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Abstract This paper presents an adaptive synchro-
nization approach for fractional-order chaotic systems
with fractional-order 1 < q < 2 and unknown sys-
tem parameters based on the Mittag–Leffler function
and the generalized Gronwall inequality. A sufficient
condition is obtained. The numerical simulations are
given to verify the effectiveness of this synchroniza-
tion scheme.
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1 Introduction

Recently, synchronization of chaotic systems has been
focused on more attentions in nonlinear science due
to its potential applications in science and engineer-
ing. Up to now, various synchronization schemes
have been proposed, such as complete synchronization
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(CS) [1], generalization synchronization (GS) [2], pro-
jective synchronization (PS) [3], impulsive
synchronization (IS) [4], lag synchronization (LS)
[5,6], outer synchronization [7] and so on. Neverthe-
less, many chaotic systems in practical situations are
usually with fully or partially unknown parameters.
Such unknown parameters usually appear in the con-
trol input law for chaos control and synchronization.
Therefore, how to estimate the unknown parameters is
a key issue and prerequisite in chaos control and syn-
chronization. Adaptive control theory [8] is an effective
tool to this problem. Thus, adaptive synchronization
of chaotic systems has been attracted more and more
attentions in practical chaos applications.

As physical interpretation of the fractional deriv-
ative becomes clear, a large number of real-world
physical systems, such as viscoelasticity, dielectric
polarization, electromagnetic waves and fractional
kinetics, can be more accurately described by fractional-
order differential equations [9–11]. In recent years,
chaos has been observed in many physical fractional-
order systems, e.g., electronic circuits [12,13], micro-
electro-mechanical systems [14] and gyroscopes [15],
and many modified fractional-order systems, e.g.,
the fractional-order Lorenz chaotic system [16], the
fractional-order Chua’s circuit [13], the fractional-
order Arneodo chaotic system [17], the fractional-
order Duffing chaotic system [18], the fractional-order
Rossler chaotic system [17], the fractional-order Sprott
chaotic system [19], the fractional-order Chen system
[17] and the fractional-order Lu system [17]. Similarly,
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synchronization for fractional-order chaotic systems
has been also attracted much attention in both theoret-
ical and applied perspectives, since it is usually a pre-
requisite of practical application in chaos engineering,
such as chaotic communications [20] and authenticated
encryption schemes [21].

Up to now, many synchronization approaches on
fractional-order chaotic systems have been reported
for fractional-order 0 < q < 1 [17,19,22–25]. How-
ever, there are many fractional-order systems with
fractional-order 1 < q < 2 in the real world, for
example, the fractional diffusion-wave equation [26],
the space-time fractional diffusion equation [27], the
fractional telegraph equation [28], the super-diffusion
systems [29], the time fractional reaction-diffusion sys-
tems [30] and the time fractional heat conduction equa-
tion [31]. Nevertheless, a few results on synchroniza-
tion of fractional-order chaotic system with fractional-
order 1 < q < 2 have been considered. Hence,
how to synchronize fractional-order chaotic systems
with fractional-order 1 < q < 2 is an opening
problem.

Motivated by the above-mentioned discussions, an
adaptive synchronization scheme for fractional-order
chaotic systems with fractional-order 1 < q < 2 and
with unknown parameters is presented in this paper.
The linear parameter update laws are used in our
scheme. Based on the Mittag–Leffler function and the
generalized Gronwall inequality, a sufficient condition
is obtained. This adaptive synchronization approach is
applied to a fractional-order Lorenz chaotic system and
a modified fractional-order Chua’s chaotic system with
fractional-order 1 < q < 2 and with partially or fully
unknown parameters.

2 Preliminaries and main results

The Caputo fractional derivative is widely used in engi-
neering applications due to its initial conditions have
the same form as integer-order differential equations.
The Caputo fractional derivative is defined as follows:

Dq h(t) = 1

Γ (n − q)

∫ t

0

h(n)(τ )

(t − τ)q+1−n
dτ , n − 1

≤ q < n,

where Dq is called the Caputo derivative of fractional-
order q of function h(t), n is the first integer that is not
less than q, h(n)(t) = dnh(t)/dtn , and Γ (n − q) =∫ +∞

0 t (n−q−1)e−t dt .

In this paper, the fractional-order chaotic systems
are described as

Dq x = f (x, a), (1)

where x ∈ Rn×1, f (x, a) ∈ Rn×1. a ∈ Rm×1 is the
vector of unknown parameters, and its estimation is
denoted by a0. We assume that system (1) displays a
chaotic attractor for a = a0 in the following paper.

Now, the fractional-order chaotic system (1) can be
modified as follows,

Dq x = Pl x + Pn(x, a), (2)

where Pn(x, a) ∈ Rn×1 is the nonlinear part including
all unknown parameters, and Pl ∈ Rn×n is a constant
matrix.

In this paper, we assume that

Pn(y, a)− Pn(x, a) = �l(x, a0)e +�n(e, x, a0), (3)

where y ∈ Rn×1, e = ( y − x a − a0 )T. �l(x, a0) ∈
Rn×(n+m) and �n(e, x, a0) ∈ Rn×1 are real matrices.
�n(e, x, a0) and �l(x, a0)e represent the nonlinear
and linear parts with respect to e, respectively. In fact,
there are many fractional-order chaotic systems such
as the Lorenz chaotic system [16], the modified Chua’s
chaotic system [13], the Arneodo chaotic system [17],
the Rossler chaotic system [17], the Sprott chaotic sys-
tem [19], the Chen chaotic system [17], the Lu chaotic
system [17], the stretch-twist-fold (STF) flow chaotic
system [21] and so on. In these systems, the nonlinear
terms [denoted by Pn(x, a)] are all polynomials, which
can be easily implemented with electronic circuits. It
is not hard to see that all these systems satisfy Eq. (3).

In order to realize chaotic synchronization for the
fractional-order chaotic system (2) with unknown para-
meters, system (2) is chosen as drive system, and the
response system with linear parameter update law is
designed as

{
Dq y = Pl y + Pn(y, a) + κ(x, y, a)

Dqa = Λe
, (4)

where y ∈ Rn×1 is the state vector. κ(x, y, a) ∈
Rn×1 is a controller. Λ ∈ Rm×(n+m) is a constant
matrix. The linear parameter update law is Dqa = Λe.
The adaptive synchronization errors are denoted as
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The adaptive synchronization of fractional-order chaotic system 755

e = (e(s), e(a))T ∈ R(n+m)×1, e(s) = (y − x) ∈
Rn×1, e(a) = (a − a0) ∈ Rm×1, e(s)

i = (yi − xi ) ∈
R(i = 1, 2, . . . , n), and e(a)

j = (a j − a j0) ∈ R( j =
1, 2, . . . , m).

Remark Since Λ is a constant matrix, the parameter
update law is a linear update law.

Definition Giving the drive system (2) and the response
system (4) with linear parameter update law, it is
said to be adaptive synchronization if there exist a
controller κ(x, y, a) ∈ Rn×1 and a constant matrix
Λ ∈ Rm×(n+m) such that

lim
t→+∞ ‖y − x‖ = 0, lim

t→+∞(a − a0) = 0.

Lemma 1 [32] If fractional-order q ≥ 1 and p =
1, 2, q, then
∥∥Mq,p(Ltq)

∥∥ ≤
∥∥∥eLtq

∥∥∥
where L ∈ Rn×n, Mq,p(•) denotes the two-parameter
function of Mittag–Leffler type, i.e., Mq,p(z) = ∑∞

n=0
zn

Γ (qn+p)
(q > 0, p > 0, z ∈ C). ‖•‖ denotes the

induced matrix norm.

Lemma 2 [33] (generalized Gronwall inequality) Giv-
ing a interval [0, T ) (some T ≤ +∞), if fractional-
order q > 0, 0 < b1(t) ≤ K (K is a constant) is a non-
decreasing continuous function in [0, T ), b2(t) > 0 is
a non-decreasing function locally integrable in [0, T ),
and if b(t) > 0 is locally integrable in [0, T ) with

b(t) ≤ b2(t) + b1(t)
∫ t

0
(t − τ)q−1b(τ )dτ

in this interval [0, T ), then b(t) ≤ b2(t)Mq,1

[b1(t)Γ (q)tq ].
Lemma 3 [34]: If p is a real number, li > 0(i = 1, 2)

is positive real constant, 0 < q < 2 and 0.5πq < β <

min(π, qπ), then
∣∣Mq,p(z)

∣∣ ≤ l1(1 + |z|)(1−p)/qeRe(z1/q ) + l2(1 + |z|)−1

where |arg(z)| ≤ β and |z| ≥ 0.

Now, we are in the position to state the main result
of this paper.

Theorem Let κ(x, y, a) = [Q − �l(x, a0)]e. The
fractional-order chaotic system (2) and the fractional-
order system (4) are said to be adaptive synchroniza-
tion, if the next two conditions are fulfilled,

(i)

(
�n(e, x, a0)

0

)∣∣∣∣
e=0

= 0, lim
e→0

∥∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥∥
‖e‖

= 0 for any x,

(ii) Re[λ
(

P+Q
Λ

)
]<0, ω=− max

[
Reλ

(
P+Q

Λ

)]

> [Γ (q)]1/q ,

where Q ∈ Rn×(n+m) is a suitable constant matrix,
P ∈ Rn×(n+m) is a constant matrix satisfying P(i, j) =
Pl(i, j)(1 ≤ j ≤ n), and P(i, j) = 0(n + 1 ≤ j ≤
n + m). Here, P(i, j) and Pl(i, j) are the elements

of matrix P and Pl , respectively.

(
�n(e, x, a0)

0

)
∈

R(n+m)×1,

(
P + Q

Λ

)
∈ R(n+m)×(n+m). ω =

− max

[
Reλ

(
P + Q

Λ

)]
= min

∣∣∣∣Reλ

(
P + Q

Λ

)∣∣∣∣ is

the minimum absolute value of the real part of the

eigenvalue of matrix

(
P + Q

Λ

)
.

Proof According to system (2) and (4), the adaptive
synchronization error system can be shown as

{
Dqe(s) = Ple(s)+Pn(y, a)−Pn(x, a)+κ(x, y, a)

Dqa = Λe
.

(5)

Since Pn(y, a)−Pn(x, a) = �l(x, a0)e+�n(e, x, a0),
the system (5) can be rewritten as

⎧⎨
⎩

Dqe(s) = Ple(s) + �l(x, a0)e
+�n(e, x, a0) + κ(x, y, a)

Dqa = Λe
. (6)

It follows from Dqa0 = 0 and Dqa = Dq(a − a0) =
Dqe(a) that

⎧⎨
⎩

Dqe(s) = Ple(s) + �l(x, a0)e + �n(e, x, a0)

+ κ(x, y, a)

Dqe(a) = Λe
. (7)

Invoking κ(x, y, a) = [Q − �l(x, a0)]e and e =
(e(s), e(a))T, one can derive that,

{
Dqe(s) = Ple(s) + Qe + �n(e, x, a0)

Dqe(a) = Λe
. (8)
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Using P(i, j) = Pl(i, j)(1 ≤ j ≤ n) and P(i, j) =
0(n + 1 ≤ j ≤ n + m), system (8) can be rewritten as
{

Dqe(s) = (P + Q)e + �n(e, x, a0)

Dqe(a) = Λe
.

Therefore,

Dqe =
(

P + Q
Λ

)
e +

(
�n(e, x, a0)

0

)
, (9)

where matrix

(
�n(e, x, a0)

0

)
∈ R(n+m)×1.

Let e(1) and e(2) be the initial conditions for system
(9). Taking Laplace transform on Eq. (9), we obtain

sq L(e(t)) − sq−1e(1) − sq−2e(2)

= GL(e(t)) + L(�n(e(t), x(t)) (10)

where G =
(

P + Q
Λ

)
, �n[e(t), x(t)] =

(
�n[e(t), x(t), a0]

0

)
, and L(.) denotes the Laplace

transform. So, we can derive that

L(e(t))= sq−1

sq−G
e(1)+ sq−2

sq−G
e(2)+L(�n(e(t), x(t))

sq−G
(11)

Taking Laplace inverse transform on Eq. (11) via the
Mittag-Leffler function in two-parameter, the solution
e(t) of fractional-order system (9) can be shown as

e(t)= Mq,1(Gtq)e(1)+t Mq,2(Gtq)e(2) (12)

+
∫ t

0
(t−τ)q−1 Mq,q(G(t−τ)q)�n[e(τ ), x(τ )]dτ

where �n[e(τ ), x(τ )] =
(

�n[e(τ ), x(τ ), a0]
0

)
. The

matrix Mq,1(Gtq), Mq,2(Gtq) and Mq,q(G(t − τ)q)

denote the two-parameter function of Mittag-Leffler
type.

According to Lemma 1 and Eq. (12), the following
result can be yielded,

‖e(t)‖ ≤ ∥∥Mq,1(Gtq )e(1)
∥∥ + ∥∥t Mq,2(Gtq )e(2)

∥∥
+

∥∥∥∥
∫ t

0
(t−τ)q−1 Mq,q (G(t−τ)q )�n[e(τ ), x(τ )]dτ

∥∥∥∥
≤

∥∥∥eGtq
e(1)

∥∥∥ +
∥∥∥eGtq

e(2)

∥∥∥ t

+
∫ t

0
(t−τ)q−1

∥∥∥eG(t−τ)q
�n[e(τ ), x(τ )]

∥∥∥dτ. (13)

Due to Re[λ
(

P + Q
Λ

)
] < 0, G =

(
P + Q

Λ

)
is a

stable matrix. So,
∥∥∥eGt

∥∥∥ ≤ l0e−ωt ,

∥∥∥eGtq
∥∥∥ ≤ l0e−ωtq ≤ l0e−ωt ,

where l0 > 0.
According to the inequality (13), the following result

can be obtained

‖e(t)‖ ≤ l0e−ωt ‖e(1)‖ + l0e−ωt ‖e(2)‖ t

+ l0

∫ t

0
(t − τ)q−1e−ω(t−τ) ‖�n[e(τ ), x(τ )‖dτ,

(14)

Since
(
�n(e,x,a0)

0

)∣∣
e=0 = 0, lim

e→0

∥∥∥
(
�n(e,x,a0)

0

)∥∥∥
‖e‖ = 0

for any x . So, �n(e, x)|e=0 = 0, lim
e→0

‖�n(e,x)‖
‖e‖ = 0

for any x . Hence, there exists a positive constant β

such that

‖�n[e(t), x(t)]‖ ≤ ‖e(t)‖ / l0 as ‖e(t)‖ < β.

Thus, the inequality (14) can be rewritten as

‖e(t)‖ ≤ l0e−ωt ‖e(1)‖ + l0e−ωt ‖e(2)‖ t

+
∫ t

0
(t − τ)q−1e−ω(t−τ) ‖e(τ )‖dτ. (15)

From the inequality (15), one has the follows,

‖e(t)‖ eωt ≤ l0 ‖e(1)‖ + l0 ‖e(2)‖ t

+
∫ t

0
(t − τ)q−1eωτ ‖e(τ )‖dτ. (16)

According to Lemma 2 (generalized Gronwall
inequality), the inequality (16) can be turned to

‖e(t)‖ eωt ≤ (l0 ‖e(1)‖ + l0 ‖e(2)‖ t)Mq,1[Γ (q)tq ]
(17)

According to Lemma 3, the inequality (17) can be
turned to

‖e(t)‖ eωt ≤ (l0 ‖e(1)‖ + l0 ‖e(2)‖ t)[l1et (Γ (q))1/q

+ l2/(1 + Γ (q)tq)], (18)

that is
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The adaptive synchronization of fractional-order chaotic system 757

‖e(t)‖≤(l0 ‖e(1)‖+l0 ‖e(2)‖ t)l1et[(Γ (q))1/q−ω] (19)

+ (l0 ‖e(1)‖+l0 ‖e(2)‖ t)l2{[1+Γ (q)tq ]eωt }−1

Due toω = − max

[
Reλ

(
P + Q

Λ

)]
> [Γ (q)]1/q ,

therefore ω > 0 and [Γ (q)]1/q − ω < 0. Then,

lim
t→+∞(l0 ‖e(1)‖ + l0 ‖e(2)‖ t)l1et[(Γ (q))1/q−ω] = 0,

lim
t→+∞(l0 ‖e(1)‖+l0 ‖e(2)‖ t)l2{[1 + Γ (q)tq ]eωt }−1 =0

From the inequality (19), the following result is
derived,

lim
t→+∞ ‖e(t)‖ = 0. (20)

So, the zero solution in the error system (9) is asymp-
totically stable. It implies,

lim
t→+∞ ‖y − x‖ = 0, lim

t→+∞(a − a0) = 0.

Therefore, the fractional-order system (4) and the
fractional-order chaotic system (2) can be arrived to
synchronization. The proof is completed. �	

3 Illustrative example

In order to verify the effectiveness of the above
synchronization scheme, we illustrate two examples:
(1) the fractional-order Lorenz chaotic system with
fractional-order q = 1.08 and with partially or fully
unknown parameters [16]; (2) the modified fractional-
order Chua’s chaotic system with fractional-order q =
1.1 and with fully unknown parameters [35]. The
numerical results are in agreement with the theoreti-
cal analysis.

3.1 Adaptive synchronization of the fractional-order
Lorenz chaotic system with fractional-order
q = 1.08

The fractional-order Lorenz system is described by

⎛
⎝ Dq x1

Dq x2

Dq x3

⎞
⎠ =

⎛
⎝ a1(x2 − x1)

a2x1 − x2 − x1x3

x1x2 − a3x3

⎞
⎠ , (21)

where ai (i = 1, 2, 3) is the system parameters [16].
The fractional-order Lorenz system displays a chaotic
attractor for a1 = a10 = 10, a2 = a20 = 28, a3 =
a30 = 8/3 and q = 1.08, as shown in Fig. 1.
Case 1. Parameter a1 is unknown in the fractional-order
system

Let a1 be the unknown parameter in the fractional-
order Lorenz system (21), and its estimation be a10 =
10.

Now, the fractional-order system (21) can be modi-
fied as⎛

⎝ Dq x1
Dq x2
Dq x3

⎞
⎠ =

⎛
⎝ 0 0 0

28 −1 0
0 0 −8/3

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ +

⎛
⎝ a1(x2 − x1)

−x1x3
x1x2

⎞
⎠

(22)

So,

Pl =
⎛
⎝ 0 0 0

28 −1 0
0 0 −8/3

⎞
⎠, Pn(x, a)=

⎛
⎝ a1(x2 − x1)

−x1x3

x1x2

⎞
⎠.

Therefore, the response system with linear parame-
ter update laws is{

Dq y = Pl y + Pn(y, a) + κ(x, y, a)

Dqa = Λe
, (23)

where Λ ∈ R1×4, κ(x, y, a) = [Q −�l(x, a10)]e, and
a = a1.

Fig. 1 The attractor of
fractional-order Lorenz
system for a1 = a10 = 10,

a2 = a20 = 28, a3 = a30 =
8/3, and q = 1.08
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Now, we can obtain the follows,

Pn(y, a) − Pn(x, a) =
⎛
⎝ a1(y2 − y1)

−y1 y3

y1 y2

⎞
⎠

−
⎛
⎝ a1(x2 − x1)

−x1x3

x1x2

⎞
⎠ =

⎛
⎝−a10 a10 0 0

−x3 0 −x1 0
x2 x1 0 0

⎞
⎠

⎛
⎜⎜⎝

e1

e2

e3

ea1

⎞
⎟⎟⎠ +

⎛
⎝ ea1(e2 − e1)

−e1e3

e1e2

⎞
⎠

and

�l(x, a0) =
⎛
⎝−a10 a10 0 0

−x3 0 −x1 0
x2 x1 0 0

⎞
⎠ ,

�n(e, x, a0) =
⎛
⎝ ea1(e2 − e1)

−e1e3

e1e2

⎞
⎠ .

It is easily to obtain the follows,

(
�n(e, x, a0)

0

)∣∣∣∣
e=0

= 0

and
∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖

=
√

e2
a1

(e2 − e1)2 + (e1e3)2 + (e1e2)2

e2
1 + e2

2 + e2
3 + e2

a1

≤
√

(e2 − e1)2 + e2
3 + e2

2

So,

lim
e→0

∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖

= lim
e→0

√
(e2 − e1)2 + e2

3 + e2
2 = 0

Therefore, the first condition in the Theorem is satisfied.
Now, select suitable constant matrices Q ∈ R3×4

and Λ ∈ R1×4 such that

Re

[
λ

(
P + Q

Λ

)]
<0, ω=− max

[
Reλ

(
P + Q

Λ

)]

> [Γ (q)]1/q

So, the second condition in the Theorem is true.
These results indicate that the adaptive synchroniza-
tion between drive system (22) and response system
(23) with linear parameter update law can be arrived.

For example, let Q =
⎛
⎝−1 0 0 0

0 0 0 0
0 0 0 0

⎞
⎠ and Λ =

(
0 0 0 −1

)
. So,

(
P + Q

Λ

)
=

⎛
⎜⎜⎝

−1 0 0 0
28 −1 0 0
0 0 −8/3 0
0 0 0 −1

⎞
⎟⎟⎠ .

Therefore,λi = −1(i = 1, 2, 3), λ4 = −8/3,

and − max

[
Reλ

(
P + Q

Λ

)]
= 1 > [Γ (q)]1/q =

0.9627, respectively. Simulation results are displayed
in Fig. 2. All the initial conditions in this paper
are (x10, x20, x30) = (3, 4, 5) and (y10, y20, y30) =
(10, 20, 30), respectively. Here a1(0) = 15.
Case 2. Parameters a2 and a3 are unknown in the
fractional-order system

Fig. 2 Synchronization
errors between systems (22)
and (23)

123
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Let a2 and a3 be the unknown parameters in the
fractional-order Lorenz system (21), and their estima-
tion be a20 = 28 and a30 = 8/3, respectively.

Now, the fractional-order system (21) can be adapted
as

⎛
⎝ Dq x1

Dq x2

Dq x3

⎞
⎠=

⎛
⎝−10 10 0

0 −1 0
0 0 0

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠+

⎛
⎝ 0

a2x1 − x1x3

x1x2 − a3x3

⎞
⎠

(24)

So,

Pl =
⎛
⎝−10 10 0

0 −1 0
0 0 0

⎞
⎠ , Pn(x, a) =

⎛
⎝ 0

a2x1 − x1x3

x1x2 − a3x3

⎞
⎠ .

Therefore, the response system with linear parameter
update laws is

{
Dq y = Pl y + Pn(y, a) + κ(x, y, a)

Dqa = Λe
, (25)

where a = (
a2 a3

)T
, Λ ∈ R2×5, κ(x, y, a) = [Q −

�l(x, a0)]e and a0 = (
a20 a30

)T
.

Now, we have the follows,

Pn(y, a) − Pn(x, a) =
⎛
⎝ 0

a2 y1 − y1 y3

y1 y2 − a3 y3

⎞
⎠ −

⎛
⎝ 0

a2x1 − x1x3

x1x2 − a3x3

⎞
⎠

=
⎛
⎝ 0 0 0 0 0

a20 − x3 0 −x1 0 0
x2 x1 −a30 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎝

e1

e2

e3

ea2

ea3

⎞
⎟⎟⎟⎟⎠ +

⎛
⎝ 0

ea2 e1 − e1e3

−ea3 e3 + e1e2

⎞
⎠

and

�l(x, a0) =
⎛
⎝ 0 0 0 0 0

a20 − x3 0 −x1 0 0
x2 x1 −a30 0 0

⎞
⎠ ,

�n(e, x, a0) =
⎛
⎝ 0

ea2 e1 − e1e3

−ea3 e3 + e1e2

⎞
⎠ .

It is easily to derive the follows,(
�n(e, x, a0)

0

)∣∣∣∣
e=0

= 0

and∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖

=
√

(ea2 e1 − e1e3)2 + (−eα3 e3 + e1e2)2

e2
1 + e2

2 + e2
3 + e2

a2 + e2
a3

≤
√√√√(ea2 − e3)2 + (

∣∣ea3 e3
∣∣ + |e1e2|)2

e2
1 + e2

2 + e2
3 + e2

a2 + e2
a3

≤
√√√√(ea2 − e3)2 + e2

a3 + e2
1 + 2

∣∣ea3 e3
∣∣ |e1e2|

(e2
1 + e2

2) + (e2
3 + e2

a3)

≤
√

(ea2 − e3)2 + e2
a3 + e2

1 + 2
∣∣ea3 e3

∣∣ |e1e2|
2 |e1e2| + 2

∣∣ea3 e3
∣∣

≤
√√√√

(ea2 − e3)2 + e2
a3 + e2

1 +
(

1∣∣ea3 e3
∣∣ + 1

|e1e2|

)−1

≤
√

(ea2 − e3)2 + e2
a3 + e2

1 + ∣∣ea3 e3
∣∣ + |e1e2|.

Hence,

lim
e→0

∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖

= lim
e→0

√
(ea2−e3)2+e2

a3
+e2

1+∣∣ea3 e3
∣∣+|e1e2|=0

Therefore, the first condition of the Theorem is fulfilled.
Now, select suitable constant matrices Q ∈ R3×5

and Λ ∈ R2×5 such that

Re

[
λ

(
P + Q

Λ

)]
<0, ω=− max

[
Reλ

(
P + Q

Λ

)]

> [Γ (q)]1/q

So, the second condition in the Theorem is fulfilled.
These results imply that the adaptive synchronization
between drive system (24) and response system (25)
with linear parameter update law can be realized.

For example, let Q =
⎛
⎝ 0 −10 0 0 0

0 0 0 0 0
0 0 −1 0 0

⎞
⎠ and Λ =

(
0 0 0 −1 −1
0 0 0 1 −1

)
. So,

(
P + Q

Λ

)
=

⎛
⎜⎜⎜⎜⎝

−10 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 −1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ .

Therefore, λ1 = −10, λ2,3 = −1, λ4,5 = −1 ± j ,

and − max

[
Reλ

(
P + Q

Λ

)]
= 1 > [Γ (q)]1/q =

0.9627, respectively. Simulation results are shown in
Fig. 3. Here a2(0) = 20, a3(0) = 5, respectively.
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Fig. 3 Synchronization
errors between systems (24)
and (25)

Case 3. Parameters a1, a2, and a3 are unknown in
the fractional-order system

Let a1, a2 and a3 be the unknown parameters in the
fractional-order Lorenz system (21), and their estima-
tion be a10 = 10, a20 = 28 and a30 = 8/3, respec-
tively.

The fractional-order system (21) can be rewritten as

⎛
⎝ Dq x1

Dq x2

Dq x3

⎞
⎠ =

⎛
⎝ 0 0 0

0 −1 0
0 0 0

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠+

⎛
⎝ a1(x2 − x1)

a2x1 − x1x3

x1x2 − a3x3

⎞
⎠ .

(26)

So,

Pl =
⎛
⎝ 0 0 0

0 −1 0
0 0 0

⎞
⎠ , Pn(x, a) =

⎛
⎝ a1(x2 − x1)

a2x1 − x1x3

x1x2 − a3x3

⎞
⎠ .

Therefore, the response system with linear parameter
update laws is

{
Dq y = Pl y + Pn(y, a) + κ(x, y, a)

Dqa = Λe
(27)

Where a = (
a1 a2 a3

)T
,Λ ∈ R3×6, κ(x, y, a) =

[Q − �l(x, a0)]e and a0 = (
a10 a20 a30

)T
.

Now, the following results can be gained,

Pn(y, a) − Pn(x, a) =
⎛
⎝ a1(y2 − y1)

a2 y1 − y1 y3

y1 y2 − a3 y3

⎞
⎠

−
⎛
⎝ a1(x2 − x1)

a2x1 − x1x3

x1x2 − a3x3

⎞
⎠ =

⎛
⎝ −a10 a10 0 0 0 0

a20 − x3 0 −x1 0 0 0
x2 x1 −a30 0 0 0

⎞
⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

e2

e3

ea1

ea2

ea3

⎞
⎟⎟⎟⎟⎟⎟⎠

+
⎛
⎝ ea1(e2 − e1)

ea2 e1 − e1e3

−ea3 e3 + e1e2

⎞
⎠ ,

and

�l(x, a0) =
⎛
⎝ −a10 a10 0 0 0 0

a20 − x3 0 −x1 0 0 0
x2 x1 −a30 0 0 0

⎞
⎠ ,

�n(e, x, a0) =
⎛
⎝ ea1(e2 − e1)

ea2 e1 − e1e3

−ea3 e3 + e1e2

⎞
⎠ .

It is easily to get the follows,(
�n(e, x, a0)

0

)∣∣∣∣
e=0

= 0

and∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖

=
√

e2
a1

(e2 − e1)2 + (ea2 e1 − e1e3)2 + (−ea3 e3 + e1e2)2

e2
1 + e2

2 + e2
3 + e2

a1
+ e2

a2
+ e2

a3

≤
√

(e2−e1)2+(ea2−e3)2+ (
∣∣ea3 e3

∣∣+|e1e2|)2

e2
1 +e2

2 +e2
3 +e2

a1
+e2

a2
+ e2

a3

≤
√

(e2−e1)2 + (ea2−e3)2 + e2
a3

+ e2
1 + ∣∣ea3 e3

∣∣ + |e1e2|

So,

lim
e→0

∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖

= lim
e→0

√
(e2−e1)2+(ea2−e3)2+e2

a3 +e2
1 +∣∣ea3 e3

∣∣+|e1e2|=0

Therefore, the first condition of the Theorem is fulfilled.
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Fig. 4 Synchronization
errors between systems (26)
and (27)

Fig. 5 The attractor of the
modified fractional-order
Chua’s chaotic system for
a1 = a10 = 1/2, a2 =
a20 = 1.2, and q = 1.08

Now, select suitable constant matrices Q ∈ R3×6

and Λ ∈ R3×6 such that

Re

[
λ

(
P + Q

Λ

)]
< 0,

ω = − max

[
Reλ

(
P + Q

Λ

)]
> [Γ (q)]1/q

So, the second condition in the Theorem is fulfilled.
These results indicate that the adaptive synchronization
between drive system (26) and response system (27)
with linear parameter update law can be achieved.

For example, let Q =
⎛
⎝−1 0 0 0 0 0

0 0 0 0 0 0
0 0 −1 0 0 0

⎞
⎠ and Λ =

⎛
⎝ 0 0 0 −1 1 0

0 0 0 −1 −1 0
0 0 0 −1 −1 −1

⎞
⎠. So,

(
P + Q

Λ

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 1 0
0 0 0 −1 −1 0
0 0 0 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, λi = −1(i = 1, 2, 3), λ4,5 = −1 ±
j, λ6 = −1, and − max

[
Reλ

(
P + Q

Λ

)]
= 1 >

[Γ (q)]1/q = 0.9627, respectively. Simulation results
are presented in Fig. 4. Here a1(0) = 15, a2(0) = 20,
and a3(0) = 5, respectively.

3.2 Adaptive synchronization of the modified
fractional-order Chua’s chaotic system with
fractional-order q = 1.1

In 2010, the simplest modified Chua’s chaotic circuit
was built by Muthuswamy and Chua [35]. In this paper,
based on this modified Chua’s chaotic circuit, the mod-
ified fractional-order Chua’s chaotic system can be
shown as⎧⎨
⎩

Dq x1 = x2

Dq x2 = a1(x2 − x1) − 0.5x2x2
3

Dq x3 = −x2 − a2x3 + x2x3

(28)

where ai (i = 1, 2) is the system parameter. The mod-
ified fractional-order Chua’s system (28) displays a
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chaotic attractor for a1 = a10 = 1/2, a2 = a20 = 1.2
and q = 1.1. Its chaotic attractor is displayed as Fig. 5.

Now, let a1 and a2 be the unknown parameters in the
modified fractional-order Chua’s system (28), and their
estimation be a1 = a10 = 1/2 and a2 = a20 = 1.2,
respectively.

Now, the fractional-order system (28) can be adapted
as⎛
⎝ Dq x1

Dq x2

Dq x3

⎞
⎠ =

⎛
⎝ 0 1 0

0 0 0
0 −1 0

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠

+
⎛
⎝ 0

a1(x2 − x1) − 0.5x2x2
3

−a2x3 + x2x3

⎞
⎠ (29)

So,

Pl =
⎛
⎝ 0 1 0

0 0 0
0 −1 0

⎞
⎠ ,

Pn(x, a) =
⎛
⎝ 0

a1(x2 − x1) − 0.5x2x2
3

−a2x3 + x2x3

⎞
⎠ .

Therefore, the response system with linear parameter
update laws is

{
Dq y = Pl y + Pn(y, a) + κ(x, y, a)

Dqa = Λe
, (30)

where a = (
a1 a2

)T
,Λ ∈ R2×5, κ(x, y, a) = [Q −

�l(x, a0)]e and a0 = (
a10 a20

)T
.

Now, we have the follows,

Pn(y, a) − Pn(x, a) =
⎛
⎝ 0

a1(y2 − y1) − 0.5y2 y2
3

−a2 y3 + y2 y3

⎞
⎠

−
⎛
⎝ 0

a1(x2 − x1) − 0.5x2x2
3

−a2x3 + x2x3

⎞
⎠

=
⎛
⎝ 0 0 0 0 0

−a10 a10 − 0.5x2
3 −x2x3 0 0

0 x3 x2 − a20 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎝

e1

e2

e3

ea1

ea2

⎞
⎟⎟⎟⎟⎠

+
⎛
⎝ 0

ea1(e2 − e1) − 0.5e2e2
3 − e2e3x3 − 0.5x2e2

3
−ea2 e3 + e2e3

⎞
⎠

and

�l(x, a0) =
⎛
⎝ 0 0 0 0 0

−a10 a10 − 0.5x2
3 −x2x3 0 0

0 x3 x2 − a20 0 0

⎞
⎠ ,

�n(e, x, a0) =
⎛
⎝ 0

ea1 (e2−e1)−0.5e2e2
3−e2e3x3−0.5x2e2

3−ea2 e3+e2e3

⎞
⎠ .

It is easily to derive the follows,(
�n(e, x, a0)

0

)∣∣∣∣
e=0

= 0

and

∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖ =

√
[ea1(e2 − e1) − 0.5e2e2

3 − e2e3x3 − 0.5x2e2
3]2 + [e2e3 − ea2 e3]2

e2
1 + e2

2 + e2
3 + e2

a1
+ e2

a2

≤
√

(e2 − ea2)
2 + [ea1(e2 − e1) − 0.5e2e2

3 − e2e3x3 − 0.5x2e2
3]2

e2
1 + e2

2 + e2
3 + e2

a1
+ e2

a2

≤
√√√√A + (e2x3 − 0.5x2e3)2 +

∣∣2[ea1(e2 − e1) − 0.5e2e2
3][e2e3x3 + 0.5x2e2

3]
∣∣

e2
1 + e2

2 + e2
3 + e2

a1
+ e2

a2

.
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Here A = (e2 − ea2)
2 + (e2 − e1)

2 + 0.25e4
3 −

ea1 e2(e2 − e1). Therefore,

∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖ ≤

√√√√A + (e2x3 − 0.5x2e3)2 +
∣∣2[ea1(e2 − e1) − 0.5e2e2

3][e2e3x3 + 0.5x2e2
3]

∣∣
e2

1 + e2
2 + e2

3 + e2
a1

+ e2
a2

≤
√√√√A + (e2x3 − 0.5x2e3)2 + ∣∣[ea1(e2 − e1) − 0.5e2e2

3]x2
∣∣ +

∣∣2[ea1(e2 − e1) − 0.5e2e2
3]e2e3x3

∣∣
e2

1 + e2
2 + e2

3 + e2
a1

+ e2
a2

≤
√

A + (e2x3 − 0.5x2e3)2 + ∣∣[ea1(e2 − e1) − 0.5e2e2
3]x2

∣∣ + ∣∣e2
2e3x3

∣∣ +
∣∣2ea1(e2 − e1)e2e3x3

∣∣
e2

1 + e2
2 + e2

3 + e2
a1

+ e2
a2

≤
√

A + (e2x3 − 0.5x2e3)2 + ∣∣[ea1(e2 − e1) − 0.5e2e2
3]x2

∣∣ + ∣∣e2
2e3x3

∣∣ + ∣∣2ea1 e3x3
∣∣ +

∣∣2ea1 e1e2e3x3
∣∣

e2
1 + e2

2

≤
√

A + (e2x3 − 0.5x2e3)2 + ∣∣[ea1(e2 − e1) − 0.5e2e2
3]x2

∣∣ + ∣∣e2
2e3x3

∣∣ + 3
∣∣ea1 e3x3

∣∣

According to the boundedness of the modified
Chua’s chaotic system (28), there exist a real positive
constant N such that

N ≥ max (|x2| , |x3|)
Hence,

lim
e→0

∥∥∥∥
(

�n(e, x, a0)

0

)∥∥∥∥
‖e‖ ≤ lim

e→0

√
A+(Ne2−0.5Ne3)2+∣∣[ea1(e2−e1)−0.5e2e2

3]N
∣∣+ ∣∣e2

2e3 N
∣∣+3

∣∣ea1 e3 N
∣∣ = 0

Therefore, the first condition of the Theorem is fulfilled.
Now, select suitable constant matrices Q ∈ R3×5

and Λ ∈ R2×5 such that

Re

[
λ

(
P + Q

Λ

)]
< 0, ω = − max

[
Reλ

(
P + Q

Λ

)]

> [Γ (q)]1/q

So, the second condition in the Theorem is fulfilled.
These results imply that the adaptive synchroniza-

tion between drive system (28) and response sys-
tem (30) with linear parameter update law can be
realized.

For example, let Q =
⎛
⎝−1 −1 0 0 0

0 −1 0 0 0
0 1 −1 0 0

⎞
⎠ and Λ =

(
0 0 0 −1 −1
0 0 0 1 −1

)
. So,

Fig. 6 Synchronization
errors of adaptive
synchronization for the
modified fractional-order
Chua’s chaotic system
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(
P + Q

Λ

)
=

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 −1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ .

Therefore, λ1,2,3 = −1, λ4,5 = −1 ± j , and

− max

[
Reλ

(
P + Q

Λ

)]
= 1 > [Γ (q)]1/q =

0.9557, respectively. Simulation results are shown in
Fig. 6. Here a1(0) = 1, a2(0) = −1, respectively.

4 Conclusions

The adaptive synchronization for fractional-order
chaotic systems with fractional-order 1 < q < 2
has been presented in this paper. A sufficient con-
dition on synchronization of fractional-order chaotic
systems with fractional-order 1 < q < 2 and
unknown parameters is obtained theoretically by using
the Mittag–Leffler function and the generalized Gron-
wall inequality. Only the linear parameter update laws
are used in our synchronization scheme. Furthermore,
this adaptive synchronization approach is applied to
the fractional-order Lorenz chaotic system with par-
tially or fully unknown parameters for fractional-order
q = 1.08 and the modified fractional-order Chua’s
chaotic system with partially or fully unknown para-
meters for fractional-order q = 1.1. The numerical
results agree with the theoretical analysis well.
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