2 − 0.2(x1 + x3)
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Fig. 3 The estimate values
of unknown parameters b
and c
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Fig. 4 The time response of controller u

The parameter estimate law is given as:

˙̂
θ = f z3 − δθ (‖θ̂‖)θ̂ . (34)

Based on (33), (34) and according to Theorem 5, we
have limt→+∞ x1 = limt→+∞ x2 = limt→+∞ x3 =
0. Let (x1(0), x2(0), x3(0)) = (1, 2, 3), (b̂(0), ĉ(0)) =
(1, 1), the corresponding simulation results are shown
in Figs. 2, 3 and 4. Figure 2 presents the time response
of the state x1, x2, x3. It clearly appears that after a
short transient time, the chaotic trajectory stabilized at

the origin by the adaptive feedback controllers (33) and
the parameters estimation update law (24) in the pres-
ence of unknown parameters and external disturbance.
The estimate values of unknown parameters b and c
are given in Fig. 3. One can observe that the identi-
fied parameters b̂ and ĉ approach the desired values:
b = 0.2, c = 5.7 in 3 seconds, which means that
unknown parameters b and c can be estimated in a
short time. Fig. 4 depicts the time response of con-
troller u(t). As one can easily see that u(t) oscillates
between 0.8 and −1.2 which implies that zi , i = 1, 2, 3
approach 0 after a short transient time. These simula-
tion results have further illustrated the effectiveness of
the proposed method.

5 Conclusion

This work investigates the control of general chaotic
systems via adaptive controller in the presence of
unknown system parameters and external disturbance.
We first investigate the control of a class of special
chaotic systems and then discuss the control of general
chaotic system. By using the appropriate coordinate
transformation, some control conditions are derived via
the Lyapunov stability theory. In addition, as an exam-
ple to illustrate the application of the proposed method,
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the control of the Rössler chaotic system is also inves-
tigated via a single input. Numerical simulations are
given to show the robustness of the controller against
unknown parameters and noise disturbance.

Acknowledgments This work was jointly supported by the
National Natural Science Foundation of China under Grant
Nos. 11361043 and 61304161; the Natural Science Founda-
tion of Jiangxi Province under Grant No. 20122BAB201005 and
the Scientific and Technological Project Foundation of Jiangxi
Province Education Office under Grant No. GJJ14156.

References

1. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys.
Rev. Lett. 64, 1196–1199 (1990)

2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic sys-
tems. Phys. Rev. Lett. 64, 821–824 (1990)

3. Yang, C.C.: Adaptive nonsingular terminal sliding mode
control for synchronization of identical �6 oscillators. Non-
linear Dyn. 69, 21–33 (2012)

4. Odibat, Z.: A note on phase synchronization in coupled
chaotic fractional order systems. Nonlinear Anal. Real
World Appl. 13, 779–789 (2012)

5. Kuetche Mbe, E.S., Fotsin, H.B., Kengne, J., Woafo, P.:
Parameters estimation based adaptive generalized projective
synchronization (GPS) of chaotic Chua’s circuit with appli-
cation to chaos communication by parametric modulation.
Chaos Solitons Fractals 61, 27–37 (2014)

6. Ding, K., Han, Q.L.: Master–slave synchronization criteria
for horizontal platform systems using time delay feedback
control. J. Sound Vib. 330, 2419–2436 (2011)

7. Luo, R.Z., Wang, Y.L.: Finite-time stochastic combination
synchronization of three different chaotic systems and its
application in secure communication. Chaos 22, 023109
(2012)

8. Yang, X.S., Yang, Z.C., Nie, X.B.: Exponential synchroniza-
tion of discontinuous chaotic systems via delayed impulsive
control and its application to secure communication. Com-
mun. Nonlinear Sci. Numer. Simul. 19, 1529–1543 (2014)

9. Yazdanbakhsh, Omolbanin, Hosseinnia, S., Askari, J.:
Synchronization of unified chaotic system by sliding
mode/mixed H2/H∞ control. Nonlinear Dyn. 67, 1903–
1912 (2012)

10. Genesio, R., Tesi, A.: A harmonic balance methods for the
analysis of chaotic dynamics in nonlinear systems. Auto-
matica 28, 531–548 (1992)

11. Ge, Z.M., Li, C.H., Li, S.Y., Chang, C.M.: Chaos synchro-
nization of double Duffing systems with parameters excited
by a chaotic signal. J. Sound Vib. 317, 449–455 (2008)

12. Chen, M.Y., Han, Z.Z.: Controlling and synchronizing
chaotic Genesio system via nonlinear feedback control.
Chaos Solitons Fractals 17, 709–716 (2003)

13. Park, JuH, Kwon b, O.M., Lee, S.M.: LMI optimization
approach to stabilization of Genesio–Tesi chaotic system
via dynamic controller. Appl. Math. Comput. 196, 200–206
(2008)

14. Wang, G.M.: Stabilization and synchronization of Genesio–
Tesi system via single variable feedback controller. Phys.
Lett. A 374, 2831–2834 (2010)

15. Zhanga, Z.Q., Lu, J.W., Gao, L.J., Shao, H.Y.: Exponential
synchronization of Genesio–Tesi chaotic systems with par-
tially known uncertainties and completely unknown dead-
zone nonlinearity. J. Franklin Inst. 350, 347–357 (2013)

16. Faieghi, M.R., Delavari, H.: Chaos in fractional-order
Genesio–Tesi system and its synchronization. Commun.
Nonlinear Sci. Numer. Simul. 17, 731–741 (2012)

17. Rössler, O.E.: An equation for continuous chaos. Phys. Lett.
A 57, 397–398 (1976)

18. Sun, J.T., Zhang, Y.P.: Impulsive control of Rössler systems.
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