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Abstract Rotors of permanent magnet synchronous
motors (PMSM) used in hybrid electric vehicles are
an electromechanical-coupled dynamic system. Mag-
netic field-induced mechanical vibration has an impor-
tant effect on the performance of these high-speed and
high-power-density PMSMs. In this paper, the model
of an unbalanced magnetic pull (UMP) resulting from
a non-uniform magnetic field is investigated theoreti-
cally and numerically. Equations of motion of an unbal-
anced Jeffcott rotor are established. Approximate solu-
tion to the equation of nonlinear vibration under UMP
is obtained using the averaging method, and stabil-
ity of the steady response is discussed using eigen-
value analysis. Nonlinear phenomenon, which is an
effect of the electromagnetic stiffness coefficient, mass
imbalance parameter and effective damping on over-
all responses, was studied in detail. It is demonstrated
that response curves manifest soft characteristics, with
a jump phenomenon and unstable areas pointed out.
The response obtained using analytic method was com-
pared with the numerically results. Conclusions from
this work can be adopted to identify instability locus in
rotors with mechanical and magnetic coupling effects
taken into consideration. In addition, outcomes from
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this work provide theoretical and practical ideas to con-
trol the systems and optimize their operation.
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1 Introduction

Use of high-power-density permanent magnet synchro-
nous motors (PMSM) in hybrid electric vehicle (HEV)
presents a promising potential. This is due to attractive
features such as high torque density, high efficiency,
small size, fast response and reliable operation of these
motors [1,2]. In general, PMSM used for HEV are
typical electromechanical coupling systems. Operation
quality has a direct impact on performance and stability
of driveline systems.

Installation deviation, mass eccentricity and bear-
ing faults inevitably lead to rotor eccentricity. This is
due to the mechanical connection between the rotor
and gear mechanism. An asymmetric air gap results in
non-uniform magnetic fields, where a transversal exci-
tation referred to as unbalanced magnetic pull (UMP)
is generated [3–5]. Unbalanced electromagnetic forces
increase as eccentricity of the rotor increases, which
in turn further increases the eccentricity. This leads
to an unstable mechanical and magnetic coupling and
is the cause for vibrations [6]. Changing magnitude
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of the supply current and frequency can be used to
vary the coupling. When the magnitude of the cur-
rent increases at higher supply frequencies, electro-
magnetic fields transfer energy into the mechanical sys-
tem, which may lead to self-excited vibrations and rotor
dynamic instability [7]. Typically, PMSM for HEV are
operated over a wide range of speeds, using invert-
ers to vary line frequency. Effects due to mechanical
and magnetic coupling are significant in motors oper-
ating close to the first flexural critical speed. Due to
this fact, it is important to take into account instability
regions while designing the rotor, to avoid these insta-
bility regions, which lie within the range of operation
speeds. In addition, with increase in operating power
of the PMSM used in HEV, the problem arising due
to nonlinear vibrations induced by the magnetic field
becomes more serious [1]. Consequently, it is essen-
tial to analyze the nonlinear vibrations and instability
taking into consideration the mechanical and magnetic
coupling effects, which are of theoretical significance
in the mechanical design of PMSM for HEV and fault
diagnosis.

Determination of precise UMP has been a topic of
an intensive research and has been reported extensively
in the literature over the last several decades. UMP
can be computed precisely using finite element analy-
sis [1,8,9]. However, this approach is computationally
expensive and is unable to provide an insight into the
origin of UMP along with the key factors that influence
it. Various research groups have focused on theoretical
formulation of UMP and its effects on rotors in elec-
tric machines. Smith and Dorrell [10] put forward a
model for assessing UMP due to rotor eccentricity for
cage induction motors that take into account axial vari-
ation in the eccentricity. Guo et al. [11] analytically
expressed nonlinear UMP using a range of pole pairs
under no-load conditions to characterize vibration in a
hydro-generator rotor. They further characterized the
influences of the UMP and eccentric forces on Jeffcott
rotor dynamics. Gustavsson et al. [12,13] and Yang
et al. [14] calculated UMP by considering eccentricity
and axis change in a hydro-generator rotor and ana-
lyzed rotor stability and imbalance response. Huang
et al. [15] investigated periodic motion, quasi-periodic
motion and chaotic motion of a generator for different
rotor eccentricities.

The research mentioned above focused on large-
scale hydro-generators. For a permanent magnet
machine, even without excitation, UMP exists due to

the magnets; essentially, in this machine, UMP will
increase with load and result in additional vibrations.
Meanwhile, in a PMSM for HEV, there is an inter-
nal combustion engine in close proximity, operating
together in a complementary manner. This gives rise
to a multitude of operational and vibration frequen-
cies that are picked up by the internal combustion
engine. In addition, surface conditions of the roads act
as an excitation source, which varies with the velocity
of the HEV. The rotor may pick up these vibrations
when the vehicle is in motion. The external distur-
bances act as a force at variable frequencies that can
act on the rotor. Although several groups [4,16–18]
have reported on UMP from the electrical perspective,
very few groups [19–21] have presented a UMP model
from a mechanical and dynamics perspective. Kim et
al. [19] analyzed the vibration of a PMSM rotor by con-
sidering mechanical-magnetic coupling and the influ-
ence of magnetic coupling on rotor trajectory using the
finite element transfer matrix method. Ede et al. [20]
calculated and measured natural frequency of high-
speed brushless PMSM rotor. Ha et al. [21] studied the
influence of UMP on rotor vibration for switch reluc-
tance motors and calculated the dynamic response of
the motor rotor using step-by-step integration.

As pointed out in by Jiang et al. [22], mathemat-
ical stability analysis has limitations, but offers the
best chance for understanding nonlinear phenomena to
allow intelligent design modifications. Stability analy-
sis is an important topic in qualitative theory of non-
linear differential equations. Various stability types,
methods and conditions are motivated by standard
approaches based on the classical Floquet theory and
Routh–Hurwitz criteria [23–26].

The main objective of this paper is identification and
characterization of nonlinear dynamics of the UMP
constituents on the radial displacement of the rotor
center inside the stator bore. Characteristics of the
non-sinusoidal distribution of the PMSM air gap mag-
netic field are analyzed. Based on these characteris-
tics, magnetic motive force (MMF) of the air-gap mag-
netic field was determined based on existing theories
for armature winding and permanent magnets. The air-
gap permeance of the eccentricity rotor is calculated
with the Fourier series expansion method. Then, taking
armature reaction into consideration, UMP of PMSM
was calculated and validated using FEM. The simplest
mechanical model in a rotating environment, which is
the Jeffcott rotor, is used here to study the dynamic
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Fig. 1 Relative position between permanent magnets and stator
armature

response of the UMP. Furthermore, this paper explores
stability issues related to PMSM for HEV. The analy-
sis approximates the nonlinear system from our model
with an appropriate linear system. An eigenvalue-based
stability analysis is used which offers insights into sys-
tem design parameters. The change in the electromag-
netic system is expressed by electromagnetic stiffness
coefficient. Analytical and numerical methods were
used to study dynamic response of the Jeffcott rotor
under UMP and eccentric forces. In addition, vibration
characteristic of the system response are studied using
amplitude–frequency curves. The trajectory of the rotor
center, vibrating characteristics and dynamic response
caused by UMP are summarized.

2 Unbalanced magnetic pull

Electromagnetic vibration in an eccentric rotor is
induced by radial electromagnetic force, which is an
UMP [27]. The air-gap magnetic field is influenced by
MMF and air-gap permeance. Therefore, it is essential
to analyze MMFs and permeance.

For analysis of electromagnetic forces acting on the
PMSM rotor, following assumptions were made: (a) In
order to consider only vibration of the rotor, the stator
is assumed to be the rigid body in comparison with the
rotor. (b) Permeability of the rotor iron and the stator is
infinite. (c) Surface of the rotor and stator are smooth
in the axial direction. (d) Air-gap magnetic field distri-
bution is sinusoidal.

2.1 Magnetic motive force of stator and rotor

Figure 1 represents the relative position between per-
manent magnets and the stator armature. Where, α is
the angle between the centerline of a predetermined
stator tooth and a centerline of a permanent magnetic

pole, i.e., the relative position between the stator and
rotor.

According to magnetic circuit principle for perma-
nent magnet motors [28], the permanent magnet can be
regarded as a constant source of MMF. The fundamen-
tal MMF of surface permanent magnet motors can be
expressed as:

Fr (t, α) = Frm cos (ωt − pα)

= 4

π

Brhm

μ0
sin

(αpπ

2

)
cos (ωt − pα) (1)

where, Frm is the amplitude of the fundamental MMF
for the permanent magnet rotor, p is the number of pole
pairs, Br is the magnetic remanence for the permanent
magnet material, αp is the magnetic pitch/pole ratio, μ0

is the air permeability, hm is the thickness of permanent
magnet magnetization direction, and ω is the electric
angular frequency.

The stator winding MMF analysis for a permanent
magnet motor is similar to that of induction motors. The
PMSM for the HEV is supplied using a PWM voltage
source; however, the armature current is an approxi-
mate three-phase symmetrical sinusoid waveform.

According to winding theory for electric machines,
the fundamental MMF of A-phase winding can be
expressed as [9,28]:

fφ1 (α, t) = 4

π

√
2N Kw1

2p
Im cos (pα) cos (ωt) (2)

where α = 0 refers to the axis of the phase wind-
ing, N is the number of series turns per phase, and
Kw1 = Kd1 Kp1, where, kw1 is the fundamental wind-
ing distribution factor. For example, when the number
of slots per phase is an integer, Kd1 and Kp1 are given
by:

kp1 = sin
y1

τ

π

2
and kd1 = sin q π

Qs

q sin π
Qs

(3)

where, y1 is the pitch of a coil, τ is the pole pitch,
q = Qs/2pm is the number of stator slots per pole
per phase, Qs is the total number of slots, and m is the
number of phases.

Hence, MMF of a three-phase stator winding is
obtained from Eqs. (2) and (3):

Fs (α, t) = Fsm cos (ωt − pα − ϕ0)

= 1.35
Nkw

2p
Im cos (ωt − pα − ϕ) (4)
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Fig. 2 Cross section of eccentric rotor

where, Fsm is the amplitude of the fundamental MMF
for the excitation current of the armature reaction cur-
rent of the stator, respectively, and ϕ is the inner power
factor angle.

For the case of a PMSM under symmetrical load,
resultant fundamental MMF of the air gap can be
expressed as:

Fj (α, t) = Fr (t, α) + Fs (t, α)

= Fm cos (ωt − pα − β) (5)

where,

Fj =
√

F2
sm + F2

rm − 2Fsm Frm sin ϕ,

cos β = (Frm − Fsm sin ϕ)/Frm

2.2 Air-gap permeance

Figure 2 shows the cross section of a rotor rotating at a
constant angular speed Ω . The shadow area depicts the
stator. Points Or and O refer to the geometrical centers
of the rotor and stator, respectively. Figure 3 plots the
Cartesian coordinate system xyz created using center
O as the origin, where z-axis denotes the longitudinal
coordinate of the rotor shaft, x and y represents the
lateral coordinates of the rotor center. In this case, l is
the length of the rotor shaft and Rr is the outer radius
of the rotor. The eccentricity is e, and eccentricity can
be static, dynamic or both.

Eccentricity is assumed to be identical along the lon-
gitudinal direction of the eccentric rotor. The air-gap
length can be approximately expressed as

l

o
DRotor

Stator

m

y

zk
c

Fig. 3 Simply supported Jeffcott rotor system

δ (α, t) ≈ δ0 − e cos (θ − θr) (6)

where δ0 is the mean air-gap length of the machine.
The air-gap permeance can be expressed as a Fourier

series [11]:

Λ(α, t) = μ0

δ (α, t)
= μ0

δ0 [1 − ε cos (α − θr)]

=
∞∑

n=0

Λn cos [n (α − θr)] (7)

where ε = e/δ0 is the relative eccentricity and μ0 is
the air permeance.

Fourier coefficients Λn are given as

Λn =
⎧⎨
⎩

μ0

δ0
√

1−ε2 (n = 0)

2μ0

δ0
√

1−ε2

[
1−√

1−ε2

ε

]n
(n > 0)

(8)

Normalized magnitude of permeance can be repre-
sented by Λ̄n = Λnδ0/μ0, and relationship between
Λ̄n and relative eccentricity ε is shown in Fig. 3.

From Fig. 4, it can be seen that as the order
n increases, amplitude of Fourier series decreases
rapidly, and the DC component and the first-harmonic
component are dominant. Simultaneously, amplitude
of each Fourier series increases in relative eccentric-
ity. When n > 2, magnitude of which is approximately
equal to zero. Hence, if the eccentricity is assumed to be
small, only the DC component, first-order and second-
order components need to be taken into account.

2.3 Model of unbalanced magnetic pull

After analyzing MMF and air-gap permeance, air-gap
density distribution is given by [28]:

Br (α, t) = μ0
F

δ
= Fj (α, t) Λ (α, t) (9)
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Fig. 4 Normalized air-gap permeance coefficient against eccen-
tricity

Substituting Eqs. (5) and (8) into Eq. (9), we can obtain
Eq. (10) by keeping the first three terms of the infinite
series. From Eq. (10), it can be seen that modulation
of the harmonic MMF waves by air-gap permeance
produces air-gap harmonic fields with different pole-
pair numbers, and pole-pair number of PMSM for HEV
is usually larger than 2.

Br = 1

2
Fm {2Λ0 cos (ωt − pα) + Λ1 [cos ((p − 1) α

− (ωt − θr)) + cos ((p + 1) α − (ωt + θr))

+Λ2 [cos ((p − 2) α − (ωt − 2θr))

+ cos ((p + 2) α − (ωt + 2θr))]} (10)

According to Maxwell stress tensor method, density of
radial electromagnetic force acting on the rotor can be
expressed as:

σr = 1

2μ0

(
B2

r − B2
t

)
≈ 1

2μ0
B2

r (11)

where Br is the radial component of air-gap flux density
and Bt is the tangential component. Studies have shown
that Bt is much smaller than Br [8]; consequently, the
radial force density is determined mainly by radial flux
density.

Analytical expression of radial electromagnetic
force is obtained by the Maxwell stress tensor method
[6,11]

⎧
⎪⎨
⎪⎩

Fx = Rrlπ F2
m

2δ0

1
1−ε2

(
1−√

1−ε2

ε

)3
cos θr

Fy = Rrlπ F2
m

2δ0

1
1−ε2

(
1−√

1−ε2

ε

)3
sin θr

(12)

Table 1 Main parameters of PMSM

Parameters Values Unit Parameters Values Unit

Qs 36 Br 1.29 T

y1 6 δ0 2 mm

τ 24.1 mm e 0.5 mm

hm 4 mm αp 0.85

N 168 Im 200 A

p 3 μ0 4π × 10−6

Since [ε2] < 1, we can obtain the following expres-
sion of the power series by keeping the first two terms:

1

1 − ε2 ≈ 1 + ε2,
√

1 − ε2 ≈ 1 − 1

2
ε2 (13)

Substituting Eq. (13) into (12) and neglecting
higher-order terms for order greater than three,

⎧⎨
⎩

Fx = kenδ0

(
ε + 5

4ε3
)

cos θr

Fy = kenδ0

(
ε + 5

4ε3
)

sin θr
(14)

where ken is called electromagnetic stiffness coefficient

and ken = Rrlπμ0 F2
m

2δ3
0

.

As seen from Eq. (14), orientation of the radial elec-
tromagnetic force points to the narrow air gap.

2.4 Comparison with finite element results

In order to validate this model, radial electromagnetic
forces of PMSM for HEV due to static and dynamic
eccentricity are analyzed using 2D FEA. A comparison
between FEM and analytical results is presented in the
following sections.

The main characteristic values used in this study are
listed in Table 1. An application of this machine is the
HEV drive system.

Usually, two types of rotor eccentricities are con-
sidered: static and dynamic. Static eccentricity occurs
when the rotor is not centered on the stator bore axis
due to a misaligned bearing, wear or manufacturing tol-
erances, and it rotates on its own axis. Dynamic eccen-
tricity is when the rotor is not centered in the stator
bore, but rotates about the center of the stator bore. A
dynamic eccentricity rotates at the same speed as the
rotor. This could be caused by a bent shaft or manu-
facturing tolerances. Modeling methods of static and
dynamic eccentricity are presented in [29]. The center
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Table 2 Comparison of UMP at rated load with static eccentric-
ity

Eccentricity (%) FEM (N) Analytical (N) Error (%)

10 148 150.6 1.76

20 310.5 320.8 3.32

30 545 556.5 2.11

40 910.5 960.5 5.49

50 1,330.4 1,402.8 5.44

of the stator core is shifted on the x-axis to simulate
static eccentricity. When the rotor rotates, position of
the narrow air gap is same. Center of rotor is moved to
consider dynamic eccentricity. Since the rotating center
is fixed, position of the narrow gap is rotating the rotor
movement. Radial magnetic force on the air-gap con-
tour is calculated by 2D FEA and analytical expression
shown in Eq. (14).

Table 2 shows a comparison of unbalanced magnetic
force obtained using FEA and the analytical model
at rated load with static eccentricity. Maximum error
between the FEM and analytical results is about 5 %.
The results obtained by the two methods are in good
agreement.

Direction of the unbalanced magnetic force needs to
be determined. Figures 5 and 6 show the comparison
of unbalanced magnetic force under 30 % eccentricity
with static and dynamic eccentricity. Mechanical angle
refers to the rotor rotation angle, Fx is the x-axis com-
ponent of unbalanced magnetic force, and Fy is the
y-axis component of unbalanced magnetic force. Fig-
ure 5 shows the unbalanced magnetic force character-
istics with static eccentricity. Since the narrow air gap
is located along x-axis component, i.e., θr = 0, conse-
quently, Fx level is relatively high at static eccentricity,
and Fy is approximately zero. Unbalanced magnetic
force with dynamic eccentricity is shown in Fig. 6.
Due to the position of the narrow air gap rotating with
rotor movement, i.e., θr = ωrt + θ0 (θ0 is the initial
position angle. In this case, θ0 = 5◦), the direction of
force rotates according to rotor position. Amplitude of
unbalanced magnetic force is almost the same as static
eccentricity due to similar eccentricity levels.

3 Nonlinear dynamic model of rotor

In this section, nonlinear vibration of the rotor induced
by UMP and residual mass unbalanced force are con-
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Fig. 5 Unbalanced magnetic force with static eccentricity
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Fig. 6 Unbalanced magnetic force with dynamic eccentricity

sidered. The rotor of the PMSM for HEV is modeled
as an ideal, simply supported Jeffcott rotor, as shown
in Fig. 2. Further assumptions are made that the rotor is
much shorter than the shaft and that the magnetic field
in the air gap is uniformly distributed along the longitu-
dinal direction Z . Point G represents the gravity center
of the rotor. Also, k and c are the rotor mechanical stiff-
ness and mechanical damping contributed by the shaft
to the rotor. The mass eccentric distance of the disk is
a. Differential equations for the radial vibration of the
rotor can be written as

{
mẍ + cẋ + kx = maΩ2 cos Ωt + Fx

m ÿ + cẏ + ky = maΩ2 sin Ωt + Fy
(15)

where Ω is the rotating angular velocity of the rotor.
For the PMSM, relationship between the rotating angu-
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lar velocity Ω , pole-pair number p and electrical fre-
quency ω is given by Ω = ω/p.

Substituting Eq. (14) into Eq. (15) leads to Eq. (16).

⎧
⎨
⎩

ẍ+2ξωn ẋ + ω2
n

[
1 − ken

(
1+ 5

4ε2
)]

x = eΩ2 cos Ωt

ÿ+2ξωn ẏ + ω2
n

[
1 − ken

(
1+ 5

4ε2
)]

y = eΩ2 sin Ωt

(16)

From Fig. 2, relationship between displacement of
vibration and eccentricity is:

{
x = e cos θr = δ0ε cos θr

y = e sin θr = δ0ε sin θr
(17)

Equation (17) is put into a non-dimensional form by
choosing

τ = ωnt, ν = Ω/ωn, α = a/δ0,

ω2
n = k/m, ξ = c/(2mωn)

Kn = ken/k, X = x/δ0, and Y = y/δ0 (18)⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ẍ+2ξ Ẋ + X − Kn

(
X + 5

4 X3 + 5
4 XY 2

)

= αν2 cos ντ

Ÿ+2ξ Ẏ + Y − Kn

(
Y + 5

4 Y 3 + 5
4 X2Y

)

= αν2 sin ντ

(19)

Equation (19) is the non-dimensional form of the equa-
tions of motion. From Eqs. (15) and (16), it can be seen
that the external frequency, Ω , is scaled by the natural
frequency, ωn, of the system under consideration. This
natural frequency, ωn, will vary with the stiffness of the
system. From Eq. (19), it can be seen that the equation
of vibration is nonlinear with mechanical and magnetic
coupling terms.

4 Vibration response and stability analysis

4.1 Vibration response

Equation (19) is symmetrical; consequently, motion in
the xy-plane can be investigated in complex coordinates
defined by Z = X + iY . Equation (19) can be rewritten
in the complex form and is shown in Eq. (20)

Z̈ + 2ξ Ż + Z − Kn

(
Z + 5

4
Z̄ Z2

)
= αν2eiντ (20)

In this paper, an averaging method is used to solve
the periodic response [30]. Assuming the solution as
Z = Bei(ντ+ϕ) and substituting it into Eq. (20), then
the primary resonance solution is obtained.

{
Ḃ = − Kn

2ν

(
ξ Bν + αν2 sin ϕ

)

ϕ̇ = Kn
2νB

[(
Kn − ν2

)
B − 5

4 Kn B3 − αν2 cos ϕ
]

(21)

When the motor is operating in a steady state, Ḃ =
ϕ̇ = 0; consequently, the amplitude–frequency equa-
tion of nonlinear dynamic can be obtained:

25

16
K 2

n

(
B2

)3 + 5

2
Kn

(
Kn − 1 + ν2

) (
B2

)2

+
[
4ξ2ν2+

(
1 − ν2

)2 + K 2
n − 2Kn

(
1 − ν2

)]

B2 = α2ν4 (22)

Meanwhile, phase frequency equation of synchronized
motion is also obtained and is given as:

tan ϕ = 2ξν

ν2 − 1 + Kn

(
1 + 5

4 B2
) (23)

4.2 Stability condition for synchronous motion

The synchronous motion of rotor is governed by Eq.
(21), and the steady-state solution is determined by
amplitude B and phase ϕ. To investigate stability of
the synchronous periodic motion, disturbed quantities
are denoted as:

B̃ = B − Bs and ϕ̃ = ϕ − ϕs (24)

Linearization of Eq. (21) at B = Bs and ϕs yields
{ ˙̃B

˙̃ϕ

}
=

⎡
⎣ − Kn

2ν

(
∂ F1
∂ B

)
s

− Kn
2ν

(F2)s

− Kn
2νBs

(
∂ F2
∂ B

)
s
− Kn

2νBs
(F1)s

⎤
⎦

{
B̃
ϕ̃

}

= J
{

B̃
ϕ̃

}
(25)

where

F1 = 8ξα�, F2 = 4

(
Kn

2
− 1 + ν2

)
B + 5

2
Kn B3,

and ()s stands for a quantity evaluated at the steady-
state solution. J is called Jacobian matrix. Eigenvalues
of the Jacobian matrix are solved using the character-
istic equation:
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λ2 + pλ + q = 0 (26)

where{
p = Knξ

q = ξ2ν2 + 25
16ω2

n B4
s − 5

(
1−ν2

)
Kn

+
(
1−ν2

)2

Kn

Stability of the approximate solutions depends on
the eigenvalues of the Jacobian matrix J according to
the Routh–Hurwitz criterion [31]. Solutions are unsta-
ble if the real part of the eigenvalues are positive, i.e.,
p > 0, q > 0.

5 Results and discussion

Some basic parameters for the system were selected as
m = 26.7 kg, k = 1.75 × 106 N/m. Other parameters
are listed in Table 1 and calculated from the equations
above.

5.1 Natural frequency of free vibration

Based on vibration theory, if nonlinear UMP is taken
into account, natural frequency of the rotor system is
expressed by Eq. (27). Natural frequency was found to
be related to the electromagnetic stiffness coefficient
and relative eccentricity.

fn = ωn

2π
= 1

2π

√√√√k − ken

(
1 + 5

4ε2
)

m
(27)

Figure 7a shows the variation of natural frequency
ωn with relative eccentricity. A significant drop in the
magnitude of ωn was observed with increase in relative
eccentricity. This indicates that UMP reduces flexural
rigidity of the shaft–rotor system. Figure 7b illustrates
the variation in natural frequency of rotor with respect
to flux density B.

Relative eccentricities are chosen as ε = 0.25, ε =
0.5 and ε = 0.75. Monotonic reduction of ωn was
observed with increase in flux density. For ε = 0.75,
decrease in natural frequency is faster than in the other
two cases. It can be concluded that UMP acting on
the rotor takes on a negative stiffness effect, which can
be seen from Eq. (27). Consequently, drop in natural
frequency beyond a certain threshold value would lead
to resonance and unstable motion.
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Fig. 7 Variation of natural frequency

5.2 Forced vibration response

In a vibrating state, amplitude of vibration is always
equal to a nonzero solution. Both stable and unsta-
ble non-trivial solutions were observed. Stability of
those solutions was analyzed to avoid sudden change
in behavior as the parameter crosses a critical value
called the bifurcation point. Sudden change in ampli-
tude leads to catastrophic failure of the whole system.
Graphical representation of the vibration amplitude for
varying system control parameters was constructed.

Figure 8 illustrates a representative frequency
response or a typical solution for various values of
non-dimensional electromagnetic stiffness coefficient
Kn, while keeping α and ξ constant equal to 0.02
and 0.01, respectively. The value for Kn = 0 corre-
sponds to a linear forced vibration response. Mean-
while, Kn > 0 correspond to a nonlinear forced vibra-
tion response. It can be seen that the effective non-
linearities of the system are of soft type. For a spe-
cific value of v, the system has three solutions. Two of
these solutions are stable and one is unstable. There-
fore, both jumping phenomena and bifurcation occur
in the system. For Kn = 0.75 in Fig. 8, solid lines cor-
respond to stable solutions, whereas the dotted lines
correspond to unstable solutions. In the figure, arrows
indicate the jumping phenomenon associated with each
mode. It is worthy to note that amplitude of vibratory
motion of the rotor increased with in frequency (upward
sweep), and it finally reached a critical point D, which

123



Mechanical and magnetic coupling effects 549

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F

E

C

BA

Kn=0.75Kn=0.50

Kn=0.25

B

ν

Kn=0

Unstable

D

0.2 0.4 0.6 0.8 1.0 1.2

Fig. 8 Frequency response for different values of Kn for con-
stant values of α and ζ constant, equal to 0.02 and 0.01, respec-
tively

is called as saddle-node fixed bifurcation point. Any
further increase in frequency beyond this point leads
to a spontaneous amplitude increase to a point E, i.e.,
a sudden upward jump in the amplitude from lower to
higher amplitude. Further increase in frequency, results
in an amplitude change of the vibratory motion and it
varies along the path EF. For downward sweep of the
frequency, when the frequency of applied current is
decreased from point F, amplitude response increases
and finally reaches point C. A slight decrease in fre-
quency at this critical point leads to a similar sudden
upward jump as seen in the case of the upward sweep.
Further decrease in frequency decreases the amplitude
to a lower value, and a sudden downward jump is
observed at point C. For specific parameters, stabil-
ity analysis shows that motions on curves AB, BD and
CED are stable and those on curve CD are unstable.
Meanwhile, it is worthy to note that the resonance area
augments and moves to the left as non-dimensional
electromagnetic stiffness coefficient Kn increases. It
can be seen that by increasing Kn, amplitude decreases.
Also, increasing Kn results in bifurcation at a lower
rotational speed.

Figure 9 demonstrates effect of damping on rotor
dynamic behavior for three different values of vis-
cous damping coefficient ζ . Increase in ξ resulted in
a decrease in the amplitude response. For instance, a
sharp decrease in the amplitude response from 1.14δ0

to 0.75δ0 was seen as ξ was increased from 0.005
to 0.01. With increase in viscous damping, amplitude
response decreased due dominant terms containing the
coefficients α, k over the term function of ξ . Mean-
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Fig. 9 Frequency response for different values of ξ for constant
values of Kn and α, equal to 0.25 and 0.02, respectively
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Fig. 10 Frequency response for different values of α for constant
values of Kn and ξ , equal to 0.25 and 0.01, respectively

while, the unstable zone reduced with increase in damp-
ing. Forward saddle-node bifurcation point and back-
ward saddle-node bifurcation point disappear from the
response curve for higher values of ξ , and the system
dynamics become stable.

Figure 10 describes the behavior of the system with
changing mass imbalance parameter α changing from
0.01 to 0.05. It is worthy to note here that the pattern
of response curve remains the same, but there is an
increase in the amplitude response and the resonance
area augments with increase in the magnitude of α for
the system. The backward bifurcation point starts at
a lower frequency and the jump length increases with
increase in the mass imbalance parameter α. The start-
ing amplitude of the rotor reduces with decrease in α.
The jumping phenomenon disappears altogether from
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Fig. 11 Steady-state
response for Kn = 0.25.
a Trajectory of the rotor
center; b FFT for
displacement
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Fig. 12 Steady-state
response for Kn = 0.75.
a Trajectory of the rotor
center; b FFT for
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the response curve for lower values of mass imbalance
parameter α, and the system dynamics become stable.

5.3 Numerical solutions

Response obtained using the average method is com-
pared to results obtained by numerically solving the
temporal Eq. (19). Runge–Kutta method was used
in the present study. Standard fast Fourier transform
(FFT) was adopted to analyze frequency composition
of displacement responses to allow frequency compo-
nent identification in the harmonic terms.

When the relative eccentricity is small, center of the
rotor can be considered the same as the center of the sta-
tor at the initial state. A non-homogenous air gap will
result when the rotor is rotating due to the mass eccen-
tricity. Figure 11 shows the steady-state response with
and without the UMP being considered for Ω = 0.5ωn,
and conditions are similar to that shown in Fig. 8. The
non-dimensional electromagnetic stiffness coefficient

Kn = 0.25. It can be seen that the vibration magnitude
with UMP considered is 0.021 and is close to the ana-
lytical solution, 0.0205, obtained from Eq. (24). This
indicates that the analytic solution is in good agreement
with the numerical solution. Also, the vibration mag-
nitude with UMP considered is larger in magnitude in
comparison with the case when UMP was not consid-
ered. As mentioned above, the direction of UMP acting
on the rotor of PMSM always points to the smallest air
gap, making average trajectory size of the rotor larger.
The displacement only contains a component of rotat-
ing frequency 0.5ωn.

In this case, due to the mass eccentricity, mixed
eccentricity can occur. Figure 12 shows the steady-state
response with UMP when Ω = 0.5ωn and Kn = 0.75.
It can be seen that the shape of trajectory of the rotor
center is not cyclical but similar to a heart-shaped curve.
FFT shows that the dynamic response contains both
the component of the rotating speed Ω , along with the
double-power frequency 2Ω . The amplitude of rotating
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speed Ω is 0.171 similar to the analytical solution of
0.175. However, the amplitude of the trajectory of the
rotor center is approximately 0.23. Using a higher-order
method can substantially reduce error in amplitude.

Therefore, it can be concluded that an averaging
method aimed at primary resonance for weak nonlinear
problems is accurate for use in the current study. Conse-
quently, there is considerable reduction in efforts, since
higher-order terms can be neglected without serious
loss in the accuracy of the solution for the entire range
of rotation speeds.

6 Conclusions

Based on the idea of modulating the fundamental
MMF wave by air-gap permeance and Maxwell tensor
method, an analytical expression of the UMP of PMSM
for HEV was derived here. This was validated using
FEM analysis. Predicted values for both two methods
were in good agreement, and 2-D FE analysis results
validated the analytical expression of the UMP.

UMP excitation was introduced into the equations
of motion. Results show that the natural frequency
reduced with increase in the flux density and relative
eccentricity because of the negative stiffness effects
caused by UMP.

An averaging method is adopted to determine the
steady-state motion of the Jeffcott rotor under the influ-
ence of UMP. Stability analysis was based on the
Routh–Hurwitz criterion and a numerical scheme using
Runge–Kutta method. Effect of various design para-
meters on the mechanical behavior of the system was
characterized. Numerical computations were used to
validate analytic results. Following important results
were achieved from this study:

• Effective nonlinearity is of soft type for prime res-
onance under UMP excitation. Increasing Kn, i.e.,
UMP excitation, effect of nonlinearity on the fre-
quency response curves was found to be dominant.
The resonance area widens and moves toward the
left. Working area of a PMSM used for HEV could
easily move into the resonance area.

• Saddle-node bifurcations point unstable zone were
found. It is at these points that catastrophic failure
of the system occurs.

• For simple resonance condition, it was observed
that increase in mass imbalance result in a increase

in the amplitude response and a jump phenomenon
occurs at lower frequency.

• It was observed that the unstable zone reduced with
increase in damping, and the amplitude response
decreased. Saddle-node bifurcation points disap-
pear from the response curve for a higher value
of ξ , and the system dynamics become stable.

• An average method aimed at the primary reso-
nance for weak nonlinear problems was accurate
enough for the current study. Nonlinear vibration
of rotor system of PMSM with double times of the
rotating frequency could be excited using higher
UMP excitation. Consequently, there is consider-
able reduction in efforts, since higher-order terms
can be neglected without serious loss in accuracy
of the solution for strong nonlinear problems.
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