Nonlinear Dyn (2015) 80:753-765
DOI 10.1007/s11071-015-1903-x

ORIGINAL PAPER

The adaptive synchronization of fractional-order chaotic
system with fractional-order 1 < g < 2 via linear parameter

update law

Ping Zhou - Rongji Bai

Received: 20 July 2014 / Accepted: 4 January 2015 / Published online: 15 January 2015

© Springer Science+Business Media Dordrecht 2015

Abstract This paper presents an adaptive synchro-
nization approach for fractional-order chaotic systems
with fractional-order 1 < ¢ < 2 and unknown sys-
tem parameters based on the Mittag—Leffler function
and the generalized Gronwall inequality. A sufficient
condition is obtained. The numerical simulations are
given to verify the effectiveness of this synchroniza-
tion scheme.
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1 Introduction

Recently, synchronization of chaotic systems has been
focused on more attentions in nonlinear science due
to its potential applications in science and engineer-
ing. Up to now, various synchronization schemes
have been proposed, such as complete synchronization
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(CS) [1], generalization synchronization (GS) [2], pro-
jective  synchronization (PS) [3], impulsive
synchronization (IS) [4], lag synchronization (LS)
[5,6], outer synchronization [7] and so on. Neverthe-
less, many chaotic systems in practical situations are
usually with fully or partially unknown parameters.
Such unknown parameters usually appear in the con-
trol input law for chaos control and synchronization.
Therefore, how to estimate the unknown parameters is
a key issue and prerequisite in chaos control and syn-
chronization. Adaptive control theory [8] is an effective
tool to this problem. Thus, adaptive synchronization
of chaotic systems has been attracted more and more
attentions in practical chaos applications.

As physical interpretation of the fractional deriv-
ative becomes clear, a large number of real-world
physical systems, such as viscoelasticity, dielectric
polarization, electromagnetic waves and fractional
kinetics, can be more accurately described by fractional-
order differential equations [9—11]. In recent years,
chaos has been observed in many physical fractional-
order systems, e.g., electronic circuits [12,13], micro-
electro-mechanical systems [14] and gyroscopes [15],
and many modified fractional-order systems, e.g.,
the fractional-order Lorenz chaotic system [16], the
fractional-order Chua’s circuit [13], the fractional-
order Arneodo chaotic system [17], the fractional-
order Duffing chaotic system [18], the fractional-order
Rossler chaotic system [17], the fractional-order Sprott
chaotic system [19], the fractional-order Chen system
[17] and the fractional-order Lu system [17]. Similarly,
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synchronization for fractional-order chaotic systems
has been also attracted much attention in both theoret-
ical and applied perspectives, since it is usually a pre-
requisite of practical application in chaos engineering,
such as chaotic communications [20] and authenticated
encryption schemes [21].

Up to now, many synchronization approaches on
fractional-order chaotic systems have been reported
for fractional-order 0 < ¢ < 1 [17,19,22-25]. How-
ever, there are many fractional-order systems with
fractional-order 1 < ¢ < 2 in the real world, for
example, the fractional diffusion-wave equation [26],
the space-time fractional diffusion equation [27], the
fractional telegraph equation [28], the super-diffusion
systems [29], the time fractional reaction-diffusion sys-
tems [30] and the time fractional heat conduction equa-
tion [31]. Nevertheless, a few results on synchroniza-
tion of fractional-order chaotic system with fractional-
order | < g < 2 have been considered. Hence,
how to synchronize fractional-order chaotic systems
with fractional-order 1 < ¢ < 2 is an opening
problem.

Motivated by the above-mentioned discussions, an
adaptive synchronization scheme for fractional-order
chaotic systems with fractional-order 1 < ¢ < 2 and
with unknown parameters is presented in this paper.
The linear parameter update laws are used in our
scheme. Based on the Mittag—Leffler function and the
generalized Gronwall inequality, a sufficient condition
is obtained. This adaptive synchronization approach is
applied to a fractional-order Lorenz chaotic system and
amodified fractional-order Chua’s chaotic system with
fractional-order 1 < ¢ < 2 and with partially or fully
unknown parameters.

2 Preliminaries and main results

The Caputo fractional derivative is widely used in engi-
neering applications due to its initial conditions have
the same form as integer-order differential equations.
The Caputo fractional derivative is defined as follows:

1 t ()

I'(n—q)Jo (t—o)iti-n
<q<n,

Dih(t) = dr, n—1

where D1 is called the Caputo derivative of fractional-
order g of function h(t), n is the first integer that is not
less than g, h"™ () = d"h(t)/dt", and I'(n — q) =
[oFo0 n—a=De—t gy

o .
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In this paper, the fractional-order chaotic systems
are described as

Dix = f(x,a), (1

where x € R f(x,a) € R"™'.a € R™*!is the
vector of unknown parameters, and its estimation is
denoted by ap. We assume that system (1) displays a
chaotic attractor for a = ag in the following paper.

Now, the fractional-order chaotic system (1) can be
modified as follows,

Dix = Pix + Py(x, a), @)

where P,(x, a) € R"*! is the nonlinear part including
all unknown parameters, and P; € R"*" is a constant
matrix.

In this paper, we assume that

Pn(y1 Cl) - Pﬂ(xv a) = \IJ]()C, ao)e—i—\lln(e,x, Clo), (3)

where y € R"*!, e = (y —x a —ap)T. ¥i(x, ap) €
R>(+m) and W, (e, x,ap) € R™1 are real matrices.
W, (e, x,ap) and W;(x, ap)e represent the nonlinear
and linear parts with respect to e, respectively. In fact,
there are many fractional-order chaotic systems such
as the Lorenz chaotic system [16], the modified Chua’s
chaotic system [13], the Arneodo chaotic system [17],
the Rossler chaotic system [17], the Sprott chaotic sys-
tem [19], the Chen chaotic system [17], the Lu chaotic
system [17], the stretch-twist-fold (STF) flow chaotic
system [21] and so on. In these systems, the nonlinear
terms [denoted by P, (x, a)] are all polynomials, which
can be easily implemented with electronic circuits. It
is not hard to see that all these systems satisfy Eq. (3).

In order to realize chaotic synchronization for the
fractional-order chaotic system (2) with unknown para-
meters, system (2) is chosen as drive system, and the
response system with linear parameter update law is
designed as

[lﬂy=ﬁy+fwya%+dnyﬂ) @
Dila = Ae ’

where y € R™ ! is the state vector. x(x, y,a) €
R"™1 is a controller. A € R™*"+™ is a constant
matrix. The linear parameter update law is D%a = Ae.
The adaptive synchronization errors are denoted as
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e = (W, T ¢ Rutmxl o) — (y — x) € H(‘I’n(& X, ap)

nxl @) _ _ mx1 ,06) _ o W 0
R, e (@ — ao) 6(:)? g = imx ey ( n(e,x,ao)) 0. lim o
R =1,2,....n),and e = (a; —ajo) € R(j = 0 =0 e
1,2,...,m). ' = 0 for any x,

.. P+0 _ P+Q

Remark Since A is a constant matrix, the parameter (ii) RelA ( A )] <0, o=—max [Re)» ( A

update law is a linear update law.

Definition Giving the drive system (2) and the response
system (4) with linear parameter update law, it is
said to be adaptive synchronization if there exist a
controller «(x,y,a) € R™1 and a constant matrix
A € R™* M) guch that

lim |y —x||=0, lim (a—ag) =0.
t—+00 t— 400

Lemma 1 [32] If fractional-order ¢ > 1 and p =
1,2, q, then

[y L% < [

where L € R™", M, ,(e) denotes the two-parameter
function of Mittag—Leffler type, i.e., Mg p(2) = > oo
m(q > 0,p > 0,z € C). |lo| denotes the
induced matrix norm.

Lemma 2 [33](generalized Gronwall inequality) Giv-
ing a interval [0, T) (some T < +00), if fractional-
orderq > 0,0 < b1 (t) < K (K is a constant) is a non-
decreasing continuous function in [0, T), ba(t) > 0 is
a non-decreasing function locally integrable in [0, T),
and if b(t) > 0 is locally integrable in [0, T') with

t
b(t) < ba(t) + b1 (1) / (t — ) b(r)dr
0
in this interval [0,T), then b(t)
b1 (1) ()19,

Lemma 3 [34]: If p is a real number, l; > 0(i = 1,2)
is positive real constant, 0 < g < 2and0.5mrq < B <
min(rw, gm), then

=< bZ(I)Mq,l

|My.p(@)] < 111+ 121 =PYaeRGTD (1 4[]~
where |arg(z)| < B and |z| = 0.

Now, we are in the position to state the main result
of this paper.

Theorem Let «(x,y,a) = [Q — ¥ (x,ap)le. The
fractional-order chaotic system (2) and the fractional-
order system (4) are said to be adaptive synchroniza-
tion, if the next two conditions are fulfilled,

> [I(g)]Y4,

where Q € R>(tm) o o suitable constant matrix,
P € R0 i q constant matrix satisfying P (i, j) =
P, )1 =j<n)and P(i,j) =0n+1=<j <
n + m). Here, P(i, j) and Pi(i, j) are the elements
\Il,,(e,x,ao)) c

of matrix P and Pj, respectively. ( 0

R+m)x1 (P + Q)

A R(n+m)><(n+m). o =

— max I:Rek (PXQ)} = min |ReA (PXQ)

the minimum absolute value of the real part of the
P+ Q0
A .

is

eigenvalue of matrix (

Proof According to system (2) and (4), the adaptive
synchronization error system can be shown as

D) = Ple(s)—i—Pn(y, a)—P,(x,a)+«x(x,y,a)
Dig = Ae )

®)

Since Py (y, a)— Py (x, a) = V;(x, ap)e+Wy (e, x, ap),
the system (5) can be rewritten as

D1e¢®) = Pre® W (x, ap)e
+ W, (e, x,a0) +x(x,y,a). (6)
Dia = Ae

It follows from D9ay = 0 and D9a = D4 (a — ap) =
DYe@ that

D7e®) = Pre™ + Wy (x, ag)e + Wy (e, x, ap)
+x(x,y,a) . (D
Die@ = Ae

Invoking k (x, y,a) = [Q — VY;(x,ap)]e and e =
(€9, e“NT one can derive that,

D9e®) = Pie®) 4+ Qe + W, (e, x, ag)

Die@ = Ae : ®)
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Using P(i. j) = P1(i, j)(1 < j <m)and PGP, j) = pueoreb (P 2) <062 (P 2)isa
O(n +1 < j <n+m), system (8) can be rewritten as A A
stable matrix. So,
D¢ = (P + Q)e + U, (e, x, ap)
Die@ = Ae ' Hth < loe®", ”thq < lpe™ " < lpe=®",
Therefore,
where [g > 0.
P 1) According to the inequality (13), the following result
Die — +0Q), n (e, x, ag) , ©) g quality g
A 0 can be obtained

. v, (e, x,a
where matrix ¢ O)) c R+mx1_

0
Let e(1) and e(2) be the initial conditions for system

(9). Taking Laplace transform on Eq. (9), we obtain

sTL(e(t)) — s7 'e(1) — s97%e(2)

= GL(e(®)) + L(Dy(e(r), x(1)) (10)
where G = (P ; Q), Dple), x(®)] =
(\IJ" [e(t),ox(t), aO]), and L(.) denotes the Laplace
transform. So, we can derive that

e 972 L(@a(e(t), x(1)
L(e(t) = e+ ——e@t———=
(1T)

Taking Laplace inverse transform on Eq. (11) via the
Mittag-Leffler function in two-parameter, the solution
e(t) of fractional-order system (9) can be shown as

e(t)=My,1(Gte(1)+1tMy2(Gt1)e(2) (12)

t
+/ (=) My 4 (G(—1)) Dple(), x(7)]d7
0

where ®,[e(t), x(1)] = ‘p”[e(f)’ox(t)’“"]
matrix M, 1(Gt?), M, 2(Gt9) and M, 4(G(t — 7)7)
denote the two-parameter function of Mittag-Leffler
type.

According to Lemma 1 and Eq. (12), the following
result can be yielded,

. The

eIl < | Mg1(GtDe(D)| + ||tMy2(Gt9)e)||

t
+‘ / (=)0 My g (G(—)) Dy e(r), x(1)ldT
JO

< feomen] ey

‘ t

+ L= [ e xl|an (13)
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el < loe™" lle(D)]| +loe™" lle()] ¢

t
+1o / (t — )1 e @D | D,[e(r), x(7)ldT,
0

(14)
e (Vnle,x,a0) | (egre0)|
since (%57, = 0.1m 87N —
for any x. So, ®,(e, x)|,—9 = O, lir%% =0
e—

for any x. Hence, there exists a positive constant
such that

[®nle(®), x(OI < lle()]l /lo as lle@®)]| < B.
Thus, the inequality (14) can be rewritten as
le@)ll < loe™" lle(D]l 4+ loe™" lle)l 1

+ /Ot t =0 e @D le(n)dr.  (15)
From the inequality (15), one has the follows,
le@le” < lolle(ll + 1o lle)ll 7

t
+/ (t — )47 le(r)||dT.  (16)
0

According to Lemma 2 (generalized Gronwall
inequality), the inequality (16) can be turned to

le(le” < (o lle(DIl +1lo lle@)ll )My 1[I ()17]
A7)

According to Lemma 3, the inequality (17) can be
turned to

le@) e < (o lle(D)Il + lo lle@)]| {1 @
+h/(1+ (@), (18)

that is
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el < (o lle(M | +1o lle@) ]| 1)1y 1@ =1 (19)
+ (o le(D) |+l le@) | DA+ (g)r41e” )}~

Duetow = — max |:Rek (P j; Q)] > [I(g)]"1,
therefore @ > 0 and [I"(¢)]"/9 — w < 0. Then,

tim (lo le(D)l| + Io lle()]| 1)1y 1T @ =l — ¢,
t——+00

Jm (o lle(Mi+lo lle@) 11 (L1 + rge”}~'=0

From the inequality (19), the following result is
derived,

lim [le(®)] = 0. (20)
t——+00
So, the zero solution in the error system (9) is asymp-
totically stable. It implies,
Jim ly — x| =0, lim (a—a)=0.

Therefore, the fractional-order system (4) and the
fractional-order chaotic system (2) can be arrived to
synchronization. The proof is completed.

O

3 Illustrative example

In order to verify the effectiveness of the above
synchronization scheme, we illustrate two examples:
(1) the fractional-order Lorenz chaotic system with
fractional-order ¢ = 1.08 and with partially or fully
unknown parameters [16]; (2) the modified fractional-
order Chua’s chaotic system with fractional-order g =
1.1 and with fully unknown parameters [35]. The
numerical results are in agreement with the theoreti-
cal analysis.

3.1 Adaptive synchronization of the fractional-order
Lorenz chaotic system with fractional-order
qg =1.08

The fractional-order Lorenz system is described by

Dx, aj(x2 —x1)
Dixy | = | apx1 —xp — x1x3 |, 21
D4 x; X1X2 — azXx3

where a; (i = 1, 2, 3) is the system parameters [16].
The fractional-order Lorenz system displays a chaotic
attractor for a; = aj9 = 10,a; = axg = 28, a3 =
azo = 8/3 and ¢ = 1.08, as shown in Fig. 1.
Case 1. Parameter a; is unknown in the fractional-order
system

Let a; be the unknown parameter in the fractional-
order Lorenz system (21), and its estimation be ajg =
10.

Now, the fractional-order system (21) can be modi-
fied as

D9x, 00 O X1 ay(xy —x1)
Dix, | =(28—-1 O x| + —X1Xx3
D9x3 0 0 -8/3 X3 X1X2

(22)
So,
00 O ay(xa — xp)
PP=128-1 0 , Py(x,a)= —X1X3
0 0 -8/3 X1X2

Therefore, the response system with linear parame-
ter update laws is

Dy = Piy + Py(y,a) + k(x,y,a)
Dia = Ae ’

where A € R4 ke (x, y,a) =[Q—W¥(x,ajg)]e, and
a=aj.

(23)

Fig. 1 The attractor of 30 60
fractional-order Lorenz
system for a; = ajo = 10, 20
ay = ax =28,a3 = az =
8/3,and ¢ = 1.08 10¢ 40
N
x 0 x
-10 ¢+ 20
20 +
_30 Il Il Il Il Il 0 1 Il 1 1 1
20 -10 0 10 20 -30 20 -10 0 10 20 30
X X,
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Now, we can obtain the follows,

ar(y2 — y1)
Py(y,a) — Py(x,a) = —y1y3
yiy2
ai(x2 — x1) —apaip 0 0
— —X1X3 =| —x3 0 —x;0
X1X2 X2 X1
el
eq (e2 — e1)
e
+ —ere3
e3
ejey
eq
and
—aypaip 0 0
Yi(x,a0)=| —x3 0 —x1 0],
x2 x1 0 0
eq, (e2 —e1)
W, (e, x,ap) = —eje3
erey

It is easily to obtain the follows,

W, (e, x, ap)
0

and

W, (e, x, ap)
0

llell

=0
e=0

B / e2 (e2 — e1)? + (e1e3)? + (e1e2)?

2 2 2 2
e +€2+€3+6‘a1

5\/(62—31)2—1-(3%—}-6%

So,

W, (e, x, ap)
) 0

lim

e—0 llell

= li —e)2+e2+e3=0
eg%\/(eg e1)” +e35+e;

Therefore, the first condition in the Theorem is satisfied.
Now, select suitable constant matrices Q € R3**
and A € R** such that

(o)

> [[(g)1'4

So, the second condition in the Theorem is true.
These results indicate that the adaptive synchroniza-
tion between drive system (22) and response system
(23) with linear parameter update law can be arrived.

—-1000
For example, let 0 = 0 000) and A =
0000
(000—1).50,
-1 0 0 O
P+Q) [28~-1 0 O
A 1 0 0 -8/30
0O 0 0 -1
Therefore,A; = —1(G0 = 1,2,3),As = -—-8/3,

and —max[ReA(P—;Q)} =1> ["(¢)/? =

0.9627, respectively. Simulation results are displayed
in Fig. 2. All the initial conditions in this paper
are (x10, 20, x30) = (3,4,5) and (y10, y20, ¥30) =
(10, 20, 30), respectively. Here a; (0) = 15.

Case 2. Parameters a» and a3 are unknown in the
fractional-order system

Fig. 2 Synchronization
errors between systems (22)
and (23) 100

-100

10
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Let a; and a3 be the unknown parameters in the
fractional-order Lorenz system (21), and their estima-
tion be ayg = 28 and a3zg = 8/3, respectively.

Now, the fractional-order system (21) can be adapted
as

D7x, —-1010 0 X1 0

Dix, | = 0 —-10 x2 |+ axx1 — x1x3

D9 x3 0O 00 X3 X1X2 — azx3

(24)
So,
—10 10 0 0
P = 0 —10]), Pi(x,a)=| axx1 — x1x3
0 00 X]X2 — a3zx3

Therefore, the response system with linear parameter
update laws is

Dy = Piy + Py(y,a) + k(x,y, a)

[ Dia = Ae (25)

where a = (a2 a3)T, A e R¥, k(x,y,a) =[Q —

T
Wy (x, ap)le and ag = (a2 azo) -
Now, we have the follows,

0 0
Py(y,a) — Py(x,a) = | aayr —y1y3 | — | a2x1 — x1x3
yiy2 —aszys X1X2 —asxs

0 0 0 00 e 0
=|ayy—x3 0 —x; 00 e3 + eq,e1 —eje3
x2  x1 —azx 00 €, —egze3 +eren

€as
and
0 0O 0 00
Wi(x,a0) = {ap—x3 0 —x1 00},
x2  x1 —asz 00
0
W,(e, x,a0) = | eqel —ejes

—egze3 +ejen
It is easily to derive the follows,

W, (e, x, ap) _
(") =0

e=0
and

W, (e, x, ap)
o Ji

llell

_ \/(€a2€1 —e1e3)? 4 (—eqye3 + e1e2)?
e+ el +ed+el, + e,

(|eases| + lerea)?
e%+e%+e%+e%2+eg3

IA

(eay —€3)% +

2 |eaze3] lereal
(e} +e3) + (3 +e2)

IA

(eay —e3)? + €2y + e +

2 |eaze3] leren]
2lejen| +2 ‘ea3e3|

—1
1 1
< [y —e3)?+eq +ed +{ —— +
leases|  lerenl

< \/(eaz —e3)? -l—eg3 +e% + |ea3e3| + leren].

< \/(ea2 —e3)2+ed et +

Hence,
W, (e, x, ap)
) 0
lim
e—0 llell

= linb\/(eaz—e3)2+e§1+ef+|ea363|+|e1e2| =0
e— K

Therefore, the first condition of the Theorem is fulfilled.
Now, select suitable constant matrices Q € R3*3
and A € R?*3 such that

o (5o (1)

> [I(g)]'4

So, the second condition in the Theorem is fulfilled.
These results imply that the adaptive synchronization
between drive system (24) and response system (25)
with linear parameter update law can be realized.

0-10 0 00
For example,let Q=0 0 0 00 |and A=
00 —-100
000 —-1-1
(ooo 1 —1)'50’
—-10 0 0 0 O
0 —-10 0 O
(P:Q)z 0 010 0
0O 0 0 —1-1
0O 0 0 1 —1
Therefore, Ay = —10,A23 = —1,A45 = —1 £ j,
and —max[ReA(Pj;Q)} = 1> [[(@]'1 =

0.9627, respectively. Simulation results are shown in
Fig. 3. Here a»>(0) = 20, a3(0) = 5, respectively.
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Fig. 3 Synchronization 5
errors between systems (24)
and (25)
5 10 15 10 15
t t
Case 3. Parameters a1, a, and a3 are unknown in el
the fractional-order system ()
. eq (€2 — e1)
Let ay, a> and a3 be the unknown parameters in the % e3 | eper —eres
fractional-order Lorenz system (21), and their estima- €q “ ) '
. —eg;e3 +ejen
tion be ajg = 10, a0 = 28 and a3y = 8/3, respec- €qy
tively. a3
The fractional-order system (21) can be rewritten as and
—aip aipg 0 000
D9x; 000 X1 ai(xy — x1) Wi(x,a0) = |{ap—x3 0 —x1 000},
Dixy | =10-10 x2 | + | axx1 —x1x3 X2 x1 —az 000
D4 x3 000 X3 X1X2 — d3Xx3 eq (e2 — eq)
(26) W, (e, x,a0) = | eaqe1 —ere3
—eg e3 +eren
So, It is easily to get the follows,
000 ai(xp — x1) W, (e, x, ag) -0
P=(0-10]), P,(x,a) = | axxi — x1x3 0 o0
000 X1X2 — a3Xx3 and

Therefore, the response system with linear parameter
update laws is

9y —
[Dy Py + Py(y,a) + k(x,y,a) 27

D%a = Ae

Where a = (a1 a ag)T,A € RO k(x,y,a) =

T
[Q — W(x, ag)le and ap = (a0 ax azo) -
Now, the following results can be gained,

ai(y2 — y1)
Pu(y,a) — Pu(x,a) = | azyr — y1y3
yiy2 —asys
ai(x2 —xi) —aip aip 0 000
— azx]y — X1x3 = ajry) — X3 0 —X1 000
X1X2 — d3X3 X2 X1 —dajo 000

@ Springer

W, (e, x, ap)
0

llell
_ eq (ea —e)? + (eaper — e1€3)” + (—eaze3 +ere2)?
e%—i—e%-i—e%—i—e,%l —i-e,%2 +e§3

(|ease3]+lere2])?
e} +es+el+el +e2, +el,

< \/(62—81)24-(6(12—83)24—

< \/(62—61)2 + (eay—€3)? + €2, + e} + |ease3] + |erea

So,

(\I’n(&xﬂo))”
) 0
lim —m8M8M8¥ ——

e—0 [lell

= lim \/(62—61)24-(6,12—63)24-633 +e%+}eazeg|+\ele2| =0
e—0 N

Therefore, the first condition of the Theorem is fulfilled.
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Fig. 4 Synchronization
errors between systems (26)
and (27)

15

Fig. 5 The attractor of the
modified fractional-order
Chua’s chaotic system for
ay=ayp=1/2,a, =
ayo=1.2,and g = 1.08

R3><6

Now, select suitable constant matrices Q €
and A € R3*° such that

Wl (750)] <o
® = — max [RCX(P—;Q)] > [[(g)N"4

So, the second condition in the Theorem is fulfilled.
These results indicate that the adaptive synchronization
between drive system (26) and response system (27)
with linear parameter update law can be achieved.

—-10 0 000
For example,letQ={ 0 0 0 000 Jand A =
00-1000
000-11 0
000-1-1 0 |.So,
000—-1-1-1
-10 0 0 0 O
0-10 0 0 O
P+Q0)y | 0 0 -10 0 O
( A )_ 00 0-110
00 0-1-10
00 0 —-1-1-1

Therefore, ; = —1( = 1,2,3),h5 = —1 %
jAe = —1, and —maX[ReA(PjQ)} =1>

[T (g)]"7 = 0.9627, respectively. Simulation results
are presented in Fig. 4. Here a1 (0) = 15, a2(0) = 20,
and a3(0) = 5, respectively.

3.2 Adaptive synchronization of the modified
fractional-order Chua’s chaotic system with
fractional-order ¢ = 1.1

In 2010, the simplest modified Chua’s chaotic circuit
was built by Muthuswamy and Chua [35]. In this paper,
based on this modified Chua’s chaotic circuit, the mod-
ified fractional-order Chua’s chaotic system can be
shown as

Dix1 = xp
Dixy = aj(x) — x1) — 0.5x2x32 (28)
D9x3 = —xp — axx3 + x2x3

where a; (i = 1, 2) is the system parameter. The mod-
ified fractional-order Chua’s system (28) displays a
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chaotic attractor for a; = ajgo = 1/2,a> = azo = 1.2
and g = 1.1. Its chaotic attractor is displayed as Fig. 5.

Now, let a; and a; be the unknown parameters in the
modified fractional-order Chua’s system (28), and their
estimation be a; = aj9p = 1/2 and a» = ayy = 1.2,
respectively.

Now, the fractional-order system (28) can be adapted
as

Dq_xl O 1 O X1
Dix | =10 00 X2
D4 x; 0-10 X3
0
+ [ a1(x2 — x1) — 0.5x2x2 (29)
—axx3 + X2X3
So,
010
P={00 0],
0-10
0
P,(x,a) = | aj(xp — x1) — 0.5xzx§
—azx3 + x2x3

Therefore, the response system with linear parameter
update laws is

Dy = Piy + Py(y,a) + k(x,y,a)

Dia = Ae (30)

where a = (a1 az)T,A € R¥ k(x,y,a) = [0 —

T
Wy (x, ag)le and ag = (ajo az) " -

Now, we have the follows,

0
Py(y,a) — Py(x,a) = [ a1(y2 — y1) — 0.5y2y3
—azy3 + y2y3
0
— | ai(xp —x1) — O.5x2x§
—axx3 + x2x3

€l
0 0 0 00 e
= | —ajo aio — O.Sx% —x2x3 00 e3
0 X3 X2 —ap 00 ea,

0
+ | eq (2 —e1) — O.Sezeg — epe3xy — O.5x2e§
—eqye3 + e2e3

and

0 0 0 00
W (x,a9) = | —ayo aio — 0.5x32 —xyx3 00},

0 X3 X2 —ax 00

0
W, (e, x,a0) = | eq (ez—el)—045€ze§—ezeﬂ3—0.5xze§ .
—eg,e3t+ezes

It is easily to derive the follows,

v, (e, x, ap)
0

and

=0
e=0

” (\I/n(e, X, aop)

llell

0 ) H _ \/[ea1 (e2 — e1) — 0.5e263 — erezxs — 0.5x26312 + [e2e3 — eqye3]2
Tt a el vel

eq (€2 —e1) — 0.5e2e% — eresxs — 0.5x002]2
S\/(62_6(12)24_[(11(2 1) 2€3 — e2e3X3 23]

2 2 2 2 2
el—l—ez—l—e3—i—ea1 —i—eaz

< | A+ (e2x3 — 0.5x2¢3)% +

|2[eq, (e2 — €1) — 0.5e2e31[e2e3x3 + 0.5x23]|

2 2 2 2 2
€] +€2+€3+€a1 +ea2
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Here A = (e2 — €4,)* + (e2 — €1)? + 0.25¢5 — So, the second condition in the Theorem is fulfilled.
eq,e2(ex — e1). Therefore, These results imply that the adaptive synchroniza-
”(\Pn(e,x,ao))H
0 2[eq, (€2 — e1) — 0.5e2e2][ere3x3 + 0.5x2¢2
< A+ (errs — 05m9e3)? + [2[eq, (e2 — e1) 2e5]lexesxs 2631

llell et+e3t+e3+e +e2

|2[ea1 (ex —ey) — O.Seze%]e2e3x3}

> . 2 L2 2 2
ey teyteyteg +eg,

< | A+ (e2x3 = 0.5x2¢3)% + [[eq, (2 — e1) — 0.5e2¢31x2| +

|2eq, (€2 — e1)eezxs|
Ara+dre+e

< \/A + (e2x3 — 0.5x2€3)% + [[eq, (2 — €1) — 0.5e2¢31x2 | + |e3e3x3| +

2
< \/A + (exx3 — 0.5x2e3)% + |[ea1 (ex —e1) — O.Sezeg]xz| + |e%63x3| + |2€ale3x3| + M

e% + e%
< \/A + (e2x3 — 0.5x2¢3)% + |[eq, (e2 — €1) — 0.5e2e31x2| + |e3e3x3| + 3 |eq 313
According to the boundedness of the modified tion between drive system (28) and response sys-
Chua’s chaotic system (28), there exist a real positive tem (30) with linear parameter update law can be

constant N such that realized.

N > max (|x2|, |x3])

Hence,
"pn(ea -xv aO)
. O . 2 2
lim < lim \/A—l—(Nez—O.SNe3)2—i—|[ea1 (62—61)—0.5626’3]N| + |eze3N| +3 |eale3N| =0
e—0 llell e—0

Therefore, the first condition of the Theorem is fulfilled.
Now, select suitable constant matrices Q € R3%5

—-1-1000
2x5
and A € RT such that For example,letQ =] 0 —1 0 00 Jand A =
Re[)»(Pj;Q)]<O,w:—max[Re)\(PIQ)} 0 1 -100
000—-1-1
1/q ( ) . SO,
> [I'(q)] 000 1 —1
Fig. 6 Synchronization 4 ‘ T T 2
errors of adaptive
synchronization for the 32
modified fractional-order 2 / e3 1 o
Chua’s chaotic system e

1
%) q 1
:j“‘ 0 / mf: \\/
a); ®© \a

o
o -

10 15 20 0 5 10 15 20
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-1 0 0 0 O
0 —-10 0 O
(PXQ): 0 0-10 0
0 0 0 —1-1
0O 0 0 1 -1
Therefore, 123 —1,A4s5s = —1 % j, and

—maX[ReA(PXQ)} =1 > [T =

0.9557, respectively. Simulation results are shown in
Fig. 6. Here a1 (0) = 1, a2(0) = —1, respectively.

4 Conclusions

The adaptive synchronization for fractional-order
chaotic systems with fractional-order 1 < ¢ < 2
has been presented in this paper. A sufficient con-
dition on synchronization of fractional-order chaotic
systems with fractional-order 1 < ¢ < 2 and
unknown parameters is obtained theoretically by using
the Mittag—Leffler function and the generalized Gron-
wall inequality. Only the linear parameter update laws
are used in our synchronization scheme. Furthermore,
this adaptive synchronization approach is applied to
the fractional-order Lorenz chaotic system with par-
tially or fully unknown parameters for fractional-order
g = 1.08 and the modified fractional-order Chua’s
chaotic system with partially or fully unknown para-
meters for fractional-order ¢ = 1.1. The numerical
results agree with the theoretical analysis well.
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