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Abstract This paper addresses the scheme of cluster
synchronization of overlapping uncertain complex net-
works with time-varying impulse disturbances. Many
existing works on cluster synchronization focus on syn-
chronizing and desynchronizing impulses separately,
but the effects of two types of impulses are rarely
observed. Here, we present the analysis of the two
types (time-varying impulses) in complex networks.
Furthermore, by means of stochastic stability theorem,
sufficient conditions for guaranteeing the realization
of cluster synchronization are derived. The network
topology is assumed to be overlapping community,
which includes an overlapping sub community with
different dynamic behavior due to its identity (com-
munity). Finally, numerical examples are exploited to
verify the correctness and effectiveness of theoretical
results.
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1 Introduction

Complex networks have aroused compelling attention
among scientists as the facts that they are successfully
introduced to describe and study many nature and arti-
ficial systems [1,2]. It should be noted that mounting
studies are given to investigate various issues existing in
complex networks such as analysis of network dynam-
ics, scale-free property and others [3,4]. In particular,
synchronization in complex networks has been a long-
standing hot research topic due to its potential appli-
cation ranging from mechanics, neural networks and
secure communications [2–5]. In general, synchroniza-
tion can be divided into different categories: complete
synchronization, phase synchronization, lag synchro-
nization, cluster synchronization and so on [4–7].

Cluster synchronization among these synchroniza-
tion methods is considered to be of high relevance
in engineering control, social and ecological science
[7]. It requires that the coupled oscillators split into
subgroups called clusters, which is achieved when the
oscillator synchronizes with one other in the same clus-
ter but desynchronizes among the different clusters [7–
13]. Till now, many related results can be obtained on
studying the cluster stability of complex network. Wang
et al. [8] studied cluster synchronization in nonlinearly
coupled delayed networks of nonidentical dynamic sys-
tems. Tang et al. [9] discussed cluster synchroniza-
tion of non-delayed and delayed coupling complex net-
works with nonidentical nodes via adaptive control. In
addition, Wu et al. [10] investigated cluster projective
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synchronization between community networks with
nonidentical nodes. Su et al. [11] considered decentral-
ized adaptive pinning control for cluster synchroniza-
tion of complex dynamical networks. Ma et al. [12]
studied cluster synchronization for directed complex
dynamical networks with pinning control. Moreover,
Zhang et al. [13] investigated exponential cluster syn-
chronization of coupled impulsive genetic oscillators
with external disturbances and communication delay.

Significant progress through their efforts has been
made in cluster synchronization of complex networks.
However, the models used in these works [7–13] always
involve directed topology, general community and
topology. They sometimes do not simulate more realis-
tic and special situations which motivates current study.
In addition, some important phenomena and problems
in real world have not been concerned, which also stim-
ulate us to further investigate cluster synchronization
of complex networks.

In this present manuscript, we concentrate on the
effects of uncertainties in complex networks. As we
all know, parameter fluctuation, external disturbance
and parameter uncertainty in many practical situations
are unavoidable and may destroy the networks stabil-
ity or can make synchronization more difficult due to
measure errors. There exist ‘partially’ or ‘even’ fully
uncertain parameters in ‘either’ or ‘both’ drive system
‘and’ or ‘or’ response system [14]. Thus, it is extremely
important and significant to study the effects of uncer-
tainties on cluster synchronization.

On the other hand, we extensively discuss the effects
of time-varying impulses. The states of electronic
network and biological network are often subjected
to instantaneous disturbances and experience abrupt
changes at certain instant, which may be caused by
switching phenomenon, frequency change or other sud-
den noise, i.e., they exhibit impulsive effects [13–17].
Notably, it is indispensable to consider the effects of
impulses on cluster synchronization. In most exist-
ing literatures, the synchronizing and desynchroniz-
ing impulses are considered separately. But, in prac-
tice, many electronic or biological networks are often
subjected to instantaneous disturbances, and both syn-
chronizing and desynchronizing impulses might exist
simultaneously, which are widely overlooked in the
existing results [16]. However, to our knowledge, clus-
ter synchronization of complex dynamic networks via
both synchronizing and desynchronizing impulses has
not been reported.

Motivated by the above discussions, this paper aims
at studying the problem of cluster synchronization of
overlapping uncertain dynamical networks with time-
varying impulses. Analytical results show the correct-
ness of the proposed theorem, and numerical examples
are given to illustrate the validity of the derived theo-
retical analysis. The most important highlights of this
paper: (i) we study the complex networks with uncer-
tainties instead of known or estimated parameters in
the cluster synchronization. Meanwhile, the theoretical
analysis of uncertain networks is based on stochastic
stability analysis rather than classical Lyapunov stabil-
ity theorem; (ii) the time-varying impulses but not a
type of synchronizing and desynchronizing impulses
are considered to achieve cluster synchronization; (iii)
unlike the general and special topology in the existing
works, the overlapping networks are applied to mimic
more realistic and special situations.

The remaining part of this paper is outlined as fol-
lows. In Sect. 2, we give the description of an uncer-
tain complex network. In addition, some conditions are
employed to guarantee the uncertain complex network
converging to a desired state. In Sect. 3, the main the-
ory for cluster synchronization is presented. A network
with an overlapping community is given to illustrate the
effectiveness of proposed theorem in Sect. 4. At last,
conclusions are drawn in Sect. 5.

2 Problem statement

Throughout this paper, let (�,F , {Ft}t≥0,P) be a com-
plete probability space with a filtration {Ft}t≥0 that is
right continuous and F0 contains all P-null sets. Let
Z

+ denote the set of positive integers, R
n denote the n-

dimensional real Euclidean space, R+ denote the set of
nonnegative real numbers and R

n×m denote the n × m
real matrix. Meanwhile, λ(·) denotes the eigenvalue of
a matrix.

Let τ > 0 be a positive real number and PC([−τ, 0];
R

n) denote the family of piecewise continuous func-
tions from [−τ, 0] to R

n , i.e., PC([−τ, 0]; R
n) = {ϕ :

[−τ, 0] → R
n|ϕ(t+) = ϕ(t) for all t ∈ [−τ, 0), ϕ(t−)

exists and ϕ(t−) = ϕ(t) for all but at most a finite
number of points t ∈ [−τ, 0)} is with the norm ‖ϕ‖ =
sup−τ≤θ≤0 |ϕ(θ)| , where ϕ(t+) and ϕ(t−) denote the
right-hand and left-hand limits of function ϕ(t) at t ,
respectively.
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For p > 0 and t ≥ 0, let PCp
Ft
([−τ, 0]; R

n) denote
the family of all Ft—measurable PC([−τ, 0]; R

n)—
valued random variables ϕ such that sup−τ≤θ≤0
E |ϕ(θ)|p <∞, where E stands for the mathematical
expectation operator with respect to the given prob-
ability measure P. And PCp

Ft0
([−τ, 0]; R

n) denotes

the family of all Ft0 measurable bounded PC([−τ, 0];
R

n)—valued functions.
In this section, we consider an uncertain complex

network consisting of n linearly and diffusively coupled
identical nodes:

ẋi (t) = Fi (t, xi (t), αi )+
n∑

j=1

ci j T x j (t), i ∈ �

U ,

(1)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ R
n is the

state vector of the i th node, and
�

U = {kl−1 + 1, . . . , kl}
denotes the index set of all the nodes in the kth cluster,
k = 1, 2, . . . ,m, km = n, kl−1 < kl . The matrix C =

(ci j )n×n is the zero-row-sum outer-coupling matrix,
which denotes the networks topology. If there is a con-
nection from node i to node j (i �= j), then ci j �= 0,
otherwise, ci j = 0. T is the inner connecting matrix.
Fi (t, xi (t), αi ) indicates the node dynamic behavior,
where αi is the uncertain parameter, and defined as
fi (t, xi (t)) + σi (t, x1(t), x2(t), . . . , xn(t))ξi (t) so as
to show the effects of noises or disturbances. In addi-
tion, fi (·) : PC2

Ft
([−τ, 0]; R

n)× R → R
n and σi (·) :

PC2
Ft
([−τ, 0]; R

n) × R → R
n are Borel measurable

and continuous for almost all t ∈ [t0,∞), and ξi (t)
indicates a standard white noise in the dynamic behav-
ior. As we all know, the time derivative of a Wiener
process (or Brownian motion) is a white noise process
in the stochastic theory [18,19]. Then, the network (1)
can be re-expressed as following:

dxi (t) =
⎛

⎝ fi (t, xi (t))+
n∑

j=1

ci j T x j (t)

⎞

⎠ dt (2)

+ σi (t, x1(t), x2(t), . . . , xn(t)) dωi , i ∈ �

U ,

where ωi = (ωi1, ωi2, . . . , ωin) ∈ R
n is a bounded

vector form Weiner process defined on a complete
probability space (�,F , {Ft}t≥0,P),which satisfies
E[dωi (t)] = 0 and E{[dωi (t)]2} = dt .

Now we introduce the impulse expression in order
to study the effects of disturbances. There are “sudden
changes” (or “jumps”) at time instants tk in the state
variables such that

�xi
∣∣t=tk = xi (t

+
k )− xi (t

−
k ) = Bi xi (t

−
k ), k ∈ Z

+,
i = 1, 2, . . . , n, (3)

where x(t+k ) = limt→t+k
x(t), x(t−k ) = limt→t−k

x(tk)
and the impulse instant sequence {tk} satisfies 0 <

t1 < t2 < · · · < tk < · · · , limt→∞ tk = ∞ and
tk − tk−1 < ∞. Let Bi = diag(b1, b2, . . . , bni ) be
the impulse feedback matrix of node i received at
moment tk . For the sake of analytical simplification, we
assume Bi = bi Ini ×ni , bi = max{bk}, k = 1, . . . , ni .
Hence, the following stochastic dynamical network
with impulse disturbances is obtained:

⎧
⎪⎨

⎪⎩

dxi (t) = ( fi (t, xi (t))+∑n
j=1 ci j T x j (t))dt + σi (t, x1(t), x2(t), . . . , xn(t))dωi ,

t �= tk, t ≥ t0, t ∈ �

U
�xi = xi (t

+
k )− xi (t

−
k ) = bi (xi (t

−
k )), t = tk, k ∈ Z

+, i = 1, 2, . . . , l,

(4)

with initial value x(t0) = ξ = {ξ(θ)| − τ ≤ θ ≤ 0} ∈
PC2

Ft0
([−τ, 0]; R

n).

Throughout this paper, the following basic and use-
ful definitions, assumptions and lemmas are required
for achieving cluster synchronization.

Definition 1 [20]. A stochastic network with n nodes
is said to realize cluster synchronization if the n nodes
are divided into k clusters U1,U2, . . . ,Uk, where
{U1 = (1, 2, . . . , k1),U2 = (k1 + 1, . . . , k2), . . . ,

Um = (km−1 + 1, . . . , km)(km = n)}, such that the
nodes in the same cluster synchronize with one another,
i.e., for the states xi , x j of the arbitrary nodes i and j

in the same cluster, limt→∞ E
∥∥xi (t)− x j (t)

∥∥2 = 0
holds.

Definition 2 Consider an n-dimensional stochastic
differential equation:

dxi (t) = f (t, xi (t))dt + σi (t, x1(t), x2(t), . . . , xn(t))dω,

(5)
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Let C2,1(Rn × [t0 − τ,∞); R+) denotes the family of
all nonnegative functions V (t, x) on R

n ×[t0 − τ,∞),
which is twice continuously differentiable in x and once
differentiable in t . For each V ∈ C2,1(Rn × [t0 −
τ,∞); R+), the stochastic derivative of V along tra-
jectories of (5) can be expressed as follows:

dV (t, x) = LV (t, x(t))dt + Vx (t, x(t))

× σi (t, x1(t), x2(t), . . . , xn(t))dω, (6)

where LV : PC([−τ, 0]; R
n) × [t0,∞) → R is an

operator, defined by

LV (t, x) = Vt (t, x)dt + Vx (t, x) f (t, x)

+ 1

2
tr
[
σ(t, x)TVxx (t, x)σ (t, x)

]
,

Vt (t, x) = ∂V (t, x)/∂t, Vx (t, x)

= (∂V (t, x)/∂x1, . . . , ∂V (t, x)/∂xn) ,

Vxx (t, x) =
(
∂2V (t, x)/∂xi∂x j

)

n×n
. (7)

Definition 3 [21]. The trivial solution of system (4) is
said to be exponentially synchronized in mean square
if for every φ ∈ PC2

Ft
([−τ, 0]; R

n), there exist K > 0
and λ > 0 such that the following inequality holds:

E |x(t;φ)|2 ≤ K e−λ(t−t0), t > t0.

Assumption 1 The vector function f (·) satisfies Lip-
schitz condition with respect to t , i.e., for any x(t),
y(t) ∈ PC2

Ft
([−τ, 0]; R

n), there exist positive con-
stants li > 0(i = 1, 2, . . . , n) such that

‖ f (x(t))− f (y(t))‖ ≤ L ‖x(t)− y(t)‖ , (8)

where L = diag(l1, l2, . . . , ln).

Assumption 2 There exists a constant matrix M such
that

tr
{
σT

i (t, e1(t), e2(t), . . . , en(t))σi (t, e1(t),

× e2(t), . . . , en(t))
}

≤
n∑

j=1

∥∥Me j (t)
∥∥2
,

where σi (t, e1(t), e2(t), . . . , en(t)) = σi (t, x1(t),
x2(t), . . . , xn(t))− σi (t, s1(t), s2(t), . . . , sn(t)).

Assumption 3 [22]. The coupling matrix C = (ci j )n×n

of network (2) satisfies

C =

⎡

⎢⎢⎢⎣

C11 C12 · · · C1m

C21 C22 · · · C2m
...

...
. . .

...

Cm1 Cm2 · · · Cmm

⎤

⎥⎥⎥⎦ ,

where (Ckk)(lk−lk−1)×(lk−lk−1) belongs to C1, and
(Ckq)(lk−lk−1)×(lq−lq−1) belongs to C2, k and q =
1, 2, . . . ,m.

Lemma 1 [23]. For any two n-dimensional real vec-
tors X,Y and a positive definite matrix U ∈ Rn×n, the
matrix inequality 2XTY ≤ XTU X + Y TU−1Y holds.

Define the error vector as ei (t) = xi (t)−sϑi (t). The
key point in this letter mainly focuses on that the uncer-
tain complex network (4) with impulse disturbances
synchronize with sϑi (t) in an overlapping network. That
is

lim
t→∞

∥∥xi (t)− sϑi (t)
∥∥ = 0, i ∈ �

U , (9)

where sϑi (t) ∈ Rn is a dynamic solution of the iso-
lated node ṡϑi (t) = Fi (t, sϑi (t), αi ) (i = 1, 2, . . . , n),
or even an equilibrium point, a limit cycle, a chaotic
attractor, which describes the identical local dynamics
of the nodes in the ϑi th cluster (community).

Remark 1 It is worth being pointed out that the syn-
chronizing (or beneficial) and desynchronizing (or non-
beneficial) impulses for cluster synchronization are
discussed in this paper. It is different from the for-
mer research almost considering the synchronizing or
desynchronizing impulses, separately. In other words,
when |λi (1 + bi )| < 1, the impulses are beneficial for
the cluster synchronization. That is −2 < λi (bi ) <

0, the impulses help cluster synchronization. Con-
versely, |λi (1 + bi )| > 1 or λi (bi ) < −2, λi (bi ) >

0, the impulses destroy the synchronization so that
the absolute values of the synchronization errors are
enlarged. When |λi (1 + bi )| = 1, the impulses do not
generate neither beneficial nor harmful actions to clus-
ter synchronization. So, this type of impulses is often
not considered for its little impact on cluster synchro-
nization.

3 Main result

In this section, we present our main results about how
to employ both synchronizing and desynchronizing
impulses to realize globally exponential cluster syn-
chronization in mean square. For simplicity and clarity
in the process of proof, some notations are required,
and given as follows.

Throughout this paper at interval [t0, t), let bsy
i

and bdesy
i denote synchronizing and desynchronizing
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impulse strengths, respectively. And they take val-
ues from the finite matrix sets

{
bsy

1 , bsy
2 ,L, bsy

M

}
and{

bdesy
1 , bdesy

2 ,L, bdesy
N

}
respectively, where −2 < λ

(bsy
i ) < 0, λ(bdesy

j ) < −2, or λ(bdesy
j ) > 0 for i = 1,

2, . . . ,M , j = 1, 2, . . . , N . Assume that there exist
oi > 0 impulse times, ψi synchronizing impulse
times and ψ j desynchronizing impulse times. Mean-

while, assume that t sy
iς

and tdesy
jσ

(ς, σ = 1, 2, . . .)
signify the activation time of synchronizing impulses
and that of desynchronizing impulses, respectively,
and assume that bsy

0 = λmax1≤i≤M (b
sy
i ), bdesy

0 =
λmax1≤ j≤N (b

desy
j ), T sy

max = sup{t sy
iς

− t sy
iς−1} < ∞,

T desy
min = inf{tdesy

jσ
− tdesy

jσ−1} > 0. Then, we derive

that (ψi + 1)T sy
max ≥ t − s and (ψ j − 1)T desy

min ≤ t − s.

Theorem 1 Suppose that Assumptions 1–3 hold. The
uncertain complex network (4) will achieve globally
exponentially cluster synchronization in mean square
if there are constant matrices M, L and positive defin-
ition matrix P = diag(p1, p2, . . . , pn) such that

η = λ+ 2

(
ln(1 + bsy

0 )

T sy
max

)
+ 2

(
ln(1 + bdesy

0 )

T desy
min

)
< 0,

where λ = λmax{(P PT + L LT + 2M MT)⊗ I + 2C ⊗
(T P)} > 0.

Proof Consider the Lyapunov–Krasovskii function:

V (t) = 1

2
eT (t)Pe(t) = 1

2

n∑

i=1

eT
i (t)Pei (t),

where P = diag(p1, p2, . . . , pn) is a positive defini-
tion matrix. 
�

Based on Assumption 3,we can get
∑

j∈�U ai j yκ(t)=

0 for i = 1, 2, . . . , n and κ = 1, 2, . . . ,m.

Thus
n∑

j=1

ai j x j (t) =
m∑

κ=1

∑

j∈�U
ai j x j (t)−

m∑

κ=1

∑

κ∈�U
ai j yκ (t)

=
m∑

κ=1

∑

j∈�U
ai j e j (t) =

n∑

j=1

ai j e j (t).

When t ∈ [tk−1, tk), taking the time derivative of
V (t) along the error trajectories, we have

dV (t) = LV (t)dt +
n∑

i=1

ei (t)Pσi (t, e1(t), e2(t), . . . , en(t))dω,

where

LV (t) =
∑

i∈�U
eT

i P

⎡

⎣ fi (t, xi (t))− fi (t, si (t))

+
N∑

j=1

ci j T e j (t)

⎤

⎦+ tr
[
σi (t, e1(t), e2(t)

×. . . , en(t))
Tσi (t, e1(t), e2(t), . . . , en(t))

]
.

Then, it is easy to get

E[LV (t)] = E

⎧
⎪⎨

⎪⎩

∑

i∈�U
eT

i P [ fi (t, xi (t))− fi (t, si (t))]

+
n∑

i=1

eT
i P

n∑

j=1

ci j T e j (t)+ tr
[
σi (t, e1(t), e2(t),

× . . . , en(t))
Tσi (t, e1(t), e2(t), . . . , en(t))

]
⎫
⎪⎬

⎪⎭
.

Based on the Assumptions 1–2, the following inequal-
ities can be derived.
∑

i∈�U
eT

i P [ fi (t, xi (t))− fi (t, si (t))]

≤ 1

2

∑

i∈�U
eT

i (P PT + L LT)ei

and

tr
[
σi (t, e1(t), e2(t), . . . , en(t))

Tσi (t, e1(t), e2(t)

× . . . , en(t))] ≤
n∑

j=1

eT
i M MTei .

Hence,

LV (t) ≤ 1

2
eT
[(

P PT + L LT + 2M MT
)

⊗ I

+ 2C ⊗ (T P)] e ≤ λV (t).

Using Definition 2, we have

V (t)− V (t0) =
∫ t

t0
LV (s)dt +

∫ t

t0

n∑

i=1

eT
i (s)P

×σi (t, e1(s), e2(s), . . . , en(s))dω(s). (10)

Taking the expectation of both sides of the Eq. (10), we
have

EV (t)− EV (t0) = E

∫ t

t0
LV (s)ds ≤ λ

∫ t

t0
EV (s)ds.
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In light of Gronwall inequality, we get

EV (t) ≤ EV (t0) exp(λ(t − t0)). (11)

On the other hand, when t = tk , it can be obtained from
the construction of V (t)

V (tk) = (1 + bk)
2V (t−k ). (12)

According to Eqs. (11)–(12), we obtain the following
equivalent inequality for t ∈ [tk−1, tk):

Since EV (t) ≤ EV (t0)eλ(t−t0) for t ∈ [t0, t1), one
has EV (t−1 ) ≤ EV (t0)eλ(t−t0). Then, we can obtain
EV (t1) = (1+b1)

2
EV (t−1 ) ≤ (1+b1)

2
EV (t0)eλ(t1−t0).

Similarly, for t ∈ [t1, t2), we have EV (t) ≤ EV (t1)
eλ(t−t1), which implies EV (t−2 ) ≤ EV (t1)eλ(t−t1). So

EV (t2) = (1 + b2)
2
EV (t−2 ) ≤ [

2∏
i=1

(1 + bi )
2]V (t0)

eλ(t2−t0). In general, for t ∈ [tk−1, tk), we obtain

EV (tk) = (1 + bk)
2
EV (t−k )

≤
[

k∏

i=1

(1 + bi )
2

]
EV (t0)e

λ(t−t0). (13)

Consequently, for each t ∈ (t0, t], it follows from
Eq. (13) that

EV (t) ≤
oi∏

i=1

(1 + bi )
2

EV (t0)e
λ(t−t0).

From the supposing parameters, we can obtain

EV (t) ≤
⎛

⎝
ψi∏

i=1

(1 + bi )
2
ψ j∏

j=1

(1 + b j )
2

⎞

⎠EV (t0)e
λ(t−t0)

≤ ∣∣(1+bsy
0 )
∣∣2(

t−t0
T

sy
max

−1) ∣∣∣(1+bdesy
0 )

∣∣∣
2( t−t0

T
desy
min

+1)
EV (t0)e

λ(t−t0).

Furthermore, detailed calculations show

EV (t) ≤ ∣∣(1 + bsy
0

)∣∣−2
∣∣∣
(

1 + bdesy
0

)∣∣∣
2
EV (t0)

× exp

((
λ+ 2

(
ln
(
1 + bsy

0

)

T sy
max

)

+ 2

⎛

⎝
ln
(

1 + bdesy
0

)

T desy
min

⎞

⎠

⎞

⎠ (t − t0)

⎞

⎠ .

There exists a constant η < 0 under the conditions in
Theorem 1 such that

EV (t) ≤ ∣∣(1 + bsy
0

)∣∣−2
∣∣∣
(

1 + bdesy
0

)∣∣∣
2

EV (t0) exp {η (t − t0)} .

Therefore,
∑n

i=1
E ‖ei (t)‖2 ≤ ∣∣(1 + bsy

0 )
∣∣−2
∣∣∣(1 + bdesy

0 )

∣∣∣
2

(EV (t0)/p∗) exp{η(t − t0)},
where p∗ = min{p1, p2, . . . , pn} > 0. Notably, the
trivial solution of system (4) is exponentially stable in
mean square. In other words, the cluster synchroniza-
tion of uncertain complex networks with time-varying
impulses is achieved. The proof is complete.

4 Numerical simulation

To demonstrate the validity of the proposed theory,
two effective examples will be given. And they can
be applied to many networks with different topolo-
gies, such as neural networks, colored networks, etc.
In this section, Let bsy

0 = bsy
i , bdesy

0 = bdesy
j , i =

1, 2, . . . ,M , j = 1, 2, . . . , N . Meanwhile, synchro-
nizing and desynchronizing impulses have the same
time interval, and the impulse strength d∗

k (k ∈ Z
+)

meets the following condition:

d∗
k =

{
bsy

0 , if mod(k, 2) = 0,

bdesy
0 , if mod(k, 2) �= 0.

Example 1 We analyze a complex network with 22
nodes shown in Fig. 1. In particular, different commu-
nity having different dynamical behavior is considered.
The unified chaotic system [24] with stochastic distur-
bances is described as follows:

dx(t) = f (t, x(t))dt + σ(t, x(t))dω,

where x(t) = (x1(t), x2(t), x3(t))T ∈ R3 is the
state vector, σ(t, x(t)) = √

5xi sin t , f (·)

=
⎡

⎣
25κ + 10(x2 − x1)

−x1x3 + (29κ − 1)x2 + (28-35κ)x1

x1x2 + −(8 + κ)/3)Tx3

⎤

⎦ , κ is a

system parameter.
In numerical simulation, the initial values of drive-

response system are chosen as xi (0) = (0.3 +
0.1i, 0.3+0.1i, 0.3+0.1i)T, si (0) = (2.0+0.7i, 2.0+
0.7i, 2.0 + 0.7i)T.

For brevity, we always assume T = diag(1, 1, 1),
and the desynchronizing impulse strength is bdesy

0 =
0.2. The impulse time interval is 0.01s. From Theo-

rem 1, we obtain −2 < bsy
0 < e(−ηT )

1+bdesy
0

− 1 = −0.28,

and then bsy
0 = −0.5 is selected in this simulation.
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Fig. 1 The topology of
overlapping community
networks with three
communities
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Fig. 2 The dynamic behavior of certain system when κ = 0.5

Remark 2 In foregoing works [7–13], cluster synchro-
nization always involves directed topology, general
community and general topology. Different from the
previous models used in cluster synchronization, there
is a cross region between community I and II in Fig. 1,
marked by the red dotted line. The dynamic behav-
ior of overlapping sub community is variable due to its
identity. In other words, the individual behavior in cross
region is easily subjected to the impacts from neighbor-
ing community. More precisely, the individual in cross
region generates different behaviors when they com-
municate with different community, or the individual in
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-30

-20

-10

0
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20

30

40

x (1)

x 
(2

)

Fig. 3 The dynamic behavior of uncertain system when κ = 0.5

cross region has dual or multiple identities which shows
different behaviors in communication. For instance, in
biological networks, proteins are the results of gene
expression which is regulated by gene regulatory net-
works. Proteins interact with one another to form pro-
tein interaction networks. Also, special proteins known
as enzymes help transforming metabolites to another,
hence, they are also part of the metabolic networks.
That is, These networks share common elements [25].
The communication messages between these networks,
and common elements are often different, which are
referred to as different dynamic behaviors in this paper.
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Fig. 4 The time evolution of ei = xi (t)− s(t), i = 1, 2, . . . , 8
in Community I with κ = 0.1
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Fig. 5 The time evolution of ei = xi (t)−s(t), i = 6, 7, . . . , 14
in Community II with κ = 0.5

Figure 2 gives a description of the dynamic behav-
ior of certain system when κ = 0.5. However, when
certain system is affected by noises or disturbances,
we can get that the trajectory of certain system is
not stable (see Fig. 3). Figures 4, 5 and 6 show the
time evolution of synchronization errors in Commu-
nities I–III, respectively. Figure 7 describes the time-
varying impulsive sequence. Then, the numerical sim-
ulations conclusively demonstrate the correctness of
Theorem 1, which means that even the desynchroniz-
ing and synchronizing impulses occur simultaneously,
it is possible to guarantee the uncertain dynamical net-
works (1) to the desired heterogeneous stationary states
in the same cluster. Namely appropriate synchronizing
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Fig. 6 The time evolution of ei = xi (t) − s(t), i =
15, 16, . . . , 22 in Community III with κ = 0.8
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Fig. 7 Time-varying impulsive sequence

impulses can prevent the effects of desynchronizing
impulse.

Example 2 In this example, we consider Chua system
with stochastic disturbances:

dx(t) = (Ax(t)+ h1(x(t)))dt + σ(t, x(t))dω,

where x(t) = (x1, x2, x3)
T, h1(x(t)) = (−1/2α(m1 −

m2))(|x1(t)+1|−|x1(t)− 1|), 0,−βρ0 sin(νx1(t)))T A

=
⎛

⎝
α(1 + m2) α 0
1 −1 1
0 −β −ω

⎞

⎠, and α = 10, β =

19.53, ω = 0.1636, m1 = −14.325,m2 = −0.7831,
υ = 0.5, ρ0 = 0.2, σ (t, x(t)) = xi . In order to mimic
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Fig. 8 The x1(t) state trajectory of the certain system and uncer-
tain system
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Fig. 9 The x2(t) state trajectory of the certain system and uncer-
tain system

bigger networks, the number of nodes we choose is
200. They are also suitable to the Example 1. And the
region of overlapping community is from the node 61
to 100. The impulse time interval is 0.1 s. By −2 <

bsy
0 < e(−ηT )

1+bdesy
0

− 1 = −0.79, we shall select impulse

strength bsy
0 = −0.8.

Figures 8 and 9 give a description of the state trajec-
tory of certain system and uncertain system variables.
We can easily obtain the effects of uncertainty from fig-
ures. Figures 10, 11 and 12 show the time evolution of
synchronization errors in Communities I–III, respec-
tively. Therefore, from these results, we can conclude
that the uncertain dynamical networks (1) successfully
achieve cluster synchronization.
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Fig. 10 The time evolution of ei = xi (t) − s(t), i =
1, 2, . . . , 100 in Community I
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Fig. 11 The time evolution of ei = xi (t) − s(t), i =
61, 62, . . . , 140 in Community II

5 Conclusion

In this paper, we have investigated the problem of clus-
ter synchronization of overlapping uncertain dynamic
networks with the effects of time-varying impulses.
In the proposed model, uncertainties are considered
as disturbances. In addition, both synchronizing and
desynchronizing impulses are discussed. Moreover,
sufficient conditions are derived analytically for clus-
ter synchronization of uncertain dynamic networks
by stochastic stability analysis of the impulsive func-
tional differential equation. At last, an overlapping
community has been applied to simulate realistic and
special model, which few works on cluster synchro-
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Fig. 12 The time evolution of ei = xi (t) − s(t), i =
141, 142, . . . , 200 in Community III

nization have focused on this model, and simulations
have shown the effectiveness of theoretical analy-
sis.
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