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Abstract In this paper, we use the bifurcation method
of dynamical systems to investigate the nonlinear wave
solutions of the modified Benjamin–Bona–Mahony
equation. These nonlinear wave solutions contain peri-
odic wave solutions, solitary wave solutions, peri-
odic blow-up wave solutions, kink wave solutions,
unbounded wave solutions and blow-up wave solu-
tions. Some previous results are extended.
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1 Introduction

The Benjamin–Bona–Mahony (BBM) equation

ut + ux + uux − uxxt = 0, (1)
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which was first derived to describe an approximation
for surface long waves in nonlinear dispersive media
[1]. The equation can also characterize the hydromag-
netics waves in cold plasma, acoustic waves in enhar-
monic crystals and acoustic-gravity waves in compress-
ible fluids [2,3].

Yusufoglu [4] investigate the modified Benjamin–
Bona–Mahony (MBBM)

ut + ux + au2ux + uxxt = 0. (2)

Yusufoglu used the exp-function method to obtain gen-
eralized solitonary solutions of Eq. (2). When a = 1,
Eq. (2) becomes the equation

ut + ux + u2ux + uxxt = 0, (3)

which was studied in [5–8]. Daghan et al. [5] obtained
some traveling wave solutions of Eq. (3) by using ( G ′

G )-
expansion method. Abbasbandy and Shirzadi [6] used
the first integral method to obtain two real exact solu-
tions and two complex exact solutions of Eq. (3). Yusu-
foglu and Bekir [7] obtained the solitons solutions, peri-
odic solutions and complex solutions of Eq. (3) by using
the tanh and sine–cosine methods. Noor et al. [8] used
the exp-function method to construct some soliton solu-
tions of Eq. (3).

The aim of this paper is to investigate the nonlin-
ear wave solutions and their phase portraits for Eq. (2)
by using the bifurcation method and qualitative theory
of dynamical systems [9–16]. Through some special
phase orbits, we obtain many smooth periodic wave
solutions, periodic blow-up solutions, solitary wave
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solutions, kink wave solutions, unbounded wave solu-
tions and blow-up wave solutions.

The remainder of this paper is organized as follows.
In Sect. 2, we present our main results. Section 3 gives
the derivation for our main results. A short conclusion
will be given in Sect. 4.

2 Main results

In this section, we state our main results. To relate con-
veniently, let

α = −a

c
, β = −c − 1

c
, (4)

g0 = 2|β|
3

√
β

α
, (5)

ξ = x − ct. (6)

Proposition 1 For given positive constants c and g0,
(2) has the following periodic wave solutions when α >

0.
(1) If g = 0, we get four periodic wave solutions

u1(x, t) = a1 + b1sn2(ω1ξ, k1)

c1 + d1sn2(ω1ξ, k1)
, (7)

u2(x, t) =
√

ϕ2
4 −

(
2ϕ2

4 − 6β

α

)
sn2

(
ϕ4

√
α

6
ξ, k2

)
,

(8)

u3±(x, t) = ±ϕ6cn

(√
α

3
ϕ2

6 − βξ, ϕ6

√
α

2αϕ2
6 − 6β

)
,

(9)

where

a1 = ϕ1

(
−ϕ1 +

√
6β

α
− ϕ2

1

)
,

b1 = ϕ1

(
ϕ1 +

√
6β

α
− ϕ2

1

)
, (10)

c1 = −ϕ1 +
√

6β

α
− ϕ2

1 , d1 = −ϕ1 −
√

6β

α
− ϕ2

1 ,

(11)

ω1 =
−ϕ1

√
α +

√
6β − αϕ2

1

2
√

6
, k1 =

ϕ1+
√

6β
α

−ϕ2
1

ϕ1−
√

6β
α

−ϕ2
1

,

(12)

−
√

6β

α
< ϕ1 < −

√
3β

α
, k2 =

√
2 − 6β

αϕ2
4

, (13)

√
3β

α
<ϕ4 <

√
6β

α
, ϕ5 <−

√
6β

α
, ϕ6 >

√
6β

α
.

(14)

And two solitary wave solutions

u4±(x, t) = ±
√

6β

α
sech

√
βξ, (15)

(2) If −g0 < g < 0, we get six periodic wave solu-
tions

u5(x, t)

=
A1ϕ10 + ϕ11 B1+(A1ϕ10−ϕ11 B1)cn

(√
αA1 B1

6 ξ, k3

)

A1+B1+(A1−B1)cn

(√
αA1 B1

6 ξ, k3

) ,

(16)

u6(x, t)

=
−2γ1 + η1δ1 + η1

√
μ1 cos

(√
αγ1

6 ξ
)

δ1 + √
μ1 cos

(√
αγ1

6 ξ
) , (17)

u7(x, t)

= ϕ14(ϕ17 − ϕ15) + ϕ17(ϕ15 − ϕ14)sn2(ω2ξ, k4)

ϕ17 − ϕ15 + (ϕ15 − ϕ14)sn2(ω2ξ, k4)
, (18)

u8(x, t)

= ϕ17(−ϕ16 + ϕ14) − ϕ14(ϕ17 − ϕ16)sn2(ω2ξ, k4)

−ϕ16 + ϕ14 − (ϕ17 − ϕ16)sn2(ω2ξ, k4)
,

(19)

u9(x, t)

=
A2ϕ18 + ϕ19 B2+(A2ϕ18−ϕ19 B2)cn

(√
αA2 B2

6 ξ, k5

)

A2 + B2 + (A2 − B2)cn

(√
αA2 B2

6 ξ, k5

) ,

(20)

u10(x, t)

=
A2ϕ18+ϕ19 B2−(A2ϕ18−ϕ19 B2)cn

(√
αA2 B2

6 ξ, k5

)

A2+B2−(A2−B2)cn

(√
αA2 B2

6 ξ, k5

) ,

(21)

where

A1 =
√(

ϕ11 − c1 + c1

2

)2

− (c1 − c1)2

4
,

B1 =
√(

ϕ10 − c1 + c1

2

)2

− (c1 − c1)2

4
, (22)

A2 =
√(

ϕ19 − c2 + c2

2

)2

− (c2 − c2)2

4
,
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B2 =
√(

ϕ18 − c2 + c2

2

)2

− (c2 − c2)2

4
, (23)

k3 =
√

(ϕ11 − ϕ10)2 − (A1 − B1)2

4A1 B1
,

k4 =
√

(ϕ17 − ϕ16)(ϕ15 − ϕ14)

(ϕ17 − ϕ15)(ϕ16 − ϕ14)
, (24)

ω2 =
√

α(ϕ17 − ϕ15)(ϕ16 − ϕ14)

2
√

6
,

k5 =
√

(ϕ19 − ϕ18)2 − (A2 − B2)2

4A2 B2
, (25)

γ1 = 1

α

(
12β − 3αϕ9

(
ϕ9 +

√
12β

α
− 3ϕ2

9

))
,

δ1 = −2ϕ9 + 2

√
12β

α
− 3ϕ2

9 , (26)

μ1 = 4ϕ9

(
ϕ9 +

√
12β

α
− 3ϕ2

9

)
,

η1 = 1

2

(
−ϕ9 +

√
12β

α
− 3ϕ2

9

)
, (27)

c1, c1, c2 and c2 are complex numbers. And two solitary
wave solutions

u11±(x, t) = ϕ9

+ 6β − αϕ2
9

2αϕ9 ±
√

6αβ − 2α2ϕ2
9 cosh

(√
β − αϕ2

9ξ

) ,

(28)

(3) If g = −g0, we get two periodic wave solutions
as follows

u12(x, t)

=
A3ϕ22 + ϕ23 B3+(A3ϕ22−ϕ23 B3)cn

(√
αA3 B3

6 ξ, k6

)

A3+B3+(A3−B3)cn

(√
αA3 B3

6 ξ, k6

) ,

(29)

u13(x, t)

=
A4ϕ24 + ϕ25 B4+(A4ϕ24−ϕ25 B4)cn

(√
αA4 B4

6 ξ, k7

)

A4 + B4 + (A4 − B4)cn

(√
αA4 B4

6 ξ, k7

) ,

(30)

where

A3 =
√(

ϕ23 − c3 + c3

2

)2

− (c3 − c3)2

4
,

B3 =
√(

ϕ22 − c3 + c3

2

)2

− (c3 − c3)2

4
, (31)

A4 =
√(

ϕ25 − c4 + c4

2

)2

− (c4 − c4)2

4
,

B4 =
√(

ϕ24 − c4 + c4

2

)2

− (c4 − c4)2

4
, (32)

k6 =
√

(ϕ23 − ϕ22)2 − (A3 − B3)2

4A3 B3
,

k7 =
√

(ϕ25 − ϕ24)2 − (A4 − B4)2

4A4 B4
, (33)

c3, c3, c4 and c4 are complex numbers. And a solitary
wave solution

u14(x, t) =
√

β(−9 + 2βξ2)√
α(3 + 2βξ2)

. (34)

Proposition 2 For given positive constants c and g0,
(2) has the following periodic wave solution when α <

0.
(1) g = 0, we get two periodic wave solutions

u15±(x, t)

= ±
√

6β

α
− ϕ̃2

4sn

(
ϕ̃4

√
−α

6
ξ,

1

ϕ̃4

√
6β

α
− ϕ̃2

4

)
,

(35)

six periodic blow-up wave solutions

u16±(x, t) = ± ϕ̃4

sn

(
ϕ̃4

√
−α

6 ξ, 1
ϕ̃4

√
6β
α

− ϕ̃2
4

) , (36)

u17±(x, t) = ±
√

6β

α
sec

(√−βξ
)

, (37)

u18±(x, t) = ±
√

6β

α
csc

(√−βξ
)

, (38)

two kink wave solutions

u19±(x, t) = ±
√

3β

α
tanh

(√
−β

2
ξ

)
, (39)

and two unbounded wave solutions

u20±(x, t) = ±
√

3β

α
coth

(√
−β

2
ξ

)
, (40)
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(2) If 0 < g < g0, we get four periodic blow-up
wave solutions

u21(x, t)

= (−ϕ̃11 + ϕ̃9)ϕ̃8 + (ϕ̃11 − ϕ̃8)ϕ̃9sn2 (ω3ξ, k8)

−ϕ̃11 + ϕ̃9 + (ϕ̃11 − ϕ̃8)sn2 (ω3ξ, k8)
,

(41)

u22(x, t)

= (ϕ̃10 − ϕ̃8)ϕ̃11 − (ϕ̃11 − ϕ̃8)ϕ̃10sn2 (ω3ξ, k8)

ϕ̃10 − ϕ̃8 − (ϕ̃11 − ϕ̃8)sn2 (ω3ξ, k8)
,

(42)

u23±(x, t)

=
2γ2 + η2δ2 ± η2

√
μ2 cos(

√
αγ2

6 ξ)

δ2 ± √
μ2 cos(

√
αγ2

6 ξ)

, (43)

a periodic wave solution

u24(x, t)

= (−ϕ̃10 + ϕ̃8)ϕ̃9 + (ϕ̃10 − ϕ̃9)ϕ̃8sn2 (ω3ξ, k8)

−ϕ̃10 + ϕ̃8 + (ϕ̃10 − ϕ̃9)sn2 (ω3ξ, k8)
,

(44)

where

ω3 =
√

−α(ϕ̃11 − ϕ̃9)(ϕ̃10 − ϕ̃8)

2
√

6
,

k8 =
√

(ϕ̃10 − ϕ̃9)(ϕ̃11 − ϕ̃8)

(ϕ̃11 − ϕ̃9)(ϕ̃10 − ϕ̃8)
, (45)

γ2 =
12β − 3αϕ̃2

7 − 3
√

3ϕ̃7

√
4αβ − α2ϕ̃2

7

α
,

δ2 =
2

(
αϕ̃7 +

√
12αβ − 3α2ϕ̃2

7

)

α
, (46)

μ2 =
4ϕ̃7

(
αϕ̃7 −

√
12αβ − 3α2ϕ̃2

7

)

α
,

η2 = 1

2α

(
−αϕ̃7 −

√
12αβ − 3α2ϕ̃2

7

)
. (47)

a blow-up wave solution

u25(x, t)

= ϕ̃7+ 6β − 6αϕ̃2
7

2αϕ̃7+
√

6αβ−2α2ϕ̃2
7 cosh

(√
β−αϕ̃2

7ξ

) ,

(48)

and a solitary wave solution

u26(x, t)

= ϕ̃7+ 6β−6αϕ̃2
7

2αϕ̃7−
√

6αβ−2α2ϕ̃2
7 cosh

(√
β−αϕ̃2

7ξ

) .

(49)

(3) If g = g0, we get three blow-up wave solutions

u27(x, t) = −
√

β

α

9 − 2βξ2

3 + 2βξ2 , (50)

u28(x, t) = 6
√−6α − β

√
αβξ3

6αξ + αβξ3 , (51)

u29(x, t) = −6
√−6α + β

√
αβξ3

6αξ + αβξ3 , (52)

and a periodic wave solution

u30(x, t)

=
−A5ϕ̃17+B5ϕ̃18+(A5ϕ̃17+ϕ̃18 B5)cn

(√
−αA5 B5

6 ξ, k9

)

−A5 + B5 + (A5 + B5)cn

(√
−αA5 B5

6 ξ, k9

) ,

(53)

where

A5 =
√(

ϕ̃18 − c5 + c5

2

)2

− (c5 − c5)2

4
,

B5 =
√(

ϕ̃17 − c5 + c5

2

)2

− (c5 − c5)2

4
, (54)

k9 =
√

(A5 + B5)2 − (ϕ̃18 − ϕ̃17)2

4A5 B5
, (55)

c5 and c5 are conjugate complex numbers.

Proposition 3 For these solutions, the following are
their relations.

(1) When ϕ1 and ϕ5 tend to ϕ7, the periodic wave
solutions u1 and u3− tend to solitary wave solu-
tion u4− , that is

lim
ϕ1→ϕ7

u1(x, t) = lim
ϕ5→ϕ7

u3−(x, t) = u4−(x, t).

(56)

(2) When ϕ4 and ϕ6 tend to ϕ8, the periodic wave
solutions u2 and u3+ tend to solitary wave solu-
tion u4+ , that is

lim
ϕ4→ϕ8

u2(x, t) = lim
ϕ6→ϕ8

u3+(x, t) = u4+(x, t).

(57)
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(3) Whenϕ11 tends toϕ13, the periodic wave solutions
u5 and u7 tend to periodic wave solution u6, that
is

lim
ϕ11→ϕ13

u5(x, t) = lim
ϕ11→ϕ13

u7(x, t) = u6(x, t).

(58)

(4) When ϕ17 and ϕ19 tends to ϕ21, the periodic wave
solution u7 and u9 tend to solitary wave solution
u11− , that is

lim
ϕ17→ϕ21

u7(x, t) = lim
ϕ19→ϕ21

u9(x, t) = u11−(x, t).

(59)

(5) When ϕ17 and ϕ19 tends to ϕ21, the periodic wave
solution u8 and u10 tend to solitary wave solution
u11+ , that is

lim
ϕ17→ϕ21

u8(x, t) = lim
ϕ19→ϕ21

u10(x, t) = u11+(x, t).

(60)

(6) When ϕ22 and ϕ24 tends to ϕ26, the periodic wave
solution u12 and u13 tend to solitary wave solution
u14, that is

lim
ϕ22→ϕ26

u12(x, t) = lim
ϕ24→ϕ26

u13(x, t) = u14(x, t).

(61)

(7) When ϕ̃4 tends to ϕ+, the periodic wave solution
u15± tends to kink wave solution u19± , that is

lim
ϕ̃4→ϕ+

u15±(x, t) = u19±(x, t).

(62)

(8) When ϕ̃4 tends to ϕ+, the periodic wave solution
u16± tends to unbounded wave solution u20± , that
is

lim
ϕ̃4→ϕ+

u16±(x, t) = u20±(x, t). (63)

(9) When ϕ̃11 tends to ϕ̃7, the periodic wave solution
u21 tends to blow-up wave solution u25, that is

lim
ϕ̃11→ϕ̃7

u21(x, t) = u25(x, t). (64)

(10) When ϕ̃10 tends to ϕ̃7, the periodic wave solution
u24 tends to solitary wave solution u26, that is

lim
ϕ̃10→ϕ̃7

u24(x, t) = u26(x, t). (65)

3 The derivation of main results

In this section, we will give the derivations for our main
results.

3.1 Planar system and phase portraits

For given positive constant wave speed c, substituting
u = ϕ(ξ) with ξ = x − ct into the MBBM equation
(2), it follows that

− cϕ′ + ϕ′ + aϕ2ϕ′ − cϕ′′′ = 0. (66)

Integrating (66) once, we have

(−c + 1)ϕ + a

3
ϕ3 − cϕ′′ = g1, (67)

where g1 is integral constant.
Letting φ = ϕ′, we get the following planar system⎧⎨

⎩
dϕ
dξ

= φ,

dφ
dξ

= −α
3 ϕ3 + βϕ + g,

(68)

where α = − a
c , β = − c−1

c and g = − g1
c .

Obviously, the above system (68) is a Hamiltonian
system with Hamiltonian function

H(ϕ, φ) = φ2 + α

6
ϕ4 − βϕ2 − 2gϕ. (69)

Now, we consider the phase portraits of system (68).
Set

f0(ϕ) = −α

3
ϕ3 + βϕ, (70)

f (ϕ) = −α

3
ϕ3 + βϕ + g. (71)

Obviously, f0(ϕ) has three zero points, ϕ−, ϕ0 and
ϕ+, which are given as follows

ϕ− = −
√

3β

α
, ϕ0 = 0, ϕ+ =

√
3β

α
. (72)

It is easy to obtain two extreme points of f0(ϕ) as
follows:

ϕ∗− = −
√

β

α
, ϕ∗+ =

√
β

α
. (73)

Letting

g0 = | f0(ϕ
∗−)| = | f0(ϕ

∗+)| = 2|β|
3

√
β

α
, (74)

then it is easily seen that g0 is the extreme values of
f0(ϕ).

Let (ϕi , 0) be one of the singular points of system
(68), then the characteristic values of the linearized sys-
tem of system (68) at the singular points (ϕi , 0) are

λ± = ±√
f ′(ϕi ). (75)

From the qualitative theory of dynamical systems,
we therefore know that
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Fig. 1 The phase portraits of system (68) when α > 0

(i) If f ′(ϕi ) > 0, (ϕi , 0) is a saddle point.
(ii) If f ′(ϕi ) < 0, (ϕi , 0) is a center point.

(iii) If f ′(ϕi ) = 0, (ϕi , 0) is a degenerate saddle
point.

Therefore, we obtain the phase portraits of system (68)
in Figs. 1 and 2.

3.2 The derivation of Proposition 1

In this section, we will obtain the explicit expressions
of solutions for the MBBM equation (2) when α > 0.

(1) If g = 0, we set√
3β

α
< ϕ4 <

√
6β

α
, ϕ6 >

√
6β

α
. (76)

(i) From the phase portrait, we see that there are
two closed orbits Γ1 and Γ ∗

1 passing the points (ϕ1, 0),
(ϕ2, 0), (ϕ3, 0) and (ϕ4, 0). In (ϕ, φ)-plane the expres-
sions of the closed orbits are given as

φ = ±
√

α

6

√
(ϕ − ϕ1)(ϕ − ϕ2)(ϕ − ϕ3)(ϕ4 − ϕ),

(77)

where ϕ1 = −ϕ4, ϕ2 = −
√

6β
α

− ϕ2
4 and ϕ3 =√

6β
α

− ϕ2
4 .

Substituting (77) into dϕ
dξ

= φ and integrating them
along Γ1 and Γ ∗

1 , we have

±
∫ ϕ

ϕ1

1√
(ϕ4 − s)(ϕ3 − s)(ϕ2 − s)(s − ϕ1)

ds

=
√

α

6

∫ ξ

0
ds, (78)

±
∫ ϕ

ϕ4

1√
(s − ϕ1)(s − ϕ2)(s − ϕ3)(ϕ4 − s)

ds

=
√

α

6

∫ ξ

0
ds. (79)

From (78), (79) and noting that u = ϕ(ξ) and ξ =
x − ct , we obtain the periodic wave solutions u1(x, t)
as (7) and u2(x, t) as (8).

(ii) From the phase portrait, we see that there are a
closed orbit Γ2 passing the points (ϕ5, 0) and (ϕ6, 0).
In (ϕ, φ)-plane the expressions of the closed orbits are
given as

φ = ±
√

α

6

√
(ϕ6 − ϕ)(ϕ − ϕ5)(ϕ − ϕ∗

5 )(ϕ − ϕ∗
5),

(80)

where ϕ5 = −ϕ6, ϕ∗
5 = i

√
ϕ2

6 − 6β
α

and ϕ∗
5 =

−i
√

ϕ2
6 − 6β

α
.
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Fig. 2 The phase portraits of system (68) when α < 0

Substituting (80) into dϕ
dξ

= φ and integrating them
along the orbit Γ2, we have

±
∫ ϕ

ϕ5

1√
(ϕ6 − s)(s − ϕ5)(s − ϕ∗

5 )(s − ϕ∗
5)

ds

=
√

α

6

∫ ξ

0
ds, (81)

±
∫ ϕ

ϕ6

1√
(ϕ6 − s)(s − ϕ5)(s − ϕ∗

5 )(s − ϕ∗
5)

ds

=
√

α

6

∫ ξ

0
ds. (82)

From (81), (82) and noting that u = ϕ(ξ) and ξ =
x −ct , we obtain the periodic wave solutions u3±(x, t)
as (9).

(iii) From the phase portrait, we see that there are two
symmetric homoclinic orbits Γ3 and Γ ∗

3 connected at
the saddle point (0, 0). In (ϕ, φ)-plane, the expressions
of the homoclinic orbits are given as

φ = ±
√

α

6
ϕ
√

(ϕ − ϕ7)(ϕ8 − ϕ), (83)

where ϕ7 = −
√

6β
α

and ϕ8 =
√

6β
α

.

Substituting (83) into dϕ
dξ

= φ and integrating them
along the orbits Γ3 and Γ ∗

3 , we have

±
∫ ϕ

ϕ7

1

ϕ
√

(s − ϕ7)(ϕ8 − s)
ds =

√
α

6

∫ ξ

0
ds, (84)

±
∫ ϕ

ϕ8

1

ϕ
√

(s − ϕ7)(ϕ8 − s)
ds =

√
α

6

∫ ξ

0
ds. (85)

From (84), (85) and noting that u = ϕ(ξ) and ξ =
x − ct , we obtain the solitary wave solutions u4±(x, t)
as (15).

(2) If −g0 < g < 0, we set the middle solution

of f (ϕ) = 0 be ϕ9(0 < ϕ9 <

√
β
α
). then we can get

another two solutions of f (ϕ) = 0 as follows:

ϕ∗
9 = 1

2

(
−ϕ9 −

√
12β

α
− 3ϕ2

9

)
, (86)

ϕ
9 = 1

2

(
−ϕ9 +

√
12β

α
− 3ϕ2

9

)
. (87)

(i) From the phase portrait, we see that there are a
closed orbit Γ4 passing the points (ϕ10, 0) and (ϕ11, 0).
In (ϕ, φ)-plane, the expressions of the closed orbits are
given as

φ = ±
√

α

6

√
(ϕ11 − ϕ)(ϕ − ϕ10)(ϕ − c1)(ϕ − c1),

(88)

where ϕ12 < ϕ10 < ϕ∗
9 < ϕ13, c1 and c1 are conjugate

complex numbers.
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Substituting (88) into dϕ
dξ

= φ and integrating them
along Γ4, we have

±
∫ ϕ

ϕ10

1√
(ϕ11 − s)(s − ϕ10)(s − c1)(s − c1)

ds

=
√

α

6

∫ ξ

0
ds. (89)

From (89) and noting that u = ϕ(ξ) and ξ = x −ct ,
we get a periodic wave solution u5(x, t) as (16).

(ii) From the phase portrait, we note that there is a
special orbit Γ5, which has the same hamiltonian with
that of (ϕ

9, 0). In (ϕ, φ)-plane the expressions of the
orbits are given as

φ = ±
√

α

6

√
(ϕ − ϕ

9)
2(ϕ − ϕ12)(ϕ13 − ϕ), (90)

where

ϕ12 = 1

2

(
ϕ9 −

√
12β

α
− 3ϕ2

9

−2

√
ϕ9(ϕ9 +

√
12β

α
− 3ϕ2

9)

⎞
⎠ , (91)

ϕ13 = 1

2

(
ϕ9 −

√
12β

α
− 3ϕ2

9

+ 2

√
ϕ9(ϕ9 +

√
12β

α
− 3ϕ2

9)

⎞
⎠ . (92)

Substituting (90) into dϕ
dξ

= φ and integrating them
along Γ5, it follows that

±
∫ ϕ

ϕ12

1√
(ϕ13 − s)(s − ϕ

9)
2(s − ϕ12)

ds

=
√

α

6

∫ ξ

0
ds. (93)

From (93) and noting that u = ϕ(ξ) and ξ = x −ct ,
we get a periodic wave solution u6(x, t) as (17).

(iii) From the phase portrait, we note that there
are two orbits Γ6 and Γ ∗

6 passing the points (ϕ14, 0),
(ϕ15, 0), (ϕ16, 0) and (ϕ17, 0). In (ϕ, φ)-plane, the
expressions of the orbits are given as

φ = ±
√

α

6

√
(ϕ − ϕ14)(ϕ − ϕ15)(ϕ − ϕ16)(ϕ17 − ϕ),

(94)

where ϕ20 < ϕ14 < ϕ12 < ϕ15 < ϕ9 < ϕ16 < ϕ
9 <

ϕ17 < ϕ21.

Substituting (94) into dϕ
dξ

= φ and integrating them
along Γ6 and Γ ∗

6 , we have

±
∫ ϕ

ϕ14

1√
(ϕ17 − s)(ϕ16 − s)(ϕ15 − s)(s − ϕ14)

ds

=
√

α

6

∫ ξ

0
ds, (95)

±
∫ ϕ

ϕ17

1√
(ϕ17 − s)(s − ϕ16)(s − ϕ15)(s − ϕ14)

ds

=
√

α

6

∫ ξ

0
ds. (96)

From (95), (96) and noting that u = ϕ(ξ) and ξ =
x − ct , we get two periodic wave solutions u7(x, t) as
(18) and u8(x, t) as (19).

(iv) From the phase portrait, we note that there is a
special orbit Γ7 passing the points (ϕ18, 0) and (ϕ19, 0).
In (ϕ, φ)-plane, the expressions of the orbit are given
as

φ = ±
√

α

6

√
(ϕ19 − ϕ)(ϕ − ϕ18)(ϕ − c2)(ϕ − c2),

(97)

where ϕ18 < ϕ20 < ϕ21 < ϕ19, c2 and c2 are conjugate
complex numbers.

Substituting (97) into dϕ
dξ

= φ and integrating it
along Γ7, we have

±
∫ ϕ

ϕ18

1√
(ϕ19 − s)(s − ϕ18)(s − c2)(s − c2)

ds

=
√

α

6

∫ ξ

0
ds. (98)

From (98) and noting that u = ϕ(ξ) and ξ = x −ct ,
we get a periodic wave solution u9(x, t) as (20).

If ϕ(ξ) is a traveling wave solution, then ϕ(ξ + q)

is a traveling wave solution too. Taking q = 2K and
noting that cn(u + 2K ) = −cnu, we get a periodic
wave solution u10(x, t) as (21).

(v) From the phase portrait, we note that there are
two homoclinic orbits Γ8 and Γ ∗

8 connected at the sad-
dle point (ϕ9, 0). In (ϕ, φ)-plane the expressions of the
orbits are given as

φ = ±
√

α

6

√
(ϕ − ϕ9)2(ϕ − ϕ20)(ϕ21 − ϕ), (99)

where

ϕ20 = −ϕ9 −
√

6β

α
− 2ϕ2

9 , (100)

ϕ21 = −ϕ9 +
√

6β

α
− 2ϕ2

9 . (101)
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Substituting (99) into dϕ
dξ

= φ and integrating them
along Γ8 and Γ ∗

8 , it follows that

±
∫ ϕ

ϕ20

1√
(s − ϕ9)2(s − ϕ20)(ϕ21 − s)

ds

=
√

α

6

∫ ξ

0
ds, (102)

±
∫ ϕ

ϕ21

1√
(s − ϕ9)2(s − ϕ20)(ϕ21 − s)

ds

=
√

α

6

∫ ξ

0
ds. (103)

From (102), (103) and noting that u = ϕ(ξ) and ξ =
x − ct , we get two solitary wave solutions u11±(x, t)
as (28).

(3) If g = −g0, we will consider two kinds of orbits.
(i) From the phase portrait, we note that there is a

special orbit Γ9 passing the points (ϕ22, 0) and (ϕ23, 0).
In (ϕ, φ)-plane, the expressions of the orbit are given
as

φ = ±
√

α

6

√
(ϕ23 − ϕ)(ϕ − ϕ22)(ϕ − c3)(ϕ − c3),

(104)

where −√
3α < ϕ22 < −2

√
α
3 < ϕ23 <

√
α
3 , c3 and

c3 are conjugate complex numbers.
Substituting (104) into dϕ

dξ
= φ and integrating it

along Γ9, we have

±
∫ ϕ

ϕ22

1√
(ϕ23 − s)(s − ϕ22)(s − c3)(s − c3)

ds

=
√

α

6

∫ ξ

0
ds. (105)

From (105) and noting that u = ϕ(ξ) and ξ = x−ct ,
we get a periodic wave solutions u12(x, t) as (29).

(ii) From the phase portrait, we note that there is
a special orbit Γ10 passing the points (ϕ24, 0) and
(ϕ25, 0). In (ϕ, φ)-plane, the expressions of the orbit
are given as

φ = ±
√

α

6

√
(ϕ25 − ϕ)(ϕ − ϕ24)(ϕ − c4)(ϕ − c4),

(106)

where ϕ24 < −√
3α <

√
α
3 < ϕ25, c4 and c4 are

conjugate complex numbers
Substituting (106) into dϕ

dξ
= φ and integrating them

along Γ10, we have

±
∫ ϕ

ϕ24

1√
(ϕ25 − s)(s − ϕ24)(s − c4)(s − c4)

ds

=
√

α

6

∫ ξ

0
ds. (107)

From (107) and noting that u = ϕ(ξ) and ξ = x−ct ,
we get a periodic wave solutions u13(x, t) as (30).

(iii) From the phase portrait, we see that there is
a homoclinic orbit Γ11, which passes the degenerate
saddle point (ϕ∗+, 0) for system (68). In (ϕ, φ)-plane,
the expressions of the homoclinic orbit are given as

φ = ±
√

α

6

√
(ϕ∗+ − ϕ)3(ϕ − ϕ26), (108)

where

ϕ26 = −3

√
β

α
. (109)

Substituting (108) into dϕ
dξ

= φ and integrating them
along Γ11, it follows that

±
∫ ϕ

ϕ26

1

(s − ϕ∗+)
√

(s − ϕ∗+)(ϕ26 − s)
ds

=
√

α

6

∫ ξ

0
ds. (110)

From (110) and noting that u = ϕ(ξ) and ξ = x−ct ,
we get a solitary wave solution u14(x, t) as (34).

Thus, the derivation of Proposition 1 has been fin-
ished.

3.3 The derivation of Proposition 2

In this section, we will obtain the explicit expressions
of solutions for the MBBM equation (2) when α < 0.

(1) If g = 0, we will consider three kinds of orbits.
(i) From the phase portrait, we note that there are

three special orbits Γ̃ ∗
1 , Γ̃1 and Γ̃ 

1 passing the points
(ϕ̃1, 0), (ϕ̃2, 0), (ϕ̃3, 0) and (ϕ̃4, 0). In (ϕ, φ)-plane the
expressions of the orbit are given as

φ = ±
√

−α

6

√
(ϕ − ϕ̃1)(ϕ − ϕ̃2)(ϕ − ϕ̃3)(ϕ − ϕ̃4),

(111)

where ϕ̃1 = −ϕ̃4, ϕ̃2 = −
√

6β
α

− ϕ̃2
4 , ϕ̃3 =

√
6β
α

− ϕ̃2
4

and
√

3β
α

< ϕ̃4 <

√
6β
α

.

Substituting (111) into dϕ
dξ

= φ and integrating them

along Γ̃ ∗
1 , Γ̃1 and Γ̃ 

1 , we have
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±
∫ ϕ

0

1√
(s − ϕ̃1)(s − ϕ̃2)(s − ϕ̃3)(s − ϕ̃4)

ds

=
√

−α

6

∫ ξ

0
ds, (112)

±
∫ ∞

ϕ

1√
(s − ϕ̃1)(s − ϕ̃2)(s − ϕ̃3)(s − ϕ̃4)

ds

=
√

−α

6

∫ ξ

0
ds. (113)

From (112), (113) and noting that u = ϕ(ξ) and ξ =
x − ct , we get two periodic wave solutions u15±(x, t)
as (35) and two periodic blow-up solutions u16±(x, t)
as (36).

(ii) From the phase portrait, we note that there are
two special orbits Γ̃3 and Γ̃ ∗

3 , which have the same
hamiltonian with that of the center point (0, 0). In
(ϕ, φ)-plane, the expressions of these two orbits are
given as

φ = ±
√

−α

6
ϕ
√

(ϕ − ϕ̃5)(ϕ − ϕ̃6), (114)

where ϕ̃5 = −
√

6β
α

and ϕ̃6 =
√

6β
α

.

Substituting (114) into dϕ
dξ

= φ and integrating them

along the two orbits Γ̃3 and Γ̃ ∗
3 , it follows that

±
∫ ϕ

ϕ̃6

1

s
√

(s − ϕ̃5)(s − ϕ̃6)
ds =

√
−α

6

∫ ξ

0
ds, (115)

±
∫ +∞

ϕ

1

s
√

(s − ϕ̃5)(s − ϕ̃6)
ds =

√
−α

6

∫ ξ

0
ds.

(116)

From (115), (116) and noting that u = ϕ(ξ) and
ξ = x − ct , we get four periodic blow-up solutions
u17±(x, t) and u18±(x, t) as (37) and (38).

(iii) From the phase portrait, we see that there are two
heterclinic orbits Γ̃2 and Γ̃ ∗

2 connected at saddle points
(ϕ−, 0) and (ϕ+, 0). In (ϕ, φ)-plane, the expressions
of the heterclinic orbits are given as

φ = ±
√

−α

6

√
(ϕ − ϕ−)2(ϕ − ϕ+)2. (117)

Substituting (117) into dϕ
dξ

= φ and integrating them

along the heterclinic orbits Γ̃2 and Γ̃ ∗
2 , it follows that

±
∫ ϕ

0

1

(s − ϕ−)(ϕ+ − s)
ds =

√
−α

6

∫ ξ

0
ds, (118)

±
∫ +∞

ϕ

1

(s − ϕ−)(s − ϕ+)
ds =

√
−α

6

∫ ξ

0
ds. (119)

From (118), (119) and noting that u = ϕ(ξ) and
ξ = x − ct , we get two kink wave solutions u19±(x, t)
as (39) and two unbounded solutions u20±(x, t) as (40).

(2) If 0 < g < g0, we set the largest solution of

f (ϕ) = 0 be ϕ̃7

(√
β
α

< ϕ̃7 <

√
3β
α

)
, then we can get

another two solutions of f (ϕ) = 0 as follows:

ϕ̃∗
7 = 1

2α

(
−αϕ̃7 +

√
12αβ − 3α2ϕ̃2

7

)
, (120)

ϕ̃
7 = 1

2α

(
−αϕ̃7 −

√
12αβ − 3α2ϕ̃2

7

)
. (121)

(i) From the phase portrait, we note that there are
three special orbits Γ̃ ∗

4 , Γ̃4 and Γ̃ 
4 passing the points

(ϕ̃8, 0), (ϕ̃9, 0), (ϕ̃10, 0) and (ϕ̃11, 0). In (ϕ, φ)-plane,
the expressions of the orbit are given as

φ = ±
√

−α

6

√
(ϕ − ϕ̃8)(ϕ − ϕ̃9)(ϕ − ϕ̃10)(ϕ − ϕ̃11),

(122)

where ϕ̃14 < ϕ̃8 < ϕ̃12 < ϕ̃13 < ϕ̃9 < ϕ̃
7 < ϕ̃10 <

ϕ̃7 < ϕ̃11 < ϕ̃15.
Substituting (122) into dϕ

dξ
= φ and integrating them

along Γ̃ ∗
4 , Γ̃4 and Γ̃ 

4 , we have

∫ ϕ̃8

ϕ

1√
(ϕ̃11 − s)(ϕ̃10 − s)(ϕ̃9 − s)(ϕ̃8 − s)

ds

=
√

−α

6

∫ ξ

0
, (123)

∫ ϕ

ϕ̃11

1√
(ϕ̃11 − s)(ϕ̃10 − s)(s − ϕ̃9)(s − ϕ̃8)

ds

=
√

−α

6

∫ ξ

0
, (124)

∫ ϕ

ϕ̃9

1√
(s − ϕ̃11)(s − ϕ̃10)(s − ϕ̃9)(s − ϕ̃8)

ds

=
√

−α

6

∫ ξ

0
. (125)

From (123), (124), (125) and noting that u = ϕ(ξ)

and ξ = x − ct , we get two periodic blow-up wave
solutions u21(x, t), u22(x, t) as (41), (42) and a peri-
odic wave solution u24(x, t) as (44).

(ii) From the phase portrait, we see that there are
a homoclinic orbit Γ̃5, which passes the saddle point
(ϕ̃7, 0), and a spacial orbit Γ̃6 passing the point (ϕ̃12, 0).
In (ϕ, φ)-plane, the expressions of the orbits are given
as
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φ = ±
√

−α

6

√
(ϕ − ϕ̃7)2(ϕ − ϕ̃12)(ϕ − ϕ̃13), (126)

where

ϕ̃12 =
−αϕ̃7 +

√
6αβ − 2α2ϕ̃2

7

α
, (127)

ϕ̃13 =
−αϕ̃7 −

√
6αβ − 2α2ϕ̃2

7

α
. (128)

Substituting (126) into dϕ
dξ

= φ and integrating them
along the orbits, it follows that

±
∫ ∞

ϕ

1√
(s − ϕ̃7)2(s − ϕ̃12)(s − ϕ̃13)

ds

=
√

−α

6

∫ ξ

0
ds. (129)

±
∫ ϕ

ϕ̃13

1√
(s − ϕ̃7)2(s − ϕ̃12)(s − ϕ̃13)

ds

=
√

−α

6

∫ ξ

0
ds. (130)

From (129), (130) and noting that u = ϕ(ξ) and
ξ = x − ct , we get a blow-up solution u25(x, t) as (48)
and a solitary wave solution u26(x, t) as (49).

(iii) From the phase portrait, we see that there are
two special orbits Γ̃7 and Γ̃ ∗

7 , which have the same
hamiltonian with that of the center point (ϕ̃

7, 0). In
(ϕ, φ)-plane, the expressions of the orbits are given as

φ = ±
√

−α

6

√
(ϕ − ϕ̃

7)
2(ϕ − ϕ̃14)(ϕ − ϕ̃15), (131)

where

ϕ̃14 = 1

2α

(
αϕ̃7 +

√
12αβ − 3α2ϕ̃2

7

+ 2

√
αϕ̃7(αϕ̃7 −

√
12αβ − 3α2ϕ̃2

7)

)
,

(132)

ϕ̃15 = 1

2α

(
αϕ̃7 +

√
12αβ − 3α2ϕ̃2

7

− 2

√
αϕ̃7(αϕ̃7 −

√
12αβ − 3α2ϕ̃2

7)

)
.

(133)

Substituting (131) into dϕ
dξ

= φ and integrating them
along the orbits, it follows that

±
∫ ϕ

ϕ̃14

1√
(s − ϕ̃

7)
2(s − ϕ̃14)(s − ϕ̃15)

ds

=
√

−α

6

∫ ξ

0
ds, (134)

±
∫ ϕ

ϕ̃15

1√
(s − ϕ̃

7)
2(s − ϕ̃14)(s − ϕ̃15)

ds

=
√

−α

6

∫ ξ

0
ds. (135)

From (134), (135) and noting that u = ϕ(ξ) and
ξ = x−ct , we get two periodic blow-up wave solutions
u23±(x, t) as (43).

(3) If g = g0, we will consider two kinds of orbits.
(i) From the phase portrait, we see that there are two

orbits Γ̃8 and Γ̃ ∗
8 , which have the same hamiltonian

with the degenerate saddle point (ϕ∗+, 0). In (ϕ, φ)-
plane the expressions of these two orbits are given as

φ = ±
√

−α

6

√
(ϕ − ϕ∗+)3(ϕ − ϕ̃16), (136)

where

ϕ̃16 = −3

√
β

α
. (137)

Substituting (136) into dϕ
dξ

= φ and integrating them

along these two orbits Γ̃8 and Γ̃ ∗
8 , it follows that

±
∫ +∞

ϕ

1√
(s − ϕ∗+)3(s − ϕ̃16)

ds =
√

−α

6

∫ ξ

0
ds,

(138)

±
∫ ϕ

ϕ̃16

1√
(s − ϕ∗+)3(s − ϕ̃16)

ds =
√

−α

6

∫ ξ

0
ds.

(139)

From (138), (139) and noting that u = ϕ(ξ) and
ξ = x − ct , we get three blow-up solutions u27(x, t)),
u28(x, t) and u29(x, t) as (50), (51) and (52).

(ii) From the phase portrait, we see that there are two
special orbits Γ̃9 and Γ̃ ∗

9 passing the points (Γ̃17, 0) and
(Γ̃18, 0). In (ϕ, φ)-plane, the expressions of the orbits
are given as

φ = ±
√

−α

6

√
(ϕ − ϕ̃18)(ϕ − ϕ̃17)(ϕ − c5)(ϕ − c5),

(140)

where ϕ̃17 < ϕ̃16 < ϕ̃∗+ < ϕ̃18, c5 and c5 are conjugate
complex numbers.
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Fig. 3 The limiting process of u1 tends to u4− when ϕ1 tends to ϕ7
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Fig. 4 The limiting process of u3− tends to u4− when ϕ5 tends to ϕ7

Substituting (140) into dϕ
dξ

= φ and integrating them

along Γ̃9 and Γ̃ ∗
9 , we have

±
∫ ϕ

ϕ̃18

1√
(s − ϕ̃18)(s − ϕ̃17)(s − c5)(s − c5)

ds

=
√

−α

6

∫ ξ

0
ds. (141)

From (141) and noting that u = ϕ(ξ) and ξ = x−ct ,
we get a periodic wave solutions u30(x, t) as (53).

Thus, we obtain the results given in Proposition 2.

3.4 The derivation of Proposition 3

In this section, we will give that the solitary wave solu-
tions, periodic wave solutions, kink wave solutions,
blow-up wave solutions and unbounded solutions can
be obtained from the limits of the smooth periodic wave
solutions or periodic blow-up solutions.

(1) Letting ϕ1 → ϕ7, it follows that a1 → − 6β
α

,

b1 → 6β
α

, c1 →
√

6β
α

, d1 →
√

6β
α

, ω1 →
√

β
2 k1 → 1

and sn(ω1ξ, 1) = tanh(ω1ξ), and we have

lim
ϕ1→ϕ7

u1(x, t) = lim
ϕ1→ϕ7

a1 + b1sn2(ω1ξ, k1)

c1 + d1sn2(ω1ξ, k1)

=
− 6β

α
+ 6β

α
tanh2

(√
β

2 ξ
)

√
6β
α

+
√

6β
α

tanh2
(√

β
2 ξ

)

= −
√

6β

α

1 − tanh2
(√

β
2 ξ

)

1 + tanh2
(√

β
2 ξ

)

= −
√

6β

α
sech

(√
βξ

)
= u4−(x, t).

(142)

lim
ϕ5→ϕ7

u3−(x, t) = lim
ϕ5→ϕ7

ϕ5cn

×
(√

α

3
ϕ2

5 −βξ,−ϕ5

√
α

2αϕ2
5 −6β

)

= −
√

6β

α
cn

(√
βξ, 1

)

= −
√

6β

α
sech

(√
βξ

)
= u4−(x, t).

(143)

Therefore, the hyperbolic solitary wave solution
u4−(x, t) is the limit of the elliptic function periodic
wave solutions u1(x, t) and u3−(x, t). Their limiting
process are in Figs. 3 and 4.

(2) Letting ϕ4 → ϕ8, it follows that k2 → 1 and

sn
(
ϕ4

√
α
6 ξ, 1

)
= tanh(

√
βξ), and we have

lim
ϕ4→ϕ8

u2(x, t)

= lim
ϕ4→ϕ8

√
ϕ2

4 − (2ϕ2
4 − 6β

α
)sn2

(
ϕ4

√
α

6
ξ, k2

)
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Fig. 5 The limiting process of u2 tends to u4+ when ϕ4 tends to ϕ8
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Fig. 6 The limiting process of u3+ tends to u4+ when ϕ6 tends to ϕ8

=
√

6β

α
− 6β

α
tanh2

(√
βξ

)
=

√
6β

α
sech

(√
βξ

)

= u4+(x, t). (144)

lim
ϕ6→ϕ8

u3+(x, t)

= lim
ϕ6→ϕ8

ϕ6cn

(√
α

3
ϕ2

6 − βξ, ϕ6

√
α

2αϕ2
6 − 6β

)

=
√

6β

α
cn

(√
βξ, 1

)
=

√
6β

α
sech

(√
βξ

)

= u4+(x, t). (145)

Therefore, the hyperbolic solitary wave solution
u4+(x, t) is the limit of the elliptic function periodic
wave solutions u2(x, t) and u3+(x, t). Their limiting
process are in Figs. 5 and 6.

(3) Letting ϕ11 → ϕ13 − 0, it follows that c1 →
ϕ

9, c1 → ϕ
9, k3 → 0, ϕ10 → ϕ12 + 0, A1 → ϕ13 −

ϕ
9 and B1 → ϕ12 − ϕ

9, and we have

lim
ϕ11→ϕ13

u5(x, t) = lim
ϕ11→ϕ13

A1ϕ10+ϕ11 B1+(A1ϕ10−ϕ11 B1)cn

(√
αA1 B1

6 ξ, k3

)

A1 + B1 + (A1 − B1)cn

(√
αA1 B1

6 ξ, k3

)

=
−2γ1 + η1δ1 + η1

√
μ1 cos

(√
αγ1

6 ξ
)

δ1 + √
μ1 cos

(√
αγ1

6 ξ
)

= u6(x, t). (146)

Therefore, the trigonometric function periodic wave
solution u6(x, t) is the limit of the elliptic function peri-
odic wave solution u5(x, t). The limiting process is in
Fig. 7.

(6) Letting ϕ22 → ϕ26, it follows that ϕ23 →
ϕ∗+, c3 → ϕ∗+, c3 → ϕ∗+, A3 → 0, B3 → 4

√
β
α

and cn

(√
αA3 B3

6 ξ, k6

)
→ cn(0, k6) = 1, and we have

lim
ϕ22→ϕ26

u12(x, t) = lim
ϕ22→ϕ26

A3ϕ22 + ϕ23 B3 + (A3ϕ22 − ϕ23 B3)cn

(√
αA3 B3

6 ξ, k6

)

A3 + B3 + (A3 − B3)cn

(√
αA3 B3

6 ξ, k6

)

= lim
A3→0

A3ϕ22 + ϕ23 B3+(A3ϕ22−ϕ23 B3)cn

(√
αA3 B3

6 ξ, k6

)

A3 + B3 + (A3 − B3)cn

(√
αA3 B3

6 ξ, k6

)

= lim
A3→0

2
√

6αA3 B3 (ϕ22+ϕ22χ1)−αB3(A3ϕ22−B3ϕ23)ξχ2χ3

2
√

6αA3 B3 (1 + χ1) − αB3(A3 − B3)ξχ2χ3

=
√

β(−9 + 2βξ2)√
α(3 + 2βξ2)

= u14(x, t). (147)
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Fig. 7 The limiting process of u5 tends to u6 when ϕ11 tends to ϕ13
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Fig. 8 The limiting process of u15+ tends to u19+ when ϕ̃4 tends to ϕ+
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Fig. 9 The limiting process of u15− tends to u19− when ϕ̃4 tends to ϕ+

whereχ1 =cn

(√
αA3 B3

6 ξ, k6

)
, χ2 =dn

(√
αA3 B3

6 ξ, k6

)
,

χ3 =sn

(√
αA3 B3

6 ξ, k6

)
.

Therefore, the fractional function solitary wave solu-
tion u14(x, t) is the limit of the elliptic function periodic
wave solution u12(x, t). The limiting process is similar
to that in Fig. 3.

(7) Letting ϕ̃4 → ϕ++0, it follows that
√

6β
α

−ϕ̃2
4 →√

3β
α

, 1
ϕ̃4

√
6β
α

− ϕ̃2
4 → 1 and sn

(√
−β

2 ξ, 1

)
=

tanh

(√
−β

2 ξ

)
, and we have

lim
ϕ̃4→ϕ+

u15±(x, t) = lim
ϕ̃4→ϕ+

±
√

6β

α
− ϕ̃2

4sn

(
ϕ̃4

√
−α

6
ξ,

1

ϕ̃4

√
6β

α
− ϕ̃2

4

)

= ±
√

3β

α
tanh

(√
−β

2
ξ

)

= u19±(x, t). (148)

Therefore, the kink wave solutions u19±(x, t) are the
limit of the elliptic function periodic wave solutions
u15±(x, t). Their limiting process are in Figs. 8 and 9.

(8) Letting ϕ̃4 → ϕ+ + 0, it follows that
1
ϕ̃4

√
6β
α

−ϕ̃2
4 → 1 and sn

(√
−β

2 ξ, 1

)
= tanh

(√
−β

2 ξ

)
,

and we have

lim
ϕ̃4→ϕ+
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± ϕ̃4

sn

(
ϕ̃4

√
−α
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4

)

= ±
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α
coth

(√
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2
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)
= u20±(x, t). (149)
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Fig. 10 The limiting process of u16+ tends to u20+ when ϕ̃4 tends to ϕ+
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Fig. 11 The limiting process of u16− tends to u20− when ϕ̃4 tends to ϕ+
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Fig. 12 The limiting process of u21 tends to u25 when ϕ̃4 tends to ϕ̃7

Therefore, the unbounded wave solutions u20±(x, t)
are the limit of the elliptic function periodic wave solu-
tions u16±(x, t). Their limiting process are in Figs. 10
and 11.

(9) Letting ϕ̃11 → ϕ̃7 − 0, it follows that ϕ̃8 →
ϕ̃12 − 0, ϕ̃9 → ϕ̃13 + 0, ϕ̃10 → ϕ̃7 + 0, k8 → 1, ω3 →√

β−αϕ̃2
7

2 and sn(ω3ξ, 1) → tanh(ω3ξ), and we have

lim
ϕ̃11→ϕ̃7

u21(x, t)

= lim
ϕ̃11→ϕ̃7

(−ϕ̃11 + ϕ̃9)ϕ̃8 + (ϕ̃11 − ϕ̃8)ϕ̃9sn2 (ω3ξ, k8)

−ϕ̃11 + ϕ̃9 + (ϕ̃11 − ϕ̃8)sn2 (ω3ξ, k8)

= (−ϕ̃7 + ϕ̃13)ϕ̃12 + (ϕ̃7 − ϕ̃12)ϕ̃13 tanh2(ω3ξ)

−ϕ̃7 + ϕ̃13 + (ϕ̃7 − ϕ̃12) tanh2(ω3ξ)

= ϕ̃7 + 6β − 6αϕ̃2
7

2αϕ̃7 +
√

6αβ − 2α2ϕ̃2
7 cosh

(√
β − αϕ̃2

7ξ

)

= u25(x, t). (150)

Therefore, the blow-up wave solution u25(x, t) is the
limit of the periodic blow-up wave solution u21(x, t).
The limiting process is in Fig. 12.

Similarly, we can derive the others cases. This has
proved Proposition 3.

Remark 1 One may find that we only consider the case
when g ≤ 0 in Proposition 1(when g ≥ 0 in Proposi-
tion 2). In fact, we may get exactly the same solutions
in the opposite case.

Remark 2 By comparing with the solutions of Refs.
[4–7], most of my results are new. After checking over
those solutions carefully, when a = 1, we find that my
results (15), (37) and (38), exactly the same as those
results (5.19), (5.16), (5.17), (5.20), (5.21) given in Ref.
[7]. When a = 1 and c = α

1−2α2 , we find that my
results (39) and (40), exactly the same as those results
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(5.6) given in Ref. [7]. To our knowledge, we believe
that many other solutions are new.

4 Conclusions

In this paper, I have obtained many traveling wave solu-
tions for the MBBM equation (2) by employing the
bifurcation method and qualitative theory of dynam-
ical systems. The traveling wave solutions have been
given in Propositions 1 and 2. On the other hand, in
Proposition 3, we prove that the solitary wave solu-
tions, periodic wave solutions, kink wave solutions,
blow-up wave solutions and unbounded solutions can
be obtained from the limits of the smooth periodic wave
solutions or periodic blow-up solutions. The method
can be applied to many other nonlinear evolution equa-
tions, and we believe that many new results wait for
further discovery by this method.
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