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Abstract Successive lag synchronization (SLS) is
defined as a new synchronization pattern, which means
that lag synchronization appears between two succes-
sively numbered nodes in a dynamical network. Based
on the topological structure of the considered network,
linear feedback control and adaptive linear feedback
control are proposed to achieve the SLS. By using Lya-
punov function method and Barbalat Lemma, some
sufficient conditions for the global stability of SLS
are obtained. Moreover, the stability condition is inde-
pendent on time delay. By using the proposed con-
trol method, successive lag consensus of a multi-agent
system with second-order dynamics is also realized.
By utilizing the Chua’s circuit as the local nonlinear
dynamics of all nodes in the network, several numer-
ical examples are presented to verify the theoretical
results.
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1 Introduction

During the past few decades, the synchronization of
complex networks has been studied thoroughly and
widely, due to its potential applications in various
fields, such as secure communication, parameter iden-
tification of dynamical systems, seismology, parallel
image processing, chemical reaction, animal behavior
research, and so on (e.g., see [1–8]). Various patterns of
synchronization have been defined and studied, includ-
ing complete synchronization [9,10], cluster synchro-
nization [11,12], phase synchronization [13], lag syn-
chronization (LS) [14], outer synchronization [15,16],
bubbling synchronization [17], projective synchroniza-
tion [18], generalized synchronization [19], etc.

Lag synchronization appears as a coincidence of
shifted-in-time states of two coupled systems, i.e.,
y(t) → x(t − τ) with positive τ as t → +∞, which
is investigated originally in [14,20]. LS has also been
realized and studied in two coupled dynamical net-
works later [21,22]. Recently, generalized lag synchro-
nization (GLS) of two coupled dynamical networks
has become a research focus [23–26]. In these works,
a common research problem is how to achieve LS
between two coupled systems (or networks), where one
is the drive system (or drive network), and the other is

123



422 K. Li et al.

the response system (or response network). The main
research method is to utilize nonlinear feedback control
to achieve the LS. However, the LS in multi-coupled
dynamical systems is still an open problem.

In fact, realization of LS in multi-agent systems
[27–30] has important significance. For instance, let
xi (t) be the position state of the i th agent at time t in a
multi-agent system, where i = 1, 2, . . . , n. In order to
realize position synchronization (i.e., consensus) and
avoid collision between agents, we need to obtain a
coincidence of shifted-in-time states of these agents,
i.e., xi (t − τ) → xi+1(t) for a positive time delay
τ as t → +∞. We name this new kind of lag syn-
chronization in multi-coupled dynamical systems as
the successive lag synchronization (SLS), which can
be considered as a generalized pattern of the tradi-
tional LS in two coupled systems. That is to say, the
realization of SLS means the state of the (i + 1)-th
node converges to the state of the i-th node with a con-
stant time delay τ , which is achieved successively from
the second node to the last one. In addition, compared
with linear feedback control, nonlinear feedback con-
trol is harder to be implemented in the real dynamical
systems. Therefore, it is natural to raise the follow-
ing question: just with linear feedback control, can we
achieve the SLS in a multi-coupled dynamical system
(or network)?

In this paper, based on a general dynamical network
model, we will give a positive answer to the above ques-
tion. Depending on topological structure of the con-
sidered dynamical network, a linear feedback control
is designed to realize its SLS. Moreover, in order to
decrease the control strength, an adaptive linear feed-
back control is also proposed. By using Lyapunov func-
tion method and Barbalat Lemma, some sufficient con-
ditions for the global stability of SLS are obtained.
Finally, we give application of the proposed control
in multi-agent systems with second-order dynamics.
To verify these results, some numerical examples are
presented.

The rest of this paper is organized as follows. In
Sect. 2, we give some Lemmas and some preliminaries
about the model formulation of a considered dynamical
network under control. In Sect. 3, SLS global stabilities
of the dynamical network under linear feedback con-
trol and adaptive linear feedback control are investi-
gated, respectively. In Sect. 4, we study the application
of the proposed control in a multi-agent system with
second-order dynamics. In Sect. 5, some numerical

verifications are performed. Finally, in Sect. 6, we con-
clude this paper.

2 Preliminaries

Let R
n denote the n-dimension Euclidean space. For

x ∈ R
n , its Euclidean norm ‖x‖ = xTx , where T

denotes transposition. In represents the identity matrix
in R

n×n . On represents the zero matrix in R
n×n . For

two symmetric matrices A, B ∈ R
n×n , A > B means

that A − B is positive definite. Let C([−r, 0], R) be the
function space of all continuous functions from [−r, 0]
to R, where r > 0.

The considered dynamical network under control is
described by

ẋi (t) = f (xi (t)) + c
n∑

j=1

ai j x j (t) + ui (t), (1)

where i = 1, 2, . . . , n, xi (t) = (xi1, xi2, . . . , xim)T ∈
R

m is the state variable of the i-th node, and ui (t)
denotes the feedback control input into the i-th node.
The function f (·) is a continuously differentiable func-
tion which determines the local dynamical behavior
of the nodes. The constant c > 0 denotes the cou-
pling strength. The coupling matrix A = (ai j ) ∈
R

n×n with zero-sum rows shows the topological struc-
ture of the network. If nodes i and j are connected,
then ai j = a ji = 1; otherwise ai j = a ji =
0. The diagonal elements of the coupling matrix A
are

aii = −
n∑

j=1, j �=i

ai j = −ki , i = 1, 2, . . . , n, (2)

where ki denotes the degree of node i . We suppose that
the matrix A is irreducible, which means that the net-
work is connected in the sense that there are no isolated
clusters.

Definition 1 SLS of dynamical network (1) is said to
be achieved if, for any initial condition xi (t) = ϕi (t) ∈
C([−(i − 1)τ, 0], R) and every i ∈ {1, 2, . . . , n − 1},

lim
t→+∞ ‖xi (t − τ) − xi+1(t)‖ = 0, (3)

where the time delay parameter τ > 0.

First, for i = 1, 2, . . . , n − 1, some preliminary
functions are defined by
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vi (t) =
n−1∑

k=1

cwik(t) + ca(i+1)1x1(t) − cain xn(t − τ)

−d(xi (t − τ) − xi+1(t)),

where d > 0 denotes control strength, for k �= i ,

wik(t) =
⎧
⎨

⎩

0, if aik = a(i+1)(k+1),

−aik xk(t − τ), if aik > a(i+1)(k+1),

a(i+1)(k+1)xk+1(t), if aik < a(i+1)(k+1),

(4)

and

wi i (t) = (a(i+1)(i+1) − aii )xi+1(t). (5)

Then, the control can be designed as

u1(t) = 0,

ui (t) = −vi−1(t)

−vi−2(t − τ) − · · · − v1(t − (i − 2)τ ),

i = 2, 3, . . . , n. (6)

By using this control scheme, we have

ui (t − τ) − ui+1(t) = vi (t), i = 1, 2, . . . , n − 1.

(7)

One can intuitively understand the function of above
preliminary functions vi (t) in the following way. From
the error system (11) and the proof of Theorem 1 in

Sect. 3, we can see that the term −c

( ∑n−1
k=1 wik(t) +

a(i+1)1x1(t)−ain xn(t −τ)

)
plays a suppressive role in

the realization of SLS, while the term −d(xi (t − τ) −
xi+1(t)) is devoted to accelerate the realization.

Definition 2 ([31,32]) Function class QUAD(�,

P, ω): Let a diagonal matrix � = diag{δ1, δ2, . . . , δm}
and a positive definite diagonal matrix P = diag
{p1, p2, . . . , pm}. QUAD(�, P, ω) denotes a class of
continuous functions f (x, t) : R

m × [0,+∞) → R
m

satisfying

(x − y)T P{[ f (x, t) − f (y, t)] − �[x − y]}
≤ −ω(x − y)T(x − y), (8)

for some ω > 0, all x, y ∈ R
m and all t ≥ 0.

Lemma 1 (Barbalat Lemma [33]) If g(t) : R → R
+

is a uniformly continuous function for t ≥ 0 and if the
limit of the integral

lim
t→+∞

∫ t

0
g(s)ds (9)

exists and is finite, then limt→+∞ g(t) = 0.

From this Lemma, we have the following result.

Lemma 2 If g(t) : R → R
+ is a uniformly continuous

function for t ≥ 0 and if the integral
∫ t

0
g(s)ds (10)

is bounded on [0,+∞), then limt→+∞ g(t) = 0.

Proof Let G(t) = ∫ t
0 g(s)ds. Obviously, the function

G(t) is a monotone increasing function on [0,+∞).
Since G(t) is bounded, limt→+∞ G(t) exists and is
finite. According to Lemma 1, we can get this result. 	

Lemma 3 ([34]) For matrices A, B, C, and D with
appropriate dimensions, the Kronecker product ⊗ sat-
isfies

(i) (φ A) ⊗ B = A ⊗ (φB),
(ii) (A + B) ⊗ C = A ⊗ C + B ⊗ C,

(iii) (A ⊗ B)T = AT ⊗ BT,

where φ is a constant.

Remark 1 To realize SLS of dynamical network (1),
the design of its control is not unique. As shown in con-
trol (6), the first node is not controlled, while the other
nodes are all controlled. In fact, we can let un(t) = 0
and the other controllers ui (t) �= 0, which can be deter-
mined according to the corresponding SLS error sys-
tems as discussed in next section.

3 Global stability analysis of SLS

According to Definition 1, SLS errors of dynamical
network (1) are defined as ei (t) = xi (t − τ) − xi+1(t)
for i = 1, 2, . . . , n − 1. Then, the error system can be
described as

ėi (t) = ẋi (t − τ) − ẋi+1(t)

= f (xi (t − τ)) + c
n∑

j=1

ai j x j (t − τ) + ui (t − τ)

− f (xi+1(t)) − c
n∑

j=1

a(i+1) j x j (t) − ui+1(t)

= f (xi (t − τ)) − f (xi+1(t)) + c
n∑

j=1

(ai j x j (t − τ)

−a(i+1) j x j (t)) + vi (t)

= f (xi (t − τ)) − f (xi+1(t)) + c
n−1∑

j=1

bi j e j (t)

−dei (t), (11)
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where according to control (6) for j �= i ,

bi j =
{

ai j , if ai j = a(i+1)( j+1),

0, if ai j �= a(i+1)( j+1),
(12)

and

bii = aii . (13)

It is easy to verify that B is also symmetric.

Theorem 1 Let � = diag{δ1, δ2, . . . , δm} be diagonal
matrix and P = diag{p1, p2, . . . , pm} be positive def-
inite diagonal matrix, such that f (x) ∈ QUAD(�, P).
If there exists d > 0 such that

−ωI(n−1)m+In−1⊗P�+(cB −d In−1)⊗ P < O(n−1)m,

(14)

then, the SLS of dynamical network (1) under control
(6) can be achieved for any initial conditions.

Proof Define the following Lyapunov functional can-
didate

V (t)= 1

2

n−1∑

i=1

eT
i (t)Pei (t). (15)

The derivative of V (t) along trajectories of error
system (11) can be obtained as follows:

dV (t)

dt
=

n−1∑

i=1

eT
i (t)P

(
f (xi (t − τ)) − f (xi+1(t))

+ c
n−1∑

j=1

(ai j x j (t − τ) − a(i+1) j x j (t))

+ ui (t − τ) − ui+1(t)

)

=
n−1∑

i=1

eT
i (t)P

(
f (xi (t − τ)) − f (xi+1(t))

+ c
n−1∑

j=1

bi j e j (t) − dei (t)

)

≤
n−1∑

i=1

(
− ωeT

i ei + eT
i P�ei + ceT

i P
n−1∑

j=1

bi j e j

− deT
i Pei

)
. (16)

Let e(t) = (eT
1 (t), eT

2 (t), . . . , eT
n−1(t))

T. From con-
dition (31), there exists a constant ε > 0 such that

−ωI(n−1)m + In−1 ⊗ P� + (cB − d In−1) ⊗ P ≤
−ε I(n−1)m .

From (16), we get

dV (t)

dt
≤−ωeT(t)I(n−1)me(t)+ eT(t)(In−1 ⊗ P�)e(t)

+ ceT(t)(B ⊗ P)e(t)−deT(t)(In−1 ⊗ P)e(t)

= eT(t)(−ωI(n−1)m + In−1 ⊗ P� + cB ⊗ P

−d In−1 ⊗ P)e(t) ≤ −εeT(t)e(t)

= −ε

n−1∑

i=1

eT
i (t)ei (t). (17)

Integrating the above equation from 0 to t yields

ε

∫ t

0

n−1∑

i=1

eT
i (s)ei (s)ds ≤ V (0) − V (t)

≤ V (0). (18)

So, the integral
∫ t

0

∑n−1
i=1 eT

i (s)ei (s)ds is bounded.
From Lemma 2, we obtain limt→+∞ ‖ei (t)‖ = 0 for
every i ∈ {1, 2, . . . , n − 1}, which in turn means that
limt→+∞ ‖xi (t − τ) − xi+1(t)‖ = 0. This completes
the proof. 	


From Theorem 1, we can always choose large
enough control strength d such that inequality (31) is
valid, then the SLS of dynamical network (1) under
control (6) can be achieved. However, in practice, it is
not allowed that the control strength is arbitrarily large.
A feasible strategy is to adopt adaptive control method
[31].

For i = 1, 2, . . . , n −1, some preliminary functions
are similarly defined by

vi (t) =
n−1∑

k=1

cwik(t) + ca(i+1)1x1(t) − cain xn(t − τ)

−di (t)ei (t),

where di (t) ≥ 0 denotes the time-varying control
strength, for k �= i ,

wik(t)=
⎧
⎨

⎩

0, if aik = a(i+1)(k+1),

−aik xk(t − τ), if aik > a(i+1)(k+1),

a(i+1)(k+1)xk+1(t), if aik < a(i+1)(k+1),

(19)

and

wi i (t) = (a(i+1)(i+1) − aii )xi+1(t). (20)
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Then, an adaptive control is designed as

u1(t)=0,

ui (t)=−vi−1(t)−vi−2(t−τ)−· · ·−v1(t−(i −2)τ ),

ḋ j (t) = eT
j (t)Pe j (t), i =2, . . . , n, j =1, . . . , n−1.

(21)

Theorem 2 Let � = diag{δ1, δ2, . . . , δm} be diagonal
matrix and P = diag{p1, p2, . . . , pm} be positive def-
inite diagonal matrix, such that f (x) ∈ QUAD(�, P).
The SLS of dynamical network (1) can be achieved for
any initial conditions under adaptive control (21).

Proof Define the following Lyapunov functional can-
didate

V (t)= 1

2

n−1∑

i=1

eT
i (t)Pei (t)+

n−1∑

i=1

α(di (t)−d∗
i )2, (22)

where positive constants α and d∗
i will be decided later.

The derivative of V (t) along trajectories of error
system (11) can be obtained as follows:

dV (t)

dt
=

n−1∑

i=1

eT
i (t)P

(
f (xi (t − τ)) − f (xi+1(t))

+ c
n−1∑

j=1

(ai j x j (t − τ) − a(i+1) j x j (t))

+ ui (t − τ) − ui+1(t)

)

+ 2α

n−1∑

i=1

(di (t) − d∗
i )eT

i (t)Pei (t)

=
n−1∑

i=1

eT
i (t)P

(
f (xi (t − τ)) − f (xi+1(t))

+ c
n−1∑

j=1

bi j e j (t) − di (t)ei (t)

)

+ 2α

n−1∑

i=1

(di (t) − d∗
i )eT

i (t)Pei (t). (23)

Let D(t) = diag{d1(t), d2(t), . . . , dn−1(t)} and D∗ =
diag{d∗

1 , d∗
2 , . . . , d∗

n−1}, which are all positive definite.
Similar to the proof of Theorem 1, from the condition

of this theorem and (17), we get

dV (t)

dt
≤ eT(t)(−ωI(n−1)m + In−1 ⊗ P� + cB ⊗ P

−D(t) ⊗ P)e(t)

+2αeT(t)(D(t) ⊗ P − D∗ ⊗ P)e(t)

= eT(t)(−ωI(n−1)m + In−1 ⊗ P� + cB ⊗ P

−2αD∗ ⊗ P)e(t)

−(1 − 2α)eT(t)(D(t) ⊗ P)e(t). (24)

First, we can choose appropriate α such that 1−2α > 0.
Then, we can further select appropriate D∗ such that

−ωI(n−1)m + In−1 ⊗ P� + cB ⊗ P − 2αD∗ ⊗ P

≤ −ε̃ I(n−1)m, (25)

for a positive constant ε̃. Combining (24) and (25), we
have

dV (t)

dt
≤ −ε̃

n−1∑

i=1

eT
i (t)ei (t). (26)

So, the integral
∫ t

0

∑n−1
i=1 eT

i (s)ei (s)ds is bounded.
From Lemma 2, we obtain limt→+∞ ‖ei (t)‖ = 0 for
every i ∈ {1, 2, . . . , n − 1}, which in turn means that
limt→+∞ ‖xi (t − τ) − xi+1(t)‖ = 0. This completes
the proof. 	


Remark 2 In fact, the control methods (6) and (21)
can be generalized to achieve the outer synchroniza-
tion [15,16] of two or more coupled networks. For
example, let Ui denotes the index set of all nodes
in the i-th network, where i = 1, 2, . . . , N . We
can consider a new outer synchronization pattern,
such that limt→+∞ ‖xi (t) − x j (t)‖ = 0,∀ i, j ∈
Uk and limt→+∞ ‖xi (t − τ) − x j (t)‖ = 0,∀ i ∈
Uk, j ∈ Uk+1. Since this consideration exceeds the
work of this paper, we just present it for possible future
researches.

4 Application in multi-agent systems with
second-order dynamics

In this section, the proposed control method in above
section will be generalized and applied to the control
problem of successive lag consensus in multi-agent sys-
tems. A well-known multi-agent system with second-
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order dynamics [30,35] is described as follows:

ẋi (t) = yi (t)

ẏi (t) = α

n∑

j=1

ai j x j (t) − β

n∑

j=1

ai j y j (t),

i = 1, 2, . . . , n, (27)

where xi ∈ R
m and yi ∈ R

m are the position and
velocity state variables of the i-th agent, respectively.
The parameters α > 0 and β > 0 denote the coupling
strengths, and coupling matrix A = (ai j ) ∈ R

n×n

with zero-sum rows shows the topological structure
of system (27). In this section, we consider the case
α = β = c, while the other cases have the simi-
lar analysis. By defining zi = (xT

i , yT
i )T, system (27)

under control can be written as

żi (t) = f (zi (t)) + c
n∑

j=1

ai jΓ z j (t)

+ ui (t), i = 1, 2, . . . , n, (28)

where f (zi (t)) = H zi (t), H =
(

Om Im

Om Om

)
, and

Γ =
(

Om Om

Im Im

)
.

Definition 3 Successive lag consensus of system (28)
is said to be achieved if, for any initial condition
zi (t) = ϕi (t) ∈ C([−(i − 1)τ, 0], R) and every
i ∈ {1, 2, . . . , n − 1},

lim
t→+∞ ‖zi (t − τ) − zi+1(t)‖ = 0, (29)

where the time delay parameter τ > 0.

For i = 1, 2, . . . , n − 1, define preliminary func-
tions:

vi (t) =
n−1∑

k=1

cwik(t) + ca(i+1)1Γ z1(t)

−cainΓ zn(t − τ) − d(zi (t − τ) − zi+1(t)),

where d > 0 denotes control strength, for k �= i ,

wik(t)=
⎧
⎨

⎩

0, if aik =a(i+1)(k+1),

−aikΓ zk(t−τ), if aik >a(i+1)(k+1),

a(i+1)(k+1)Γ zk+1(t), if aik <a(i+1)(k+1),

and

wi i (t) = (a(i+1)(i+1) − aii )Γ zi+1(t).

31 2 4 1
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2

(a) (b)

Fig. 1 Two kinds of topological structure for dynamical network
(1) with size n = 4. a Chain-shaped network; b star-shaped
network

Based on the proposed method in Sect. 2, the control
of system (28) can be designed as

u1(t) = 0,

ui (t) = −vi−1(t)

−vi−2(t − τ) − · · · − v1(t − (i − 2)τ ),

i = 2, 3, . . . , n. (30)

Defining matrix B by (12)–(13), we have the following
result.

Theorem 3 If there exists d > 0 such that

In−1 ⊗ H + cB ⊗ Γ − d I(n−1)m < O(n−1)m, (31)

then the successive lag consensus of system (28) under
control (30) can be achieved for any initial conditions.

Proof Define the following Lyapunov functional can-
didate

V (t) = 1

2

n−1∑

i=1

eT
i (t)ei (t), (32)

where ei (t) = zi (t −τ)− zi+1(t). Then, by the similar
analysis in Theorem 1, we can prove this theorem. For
unnecessary repetition, we omit the detailed proof. 	


5 Numerical experiments

To verify the effectiveness of our control method and
the correctness of theoretical results, we will perform
some numerical simulations in this section. Without
loss of generality, the size of dynamical network (1) is
set as n = 4, and its topological structure is shown in
Fig. 1 with two cases. The local dynamics of all nodes in
this network is characterized by a Chua’s circuit which
is described by
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−3 −2 −1 0 1 2 3
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Fig. 2 The chaotic attractor of the Chua’s circuit

⎧
⎨

⎩

ẏ1(t) = k[y2(t) − h(y1(t))],
ẏ2(t) = y1(t) − y2(t) + y3(t),
ẏ3(t) = −ly2(t),

(33)

where k = 9, l = 100/7, and h(z) = (2/7)z
− (3/14)[|z + 1| − |z − 1|]. The chaotic attractor is
shown in Fig. 2. For this system [32], we have m = 3
and can choose P1 = I3, �1 = 10I3 and ω = 0.6218
to achieve the inequality (8). To realize SLS of dynam-
ical network (1), the linear feedback control (6) and
adaptive linear feedback control (21) are used in Sect.
5.1 and 5.2, respectively.

5.1 Linear feedback control

The topological structure of dynamical network is
shown in Fig. 1a with network size n = 4 and chain-
shaped topology. The star-shaped topology as shown
in Fig. 1b will be considered in Sect. 5.2. The coupling
matrix is

A =

⎛

⎜⎜⎝

−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

⎞

⎟⎟⎠ . (34)

By (12) and (13), we get

B =
⎛

⎝
−1 1 0
1 −2 1
0 1 −2

⎞

⎠ . (35)

According to control (6), we have

u1(t) = 0,

u2(t) = − cx1(t) + cx2(t) + d(x1(t − τ) − x2(t)),

u3(t) = − cx1(t − τ) + cx2(t − τ)

+ d(x1(t − 2τ) − x3(t)),

u4(t) = −cx1(t − 2τ) + cx2(t − 2τ)

− cx4(t) + cx4(t − τ)

+ d(x1(t − 3τ) − x4(t)).

In order to achieve (31), we choose c = 0.1 and
search the lower bound of the control strength d by
solving the following Linear Matrix Inequality:

cB ⊗ I3 + (−ω + 10 − d)I9 ≤ 0. (36)

By the Matlab LMI and control toolboxes, we get the
lower bound of the control strength dl = 9.36. So, if
d > dl , then the conditions of Theorem 1 are satisfied,
which means that the SLS of dynamical network (1)
under control (6) can be achieved for any initial con-
ditions. Without loss of generality, the initial condition
is set as constant variable (ϕ1, ϕ2, ϕ3, ϕ4) ∈ [0, 1]12.
Figure 3 gives a realization under control strength
d = 11 and time delay τ = 0.1. In this simulation,
we observe that there appears coincidence of shifted-
in-time states in the network as t → +∞. So, the SLS is
achieved under linear feedback control (6). To explore
the influence of time delay on SLS, another realization
is performed in Fig. 4 under control strength d = 11
and time delay τ = 0.5. We can still achieve the SLS,
which means that the stability condition in Theorem 1
is independent on time delay.

5.2 Adaptive linear feedback control

The topological structure of dynamical network is
shown in Fig. 1b with network size n = 4 and
star-shaped topological structure. By the definition in
Sect. 2, the coupling matrix of this network is

A =

⎛

⎜⎜⎝

−3 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1

⎞

⎟⎟⎠ . (37)

According to the adaptive linear feedback control (21),
we have

u1(t) = 0,

u2(t) = −cx1(t) − 2cx2(t) + cx2(t − τ) + cx3(t − τ)

+ cx4(t − τ) + d1(t)e1(t),

u3(t) = −cx1(t) − 2cx2(t − τ)

+ cx2(t − 2τ) + cx3(t − 2τ)

+ cx4(t − 2τ) + d1(t − τ)e1(t − τ)

+ d2(t)e2(t),
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Fig. 3 The trajectories of
all state variables xi j of
dynamical network (1)
under control (6), where
i = 1, 2, 3, 4, j = 1, 2, 3,
the coupling strength
c = 0.1, control strength
d = 11, and time delay
τ = 0.1
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Fig. 4 The trajectories of
all state variables xi j of
dynamical network (1)
under control (6), where
i = 1, 2, 3, 4, j = 1, 2, 3,
the coupling strength
c = 0.1, control strength
d = 11, and time delay
τ = 0.5

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

t

x i1

x
11

x
21

x
31

x
41

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

t

x i2

x
12

x
22

x
32

x
42

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

t

x i3

x
13

x
23

x
33

x
43

u4(t) = − cx1(t) − 2cx2(t − 2τ) + cx2(t − 3τ)

+ cx3(t − 3τ) + cx4(t − 3τ)

+ d1(t − 2τ)e1(t − 2τ)

+ d2(t − τ)e2(t − τ) + d3(t)e3(t).

Without the loss of generality, the initial condition
is set as constant variables ϕi ∈ [0, 1]3, i = 1, 2, 3, 4
and ϕ5 = 0, ϕ6 = 0, ϕ7 = 0 for control strength func-
tions d1(t), d2(t), d3(t), respectively. Figure 5 presents
a realization under adaptive linear feedback control
(21) with coupling strength c = 1 and time delay τ = 3.
As shown in Fig. 5, a coincidence of shifted-in-time
states in the network appears, as all control strengths
converge to equilibrium states. So, under adaptive lin-

ear feedback control (21) the SLS of dynamical net-
work (1) with star-shaped topology is achieved.

If we adopt linear feedback control (6), according to
(31), from Theorem 1 the lower bound of the control
strength d to realize the SLS can be obtained by solving
the following Linear Matrix Inequality:

cB ⊗ I3 + (−ω + 10 − d)I9 ≤ 0, (38)

where ω = 0.6218 and

B =
⎛

⎝
−3 0 0
0 −1 0
0 0 −1

⎞

⎠ . (39)
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Fig. 5 The trajectories of
all state variables xi j of
dynamical network (1)
under control (21), where
i = 1, 2, 3, 4, j = 1, 2, 3,
the coupling strength c = 1,
and time delay τ = 3
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By the Matlab LMI and control toolboxes, we get the
lower bound of the control strength dl = 8.38. From
Fig. 5, we can see that the equilibrium points of all
control strengths is smaller than dl , which illuminates
the adaptive linear feedback control can decrease the
control strength.

6 Conclusions

Though many kinds of synchronization pattern on com-
plex dynamical networks have been proposed and stud-
ies in the past decades, more realistic and reasonable
synchronization patterns in real systems are still worth
to be investigated in the future. From the viewpoint of
real application, in this paper, we introduce and address
a new synchronization pattern, i.e., the SLS, to realize
coincidence of shifted-in-time states of a multi-coupled
dynamical system. This kind of synchronization can be
considered as a generalized pattern of traditional lag
synchronization (LS) of two coupled dynamical net-
works.

As we know, linear control is superior to nonlinear
control as the linear control is easier to be performed
in real systems. In this paper, by using the linear feed-
back control depended on topological structure of the
considered network, the SLS of the network has been
realized. In order to reduce the control strength, we
have designed an adaptive linear feedback control. By
theoretical analysis, we have obtained some sufficient
conditions for the global stability of SLS under the

linear feedback control and adaptive linear feedback
control, respectively. Finally, since the consensus and
synchronization in dynamical systems have the similar
principle, the proposed control method is generalized
and applied to the control problem of successive lag
consensus in a multi-agent system.
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