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Abstract Existing improved versions of the optimal
velocity model have been proved to be capable to
enhance the traffic flow stability against a small per-
turbation with the cooperative control of other vehi-
cles. In this paper, we propose an extended optimal
velocity model with consideration of velocity differ-
ence between the current velocity and the historical
velocity of the considered vehicle. We conduct the lin-
ear stability analysis to the extended model with con-
cluding that the traffic flow can be stabilized by taking
into account the velocity difference between the current
velocity and the historical velocity of the considered
vehicle. Namely, the traffic stability can be improved
only by each vehicle’s self-stabilizing control, without
the cooperative driving control from others. It is also
found that the time gap between the current velocity
and the historical velocity has an important impact on
the stability criterion. To describe the phase transition,
the mKdV equation near the critical point is derived
by using the reductive perturbation method. The theo-
retical results are verified using numerical simulation.
Finally, it is clarified that the self-stabilizing control
in velocity is essentially equivalent to the parameter
adjusting of the sensitivity.
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1 Introduction

In recent years, the problem of traffic jam has been
a serious issue in many countries including devel-
oped and developing nations. In order to obtain a
better understanding of driver behavior and traffic
dynamic, many engineers, physicists, mathematicians,
and behavioral psychologists devoted themselves into
the researches of the traffic flow dynamics [1–14]. As
a result, a considerable variety of traffic models have
been proposed to mathematically describe and explain
the complex phenomena in traffic flow over the past
few decades. Generally, traffic flow models can be
categorized into macroscopic, mesoscopic, and micro-
scopic models, with respect to the aggregation level.
Macroscopic models describe traffic flow at low level
of detail analogous to liquids or gases in vehicle motion,
while microscopic models explain traffic dynamics in
terms of the motion equation of individual vehicle.
Mesoscopic models are intermediate which combines
microscopic and macroscopic approaches to a hybrid
model.

Basically, the car-following models with optimal
velocity function are an important representative of
microscopic traffic flow models and have been studied
extensively by the techniques of simulation and analy-
sis. The optimal velocity model (OVM, for short) is
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based on the idea that a driver adjusts vehicle veloc-
ity according to the preceding headway [7]. Later,
many improvements have been done to make it con-
form to actual observations. Helbing and Tilch con-
ducted a calibration for the OVM by using the empir-
ical car-following data and suggested a generalized
force model (GFM, for short) to overcome the short-
comings of high acceleration and unrealistic decel-
eration occurring in the OVM [8]. In 2001, Jiang et
al. [9] found that the GFM exhibited poor delay time
of car motion and kinematic wave speed at high den-
sity and presented a full velocity difference model
(FVDM, for short). Soon afterward, Li et al. [10] devel-
oped a velocity-difference-separation model (VDSM,
for short) to remove the unpractical negative speed in
traffic simulation.

Fast development of information and communica-
tion technologies (ICT, for short) is transforming our
life style via high-speed information superhighway.
The traffic control and management have been trans-
formed thoroughly by use of the ICT system, which
makes the intelligent traffic system (ITS, for short) shift
to the future solution to the severe traffic congestion.
Under this background, many scholars turn to propose
some extended car-following models considering the
cooperative driving control which incorporate the traf-
fic information of other vehicles except for the imme-
diately preceding one. Nagatani and Li et al. proposed
two car-following models taking into account the next-
nearest-neighbor interaction in front [11,12]. Xue [14]
suggested a lattice model with the consideration of opti-
mal current of the next immediately preceding vehicle.
In addition, some researchers advised some general-
ized traffic flow models considering the motion infor-
mation of many preceding or following vehicles in an
environment of ITS [15–22]. All of above work belong
to the scope of cooperative driving control, in which
motion equation of each vehicle consists of the traffic
information from both the considered vehicle itself and
the others. It has been found by them that the coopera-
tive driving control can improve the stability of traffic
system.

However, there are some objective factors which
may make the cooperative driving control difficult to
put into effect in practice. Firstly, the safe and reliable
traffic information obtaining of the other vehicles is
the precondition of the future cooperative driving. No
traffic data, no cooperative driving control. A vehicle
cannot insist on carrying out the cooperative control

without the traffic data of others. Secondly, high band-
width and qualitative continuity demands for a huge
amount of traffic data, which need a higher requirement
for network of the connected vehicle. The implementa-
tion effect of the cooperative control highly depends on
the quality of the communication network. Even speak,
even if bulk traffic data can be delivered in real time,
transfer delays are widely found in the wireless LAN,
which has been proved to take negative effect in stabi-
lizing traffic flow [23–26]. In addition, many vehicles
may enter or leave from any location of road at any
time in traffic fields, which makes some separations
between successive vehicles varying abruptly. It con-
sumedly increases the possibility that drivers conduct
incorrect operation for reacting to the error information
from other vehicles.

But, is it possible that the traffic flow can be sta-
bilized only by each vehicle’s self-stabilizing control
without the cooperative driving control from others?
How to extend the optimal velocity model to stabi-
lize the traffic flow with the traffic data of the con-
sidered vehicle itself? What is the nature of this kind of
self-stabilizing control? To our knowledge, these ques-
tions have not been researched and addressed so far.
In this paper, we concentrate on this direction. We try
to present a differential-difference equation of traffic
dynamics which extends the OVM to take into account
the velocity difference between the current velocity and
the historical velocity of the considered vehicle. We
conduct the linear stability analysis to verify the pur-
pose of self-stabilizing effect. Besides, we apply non-
linear analysis to the generalized model and derive the
mKdV equation near the critical point by means of the
perturbation method [27–31]. We compare the results
of theoretical analysis with those of numerical simula-
tions. We reveal the nature of the self-stabilizing control
in extended model.

This paper is organized as follows. In Sect. 2, the
improved OVM is proposed to consider the velocity
difference between the current velocity and the his-
torical velocity of the considered vehicle for purpose
to self-stabilizing control. The linear stability analysis
of the proposed model is conducted, and the stability
condition is obtained in Sect. 3. The self-stabilizing
control dependence of the kink solution for traffic jams
is obtained from the method of nonlinear analysis in
Sect. 4. To verify the validity of theoretical analysis,
we will compare it with the result of our simulations in
Sect. 5.
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2 Extended car-following model

Car-following models are the most important represen-
tatives of microscopic traffic modeling which describe
traffic dynamics at high level of detail such as the
motion equation of individual vehicle. The OVM (for
short) proposed by Bando et al. [7] in 1995 is one of the
well-known and favorable car-following model, which
has a good description of some nonlinear phenom-
ena in traffic system. The motion equation is given as
follows:

dvn(t)

dt
= a[V (�xn(t)) − vn(t)] (1)

where a is the sensitivity of a driver, and the basic
idea of the model is the acceleration dvn(t)/dt of the
nth vehicle at time t is determined by the difference
between the actual velocityvn(t) and an optimal veloc-
ity V (�xn(t)), which depends on the headway �xn(t)
to the preceding vehicle, and takes hyperbolic tangent
function of the following form:

V (�xn(t)) = vmax

2
[tanh(�xn(t) − hc) + tanh(hc)]

(2)

where hc = 5 is the safety distance and vmax = 2 is the
maximal velocity. The optimal velocity function is a
monotonically increasing function, and it has an upper
limit of velocity (maximum velocity).

From the viewpoint of traffic management, the most
important problem is to suppress the traffic jams. Based
on the fact that ITS is widely available, many extended
OVMs are proposed to consider the cooperative driving
control using other vehicles’ traffic data provided by
ITS. Just as we mentioned in introduction, the traffic
jams suppressing by incorporating other vehicle’s traf-
fic information has some troubles in practical execu-
tion. We want the traffic flow to be stabilized only uti-
lizing the traffic data of each vehicle itself. We think the
historical velocity of each vehicle may play an active
role in keeping the traffic flow stable. For this reason,
we develop an extended optimal velocity model taking
into account the velocity difference between the current
velocity and the historical velocity of the considered
vehicle, whose dynamics equation is

dvn(t)

dt
= a [V (�xn(t)) − vn(t)]

+ λ [vn(t) − vn(t − t0)] (3)

where t0 is the time gap between the current time t
and the historical time t − t0, Dn = vn(t) − vn(t − t0)
represents the velocity difference between the current
velocity vn(t) and the historical velocity vn(t − t0) of
the vehicle n. We expect the velocity difference term
Dn can affect the traffic stability with suppressing traf-
fic jams, and it is introduced into our extended model
by the constant coefficient λ. From the Eq. (3), we can
observe that the traffic jams suppressing term Dn is
independent of the traffic information of other vehi-
cles. It is completely rely on the considered vehicle’s
traffic data, which can be obtained by the sensors in the
vehicle. If the velocity difference between the current
velocity and the historical velocity can stabilize the traf-
fic system as we expect, it means that the improvement
of the traffic stability can be achieved by self-stabilizing
control of each individual. So we call the velocity term
Dn as self-stabilizing control term.

3 Linear stability analysis

In order to examine whether the introducing of the
velocity difference between the current velocity and
the historical velocity can stabilize the traffic system
as we expect, we analyze the extended car-following
model in a linear approach of stability analysis. Gen-
erally, linear stability analysis is conducted to show
the homogeneous traffic flow’s ability against a small
disturbance. The homogeneous traffic flow is defined
by such a state that all vehicles move with the same
headway b and the optimal velocity V (b), and it can be
written as:

x0
n (t) = V (b)t + nb, b = L/N (4)

where N is the total number of cars, L is the length of
the road, and b is the steady headway.

To see whether the solution (4) is stable or not, we
add a small deviation yn(t),

xn (t) = x0
n (t) + yn (t) (5)

We substitute Eq. (5) into Eq. (3) and linearize it:

y′′
n (t) = a[V ′(b)(yn+1(t) − yn(t)) − y′

n(t)]
+ λ[y′

n(t) − y′
n(t − t0)] (6)

By taking yn(t) = eikn+zt , one can obtain the fol-
lowing equation:
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z2eikn+zt = a

{
V ′(b)

[
eik(n+1)+zt − eikn+zt

]

− zeikn+zt
}

+ λ
[
zeikn+zt −zeikn+z(t−t0)

]

(7)

Simplifing Eq. (7), we can obtain:

z2 = a
{

V ′(b)
[
eik − 1

]
− z

}
+ λ

[
z − ze−t0z] (8)

In order to solve Eq. (8), we expand eik = 1 + ik +
(ik)2

2 , e−t0z = 1 − t0z + (t0z)2

2 and insert them into
Eq. (8), with obtaining the formula as follows:

(1 − t0λ)z2 + az − aV ′(b)

[
ik + (ik)2

2

]
= 0 (9)

By expanding z = z1ik + z2(ik)2 + · · · and inserting
it into Eq. (9), we obtain the first- and second-order
terms of coefficients in the expression of z, respectively,
which are given by

z1 = V ′(b) (10)

z2 = V ′(b)

2
− (1 − t0λ)V ′(b)2

a
(11)

The uniformly steady-state flow is unstable if z2 <

0. Consequently, the stability criterion can be derived
to the following expression:

V ′(b) = a

2(1 − t0λ)
(12)

For small disturbances with lone wavelengths, the
homogeneous traffic flow is unstable in the condition
that:

V ′(b) <
a

2(1 − t0λ)
(13)

Comparing the stability condition (13) with that of the
original OVM, one can draw a conclusion that the stable
region of new extended is enlarged to the region

a

2
< V ′(b) <

a

2(1 − t0λ)
(14)

by taking into account the velocity difference between
the current velocity and the historical velocity of the
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Fig. 1 The neutral stability in the headway-sensitivity space for
different control coefficient λ with a fixed value of time gap
t0 =1 s

considered vehicle, which means that the traffic sta-
bility can be improved only by each vehicle’s self-
stabilizing control, without the cooperative driving
control from others.

Let us discuss the relationship between the traffic
stability and self-stabilizing control in detail. It can be
obtained from the stability criterion (13) that the stabil-
ity of traffic system can be improved with the increasing
of the control coefficient λ and the time gap t0, when
the product of λ and t0 is less than 1. Figure 1 shows the
neutral stability lines in the headway-sensitivity space
for different control coefficient λ with a fixed value
of time gap t0 =1 s. In the figure, the peak value of
each curve represents the critical point (hc, ac). The
region above the curves is the stable region with no
traffic jams appearing, while the region below the line
will fall into the unstable region with the go-and-stop
density waves evolving backward. It is shown that the
neutral stability lines become lower with the increase
of the control coefficient λ, which denotes that the sta-
ble region is enlarged with the increase of the intensity
of the self-stabilizing control. Besides, Fig. 2 shows the
neutral stability lines in the headway-sensitivity space
for different time gap t0 with a fixed value of control
coefficient λ = 0.2. It is found that the time gap has also
an important influence on the traffic stability, namely
the increase in the time gap t0 will lead to a more stable
traffic system. At the same time, it should be noted that
the stability improvement for the increasing of the con-
trol coefficient λ and the time gap t0 is not limitless, and

123



Analyses of vehicle’s self-stabilizing effect 533

2 3 4 5 6 7 8
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Headway

S
en

si
tiv

ity
λ =0.2

t0=0

t0=0.5

t0=1

t0=1.5

t0=2

unstable

stable stable

Fig. 2 The neutral stability in the headway-sensitivity space for
different time gap t0 with a fixed value of control coefficient
λ = 0.2

the theoretical limitation of the criterion (13) is under
the condition that the product of λ and t0 is less than 1.

4 Nonlinear analysis

When the stability criterion (13) is not met, the vehicle
flow will form density waves at some particular posi-
tions on road. Nonlinear wave equation can be derived
to describe the kink–antikink solution of these density
waves. In order to examine the self-stabilizing control
dependence of the kink solution for traffic jams, the
nonlinear analysis is carried out to study the slowly
varying behavior for the long waves in the unstable
region, with the help of a small positive scaling parame-
ter ε. The simplest way to describe the long wavelength
modes is the long-wave expansion.

It is convenient to rewrite Eq. (2) by using the asym-
metric forward difference as following:

x j (t + 2τ) − x j (t + τ) = τ V (�x j )

+ λτ
[
x j (t + τ) − x j (t)

− x j (t + τ − t0) + x j (t − t0)
]

(15)

We introduce slow scales for space variable j and
time variable t and define the slow variables X and T
for 0 < ε ≤ 1 as follows,

X = ε( j + bt), T = ε3t (16)

where bis a constant to be determined. We can set the
headway as follows:

�x j = h + εR (X, T ) (17)

We further rewrite the Eq. (15) as:

�x j (t + 2τ) − �x j (t + τ)

= τ
[
V (�x j+1) − V (�x j )

]
+ λτ

[
�x j (t + τ) − �x j (t) − �x j (t + τ − t0)

+�x j (t − t0)
]

(18)

Substituting Eqs. (16) and (17) into Eq. (18), and
making the Taylor expansions to the fifth order of ε, one
can obtain the following nonlinear partial differential
equation:

ε2 (−b + V ′) ∂x R + ε3
(

−3

2
b2τ + V ′

2
+ λb2τ t0

)
∂2

X R

+ ε4

{
−∂T R +

(
− 7b3τ2

6
+ V ′

6
+ λb3

6

[
3τ2t0 − 3τ t2

0

])
∂3

X R + V ′′′
6

∂X R3
}

+ ε5

⎧⎨
⎩
(2λbτ t0 − 3bτ ) ∂T ∂X R +

[
− 15b4τ 3

24 + V ′
24

+λb4

24

[
4τ3t0−6τ2t2

0 +4τ t3
0

]]
∂4

X R+ V ′′′
12 ∂2

X R3

⎫⎬
⎭=0

(19)

where V ′′′ = d3V (ρ j)
dρ3

j

∣∣∣∣
ρ j =ρc

By taking b = V ′, the second- and third-order terms
of ε are eliminated from Eq. (19). We consider the
neighborhood of the critical point τc:

τ

τc
= 1 + ε2 (20)

Equation (19) can be rewritten as follows:

ε4
{
−∂T R+

[
− 7b3τ 2

c
6 + V ′

6 + λb3

6

(
3τ 2

c t0 − 3τct2
0

)]
∂3

X R+ V ′′′
6 ∂X R3

}

+ ε5

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
λb2τc − 3

2 b2τc
)
∂2

X R+
[

V ′′′
12 + (2λbτc t0−3bτc)V ′′′

6

]
∂2

X R3

+
⎡
⎣− 15b4τ 3

c
24 + V ′

24 + λb4(4τ 3
c t0−6τ 2

c t2
0+4τc t3

0

)
24

+ (2λbτc t0−3bτc)
[
7b3τ 2

c +V ′+λb3(3τ 2
c t0−3τc t2

0

)]
6

⎤
⎦ ∂4

X R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=0

(21)

Let us set the coefficients of ∂3
X R, ∂X R3, ∂2

X R, ∂4
X R,

and ∂2
X R3 as −g1, g2, g3, g4, and g5, respectively.

Equation (22) can be rewritten

ε4
[
∂T R − g1∂

3
X R + g2∂X R3

]

+ ε5
[
g4∂

4
X R + g3∂

2
X R + g5∂

2
X R3

]
= 0 (22)
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where

g1 = 7b3τ 2
c

6
− V ′

6
− λb3

6

(
3τ 2

c t0 − 3τct2
0

)
,

g2 = V ′′′

6
, g3 = λb2τc − 3

2
b2τc,

g4 = −15b4τ 3
c + V ′ + λb4

(
4τ 3t0 − 6τ 2

c t2
0 + 4τct3

0

)
24

+ (2λbτct0−3bτc)
[
7b3τ 2

c +V ′+λb3
(
3τ 2

c t0−3τct2
0

)]
6

g5 = V ′′′

12
+ (2λbτct0 − 3bτc) V ′′′

6

In order to derive the regularized mKdV equation
with higher order correction, we make the following
transformations for Eq. (22):

T ′ = −
(

−7b3τ 2
c

6
+ V ′

6
+ λb3

(
3τ 2

c t0 − 3τct2
0

)
6

)
T

(23)

R′ = −
(

−7b3τ 2
c + V ′+λb3

(
3τ 2

c t0 − 3τct2
0

)
V ′′′

) 1
2

R

(24)

Thus, we obtain the standard mKdV equations:

∂T ′ R′ = ∂3
X R′ − ∂X R′3 − εM

[
R′] (25)

where

M
[
R′] = 1

g1

[
g3∂

2
X R′ + g4∂

4
X R′ + g1g5

g2
∂2

X R′3
]

(26)

Equation (25) is the mKdV equation with an O (ε) cor-
rection term on the right-hand side. If we ignore the
O (ε) terms in Eq. (22), we get the mKdV equation
with a kink solution as the desired solution

R′
0

(
X, T ′) = √

c tanh

√
c

2

(
X − cT ′) (27)

Next, assuming that R′(X, T ′) = R′
0(X, T ′) + εR′

1
(X, T ′), we take into account the O (ε) correction. In
order to determine the selected value of the propagation
velocity c for the kink solution, it is necessary to satisfy
the solvability condition

(
R′

0, M[R′
0]
) ≡

∫ +∞

−∞
d X R′

0 M[R′
0] = 0 (28)

where M[R′
0] = M[R′] for Eq. (26).

By performing the integration, we obtain the selected
velocities

c = 5g2g3

2g2g4 − 3g1g5
(29)

We can obtain the value of propagation velocity for any
vehicle by substituting the value g1, g2, g3, g4, andg5

into Eq. (29).
We can obtain the solution of the mKdV equation

as:

R (X, T ) =
√

g1c

g2
tanh

[√
c

2
(X − cg1T )

]
(30)

From the extended OVM, We can know V ′ = vmax/2
and V ′′′ = −vmax, and the corresponding amplitude c
of the kink–antikink soliton solution is computed by

A =
√

g1c

g2

∣∣∣∣ τ

τc
− 1

∣∣∣∣ (31)

The kink–antikink solution represents the coexisting
phase consisting of the freely moving phase with low
density and the jammed phase with high density. Their
headways are given by �x = hc ± A.

5 Numerical simulation

In this section, we will examine the effect of self-
stabilizing control on the traffic flow stability by con-
ducting numerical simulations. The usual practice of
the stability simulation is to check the homogeneous
traffic flow’s ability against a small disturbance. The
theoretical results reveal that the stability of traffic sys-
tem can be enhanced with the increasing of the control
coefficient λ and the time gap t0, when the product of
λ and t0 do not reach the critical value. In order to sim-
plify the analysis, we choose to conduct the simulation
on a ring road without the need to specify boundary
condition.

We solve Eq. (3) numerically with optimal velocity
function (2) by the method of the fourth-order Runge-
Kutta. It is assumed that all vehicles run under a peri-
odic boundary with the initial arrangement as follows:
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Fig. 3 Time evolutions of the headway profile according to the proposed model for a λ = 0.0, b λ = 0.1, c λ = 0.2, and d λ = 0.3,
respectively, where t0 = 1 and a = 1.5 s−1

�x j (0) = �x j (1) = 5.0m, ( j �= 50, 51) (32)

�x j = �x j (1) = 5.0 − 0.1, ( j = 50) (33)

�x j (0) = �x j (1) = 5.0 + 0.1, ( j = 51) (34)

where the total number of vehicle is N = 100.
First of all, Let us examine the effect of the con-

trol coefficient λ on the stability of traffic system of
single lane, when the product of λ and t0 is less than
1. Figure 3 shows typical traffic patterns after a suf-
ficient time step t = 9.9 × 104 with the time gap
t0 = 1 and the sensitivity a = 1.5, where the pat-
terns (a), (b), (c), and (d) correspond to the headway
evolution for different λ. In patterns (a–c), the den-
sity waves appear because the stability criterion (13)
is not satisfied. The traffic flow state transits from the
homogeneous flow to the inhomogeneous go-and-stop
traffic jams, after the adding of the small disturbance.
The congested traffic flow is characterized by the den-
sity waves propagating backward as the kink–antikink

soliton, which corresponds to the nonlinear analytical
results in Sect. 4. At the same time, one can observe
that the traffic stability becomes better and better with
increasing the control coefficient λ. If the control coef-
ficient is further increased to λ = 0.3, the traffic den-
sity waves finally disappear with the initial perturbation
suppressed successfully in the pattern (d). Figure 4 dis-
plays the time evolutions of the headway profile with all
subplots corresponding to those in Fig. 3, respectively.
It is found that with increasing control coefficient λ,
the amplitude of the headway wave is reduced increas-
ingly, and the non-uniform flow becomes the uniform
traffic flow from the profile (a) to (d). All these find-
ings show that the traffic stability can be improved by
taking into account the velocity difference between the
current velocity and the historical velocity of the con-
sidered vehicle. The self-stabilizing control can effi-
ciently suppress traffic jams, which agrees well with
the theoretical analysis.
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Fig. 4 The snapshots of headway configuration of all vehicles at time steps t = 9.9 × 104 for a λ = 0.0, b λ = 0.1, c λ = 0.2, and
d λ = 0.3, respectively, where t0 = 1 and a = 1.5

Next, we consider the case in which the time gap t0
increases with a fixed value of control coefficient λ =
0.2, when the product of λ and t0 is less than 1. Figure 5
displays typical traffic patterns after a sufficiently time
steps t = 9.9×104 with the control coefficient λ = 0.2
and the sensitivity a = 1.5, where the patterns (a), (b),
(c), and (d) correspond to the headway evolution for
different time gap t0. Figure 6 gives the time evolutions
of the headway profile with all subplots corresponding
to those in Fig. 5, respectively. We can also observe that
the homogeneous steady flow with a small disturbance
finally evolves to the patterns (a)–(c) for t0 = 0.0, 0.5,
and 1.0, respectively, with density waves propagates

backward, but evolves to initial stable traffic for t0 =
1.3 with the small perturbation disappearing. It means
that the time gap has great effect on the stability of
traffic flow, and the traffic system can be stabilized with
the increasing of time gap t0. This conclusion is in good
agreement with the theoretical analysis.

From the stability condition (13), one can obtain
that the effect of the self-stabilizing control on traffic
stability need meet certain condition, which is that the
product of λ and t0 should be less than 1. When the
product is greater than 1, the traffic flow’s stabilizing
effect will not take effect any more, and the traffic flow
will return to the unstable state. In order to verify this
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Fig. 5 Time evolutions of the headway profile according to the proposed model for a t0 = 0.0, b t0 = 0.5 s, c t0 = 1.0 s, and
d t0 = 1.3 s, respectively, where λ = 0.2 and a = 1.5

analysis, we conduct the simulation for the case that the
product of λ and t0 is greater than 1. Figure 7 shows the
space-time evolution of the headway after the time steps
t = 9.9×104 with the control coefficient λ = 0.55 and
the time gap t0 = 2.0. We can see that the homogeneous
steady flow with a small disturbance finally evolves
to drastic changes of the density waves as we expect,
which verifies our theoretical analysis. On the other
hand, the upper boundary of the product of λ and t0 do
not means the self-stabilizing control is worthless for
stabilizing traffic system. There are plenty of scope to
perform the stabilizing task under the upper boundary
of the product of λ and t0.

6 Nature of self-stabilizing control

We mainly concentrate on the analysis of the self-
stabilizing control on the stability in a single-lane traf-

fic system. The self-stabilizing control in velocity has
been proved to be capable to further improve the traffic
stability. However, what is the nature of this kind of
self-stabilizing control of each vehicle. Here, we will
discuss this problem.

In order to simplify Eq. (3), we carry out the Taylor
expansion of the variables vn (t − t0) and neglect the
nonlinear terms,

vn (t − t0) = vn (t) − t0
dvn(t)

dt
(35)

Substituting Eq. (35) into Eq. (3), one can get:

dvn(t)

dt
= a [V (�xn(t)) − vn(t)]

+ λvn(t) − λ

[
vn (t) − t0

dvn(t)

dt

]
(36)

Simplifying Eq. (36), we can obtain the following
dynamic equation of each vehicle:
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Fig. 6 The snapshots of headway configuration of all vehicles at time steps t = 9.9 × 104 for a t0 = 0.0, b t0 = 0.5 s, c t0 = 1.0 s,
and d t0 = 1.3 s, respectively, where λ = 0.2 and a = 1.5

Fig. 7 The space-time
evolution of the headway
after the time steps
t = 9.9 × 104 with the
control coefficient λ = 0.55
and the time gap t0 = 2.0

9.9
9.92

9.94
9.96

9.98
10

x 10
5

0102030405060708090100
1

2

3

4

5

6

7

8

9

10

time

car number

he
ad

w
ay

123



Analyses of vehicle’s self-stabilizing effect 539

dvn(t)

dt
= a

1 − t0λ
[V (�xn(t)) − vn(t)] (37)

From the Eq. (37), it can be concluded that the self-
stabilizing control in velocity is essentially equivalent
to the parameter adjusting of the sensitivity. According
to the stability criterion of original OVM, the stability
condition of the Eq. (37) is

V ′(b) <
a

2(1 − t0λ)
(38)

which is the same with the stability criterion (13).

7 Summary

The traffic jams suppressing by incorporating other
vehicle’s traffic information has some troubles in prac-
tical execution. The traffic flow is expected to be stabi-
lized only utilizing the traffic data of each vehicle itself.
Based on this idea, an extended optimal velocity model
has been proposed to taking into account the velocity
difference between the current velocity and the histori-
cal velocity of the considered vehicle. The linear stabil-
ity analysis has been applied to the extended model and
has examined the traffic flow’s stabilization via each
vehicle’s self-stabilizing control, without the coopera-
tive driving control from others. It has been found that
the time gap between the current velocity and the histor-
ical velocity has a great effect on the stability criterion.
By using the reductive perturbation method, we have
derived the modified KdV equation near the critical
point, with obtaining the dependence of the propaga-
tion kink solution for traffic jams on the self-stabilizing
term. Finally, we have conducted numerical simulation
to verify the theoretical analysis and have clarified the
nature of the self-stabilizing control in velocity.
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