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Abstract An integrated guidance and control scheme
is developed for next generation of reusable launch
vehicle (RLV) with the aim to improve the flexibil-
ity, safety and autonomy. Firstly, an outer-loop optimal
feedback reentry guidance law with online trajectory
reshaping capability is designed. Then, a novel reentry
attitude control strategy is proposed based on multivari-
ables smooth second-order sliding mode controller and
disturbance observer. The proposed control scheme is
able to guarantee that the guidance commands gener-
ated from the guidance system can be tracked in finite
time. Furthermore, a control allocation is integrated in
the system in order to transform the control moments
to control surface deflection. Finally, some representa-
tive simulation tests are conducted to demonstrate the
effectiveness of the proposed integrated guidance and
control strategy for six-degree-of-freedom RLV.
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1 Introduction

Since RLV could allow for far lower per flight costs
than expendable vehicle, intensive research has been
investigated at NASA’s Marshall Space Flight Cen-
ter in order to improve safety, reliability and afford-
ability for RLV. To this end, the system must have
capabilities of optimality, robustness and reconfigura-
tion. As pointed in [1], reentry guidance algorithms
that are not based on optimal control and high fidelity
model compromise safety. Thus, the guidance tech-
nique based on optimal feedback and high fidelity
model is absolute necessary for RLV. In addition, the
RLV, especially in the reentry phase, suffers from
severe model parameter uncertainties and unknown
external disturbances which require that the system
has enough robustness. The reconfiguration capability
means that the system can recover from some unex-
pected events such as retargeted trajectory and con-
trol effector failures. From a guidance and control per-
spective, the optimality, robustness and reconfiguration
for next generation of RLV cause enormous challenges
for researchers. The reasons can be summarized as [2–
4]: (1) path constraints: Heat rate, structural loads and
dynamic pressure restrict the reentry flight corridor in
very narrow scope; (2) high accuracy and rapid atti-
tude tracking requirements: The attitude control with
high accuracy and rapid convergence is essential but not
easy to be realized due to the influence of uncertain-
ties and external disturbances. Although the difficulties
mentioned above, guidance and control technologies
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for RLV have been intensively studied during the last
decades.

Reentry guidance is tasked to generate guidance
commands which guide vehicle from its initial posi-
tion to reach desired landing point with specified
accuracy. In general, reentry guidance methods can
be classified as trajectory following guidance and
predictive guidance. In trajectory following guid-
ance, a nominal trajectory needs to be pre-computed.
Then, a linear time-varying system is obtained along
the nominal trajectory. Based on the obtained linear
time-varying system, many methods, such as LQR
[5], indirect Legendre pseudospectral [6] and dynamic
inversion [7] can be used to design reentry guidance law
which controls RLV back to the nominal trajectory in
the presence of uncertainties and external disturbances.
The advantages of this method are that the path con-
straints can be dealt with carefully and it requires min-
imal onboard computational effort. In addition, there
is no issue with respect to the convergence of solu-
tion due to the fact that the nominal trajectory can be
generated prior to flight. Many reentry missions were
performed using this guidance method such as Space
Shuttle guidance [8] and Apollo guidance in the final
phase of reentry flight [9]. Although the trajectory fol-
lowing guidance method is proved to be successful,
it has to consider enormous pre-mission planning to
account for unexpected conditions which may be diffi-
cult to be known in practice. As a result, a large devi-
ation from nominal trajector may be observed in the
presence of disturbance. Predictive guidance methods
compute trajectory onboard repeatedly based on cur-
rent state and expected final condition [10,11]. The
main advantage of predictive guidance is able to adapt
to different conditions which may differ significantly
from nominal conditions. However, an obstacle of this
method in practice is the computational burden. There-
fore, in order to ensure fast and reliable convergence,
guidance parameters to be found must be kept at min-
imum. Zimmerman et al. [12] presented an effective
reentry guidance method. In the method, the reentry
trajectory is divided into two parts. In the first one,
the vehicle flies on a constant heating-rate trajectory,
and then, two parameters predictor-corrector guidance
algorithm is used in the second part. The number of
total guidance parameters to be solved in guidance
cycle is four which reduced computational burden to
some extent. A constrained predictor-corrector guid-
ance method based on quasi-equilibrium-glide condi-

tion is proposed in [13] where the guidance is divided
into longitudinal and lateral channel. In the longitudi-
nal channel, the path constraints are converted into bank
angle constraints. Then, the magnitude of bank angle is
determined via solving a root-finding problem which
ensures that RLV reaches the expected landing site at
specified energy level. The lateral guidance determines
the sign of bank angle which can be achieved via bank
reversals logic. As a result, only one guidance para-
meters to be iteratively found online during a guidance
cycle which further reduces the computational burden
comparing with that provided in [12]. Recently, with
the advance in onboard computational capability, the
reentry guidance methods based on real-time trajectory
optimization have received much attention. Combin-
ing model predictive control and approximate dynamic
programming, an efficient model predictive static pro-
gramming (MPSP) is proposed by Padhi et al. [14].
The method brings in the philosophy of real-time tra-
jectory into the framework of guidance design which
in turn yields an effective guidance scheme which has
already many applications in aerospace engineering
[15–17]. Another alternative optimization technique
is pseudospectral method (PM), especially the Gauss
PM (GPM) [18–20]. In comparison with MPSP, GPM
provides a complete covector mapping theorem which
ensures that the obtained trajectory is optimal [21].
As mentioned previously, the optimality is an impor-
tant requirement for RLV. Taking into account this fea-
ture, this method is included in proposed scheme. Also,
the implementation of this method under architecture
of integrated guidance and control for six-degree-of-
freedom (6DOF) RLV is to be discussed.

The reentry attitude control becomes the focus of
integrated guidance and control system when the guid-
ance law is obtained. The main aim of attitude control
system is to achieve attitude tracking in the presence
of model parameter uncertainties and unknown exter-
nal disturbances. To implement the integrated system
successfully, reentry attitude controller needs to have
enough robustness with respect to uncertainties. Dur-
ing the last decades, many control methods have been
applied in the design of attitude controller, such as
gain scheduling [22,23], backstepping control [24,25],
trajectory linearization control [26,27] and dynamic
inversion technique [28,29]. Although many control
methods have been proposed, the sliding mode con-
trol stays the main choice for nonlinear dynamic sys-
tem with bounded uncertainties due to its inherent
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insensitivity to uncertainties and external disturbances
[30–34].

Shtessel has done excellent work in the field of atti-
tude control based on sliding mode technique [35–40].
In [35,36], sliding mode control is used for RLV atti-
tude control in ascent and reentry phase. In the method,
a discontinuous bang–bang type control is used to
drive system state to sliding manifold and then rapid
switching control is applied to keep it on manifold.
In order to reduce control chattering, the discontinu-
ous sign function is replaced by saturation function
which is a trade-off between the smoothness of con-
trol action and robustness. With the aim to improve
control performance, a disturbance observer technique
is investigated in satellite formation attitude control
[37]. Subsequently, to improve high-gain switching
control because of conservative estimation of distur-
bance bounds, Hall and Shtessel [38] combine gain
adaptation with disturbance observer to provide the
least gain needed for X-38 attitude control. The similar
technique has also been applied in attitude controller
design for launch vehicle [39] and quadrotor vehicle
[40]. However, in all these developments, a single-input
control structure is used which means multivariables
attitude control problem has to be transformed into
decoupled single-input problem and then is solved via
single-input single-output sliding mode technique. As
pointed in [41], multivariables control scheme provides
a more elegant solution than trying to employ a decou-
pled single variable structure. In addition, only asymp-
totic convergence can be achieved via the methods men-
tioned above. It is well known that the finite time con-
vergent property is able to provide better robustness
and higher tracking accuracy. To this end, it is neces-
sary to design reentry controller under multivariables
control scheme with finite time convergence despite of
uncertainties.

The main contributions of the paper are stated as
follows: (I) A guidance and control architecture with
online trajectory design, multivariables controller and
control allocation is integrated for 6DOF RLV with the
aim to improve RLV’s robustness, autonomy and safety.
(II) A Lyapunov-based multivariables smooth second-
order sliding mode controller and disturbance observer
is proposed to achieve reentry attitude tracking in finite
time. The paper is organized as follows: the problem
studied in the research is formulated in Sect. 2. In Sect.
3, an integrated guidance and control scheme is pro-
vided. In Sect. 4, some representative simulation tests

are carried out. The conclusions and future work are
presented in Sect. 5.

2 Problem formulation

2.1 Translational equations of motion

During the entry phase, most applications assume
steady, coordinated turns such that the sideslip angle
is kept to zero. Thus, the equations of translational
motion of the RLV in three-dimensional space over a
spherical, rotating Earth are described by the following
equations

ḣ = V sin γ (1)

φ̇ = V cos γ sin χ

(RE + h) cos θ
(2)

θ̇ = V

(RE + h)
cos γ cos χ (3)

V̇ = − D

m
− g sin γ + �2 (Re + h) cos θ (sin γ cos θ

− cos γ sin θ cos χ) (4)

γ̇ = L cos σ

mv
−
(

g

V
− V

(RE + h)

)
cos γ

+ 2� cos θ sin χ + �2 (RE + h)

V
cos θ

× (cos γ cos θ + sin γ sin θ cos χ) (5)

χ̇ = L sin σ

mv cos γ
+ V

(RE + h)
cos γ sin χ tan θ

− 2�(tan γ cos θ cos χ − sin θ)

+ �2 (RE + h)

V cos γ
sin θ cos θ sin χ (6)

where h represents the flight altitude; V is velocity; φ is
latitude; θ is longitude; γ is flight path angle (FPA); χ is
heading angle; L is lift force; D is drag force; g is grav-
ity (g = μ/ (RE + h)2 with μ being the Earth gravity
constant); � is Earth angular speed; RE is radius of
Earth. The control input used for trajectory optimiza-
tion and guidance law design are angle of attack (AOA)
α and the bank angle σ (BA).

2.2 Rotational equations of motion

The rotational motion is caused by the moments about
the center of mass that acts on the vehicle and is used
to design the altitude controller during the entry flight,
is given as:
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Fig. 1 Integrated guidance and control architecture

ṗ = Izz Mx

Ixx Izz − I 2
xz

+ Ixz Mz

Ixx Izz − I 2
xz

+
(
Ixx − Iyy + Izz

)
Ixz

Ixx Izz − I 2
xz

pq+
(
Iyy − Izz

)
Izz − I 2

xz

Ixx Izz − I 2
xz

qr

(7)

q̇ = My

Iyy
+ Ixz

Iyy

(
r2 − p2)+ Izz − Ixx

Iyy
pr (8)

ṙ = Ixz Mx

Ixx Izz − I 2
xz

+ Ixx Mz

Ixx Izz − I 2
xz

+
(
Ixx − Iyy

)
Ixx + I 2

xz

Ixx Izz − I 2
xz

pq+
(
Iyy − Ixx − Izz

)
Ixz

Ixx Izz − I 2
xz

qr

(9)

α̇ = −p cos (α) tan (β) + q − r sin (α) tan (β)

+ sin (σ )

cos (β)

[
χ̇ cos (γ ) − φ̇ sin (χ) sin (γ )

× (
θ̇+�

)
(cos (φ) cos (χ) sin (γ )−sin (φ) cos (γ ))

]
× cos (σ )

cos (β)

[
γ̇ − φ̇ cos (χ) − (θ̇ + �

)
cos (φ) sin (χ)

]
(10)

β̇ = p sin (α) − r cos (α) + sin (σ )
[
γ̇ − φ̇ cos (χ)

+ (
θ̇ + �

)
cos (φ) sin (χ)

]+ cos (σ )
[
χ̇ cos (γ )

− φ̇ sin (χ) sin (γ )−(θ̇+�
)
(cos (φ) cos (χ) sin (γ )

− sin (φ) cos (γ ))
]

(11)

σ̇ = −p cos (α) cos (β) − q sin (β) − r sin (α) cos (β)

+ α̇ sin (β) − χ̇ sin (γ ) − φ̇ sin (χ) cos (γ )

+ (
θ̇ + �

) [
cos (φ) cos (χ) cos (γ )

+ sin (φ) sin (γ )
]

(12)

where p, q, r denote roll, pitch and yaw angular
rate, respectively; β denotes sideslip angle (SA);
Ii j (i = x, y, z; j = x, y, z) denotes moments inertia;
Mx , My, Mz are roll, pitch and yaw moments.

The objective of the work is to develop an guid-
ance and control scheme including real trajectory,
multivariable attitude controller and control alloca-
tion for 6DOF RLV. Through the proposed scheme,
a RLV can be guided from an initial position to
terminal area energy management (TAEM) interface
to be given later with minimizing final latitude and
without deviating from path constraints provided in
[6]. More importantly, it is able to adapt to some
unexpected events, such as the retargeting of
TAEM.

3 Integrated guidance and control scheme

To achieve objective of the research, an integrated
guidance and control architecture is proposed in Fig.
1 which is an extension of the result in [42]. It
can be seen from Fig. 1 that the system consists
of real-time optimal trajectory, multivariables atti-
tude controller–disturbance observer and control allo-
cator. The first part is used to generate reentry tra-
jectory online and provides feasible guidance com-
mands, including AOA and bank angle, for attitude con-
trol system. The multivariables controller and distur-
bance observer are designed in second part to achieve
high accuracy and rapid tracking for guidance com-
mands. The control allocator is used to convert control
moments into control surface commands. Finally, the
6ODF RLV model provided in (1)–(12) is used as the
simulation model. The implementations of each part
are described in detail in the remainder of this sec-
tion.
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3.1 Real-time optimal trajectory design

The implementation of real-time optimal trajectory
is composed of trajectory optimization algorithm and
real-time feedback logic. As noted earlier, the PM has
been widely used over last few years to solve a vari-
ety of trajectory optimization problems. Recently, the
adaptive GPM is proposed in [43] and it is also used
in our separated paper [44]. For brevity, the details
for this method are omitted here. From the previ-
ous results, it has been known that the reentry trajec-
tory can be obtained quickly if initial reentry condi-
tion, path constraints, terminal condition, cost func-
tion and initial guess are provided properly. Next, the
emphasis of the section is paid on real-time feedback
logic. The feedback logic is based on the recently pro-
posed pseudospectral optimal feedback theory [45].
In this theory, the closed-loop feedback solution is
formulated via real-time optimal open-loop control.
Since the guidance commands need to be tracked
by attitude loop, it must be smooth enough. How-
ever, it is known that open-loop optimal control gen-
erated via real-time trajectory optimization is discon-
tinuous. In order to address the issue, the derivatives
of AOA and bank angle, namely u = [α̇, σ̇ ]T ∈
R2, are used as virtual control for trajectory opti-
mization. Then, the augmented states become x =[
h, φ, θ, V, γ, χ, α, σ

]T ∈ R8. As a result, contin-
uous guidance commands are generated via integrating
virtual control u (see Fig. 1). Combining adaptive GPM
and pseudospectral optimal feedback theory, the real-
time optimal trajectory under the integrated guidance
and control architecture is implemented as follows:

Step 1 (Before t0) Calculate reentry trajectory based
on given initial reentry condition, TAEM interface,
cost function and path constraints using adaptive GPM.
Then, the off-line trajectory and control, x∗

0 (t ≥ t0) u∗
0

(t ≥ t0), are obtained and will be used as initial value
guess for the first real-time trajectory design.
Step 2 ([t0, t1]) Track guidance commands αcmd_0 and
σcmd_0 given in (13) through control input generated
from attitude controller and control allocation to be
developed soon. Then, the actual trajectory and attitude
at t = t1 (t1 = 15 which can be defined by the user)
can be obtained from the output and it will be used as
the initial value guess for next calculation.
Step 3 ([ti , ti+1](i = 1, 2, . . .)) Two programs run
simultaneously in this step. One is optimization pro-

gram which is used to generate new reentry trajectory
from current state x (t = ti ) to TAEM interface. The
other is control program including attitude controller
and control allocation which make the attitude track the
guidance commands αcmd_(i−1) and σcmd_(i−1). During
this phase, the program stops if landing accuracy given
in (35) is satisfied; otherwise, set i = i + 1, repeat
Step 3.

Similar to [46], the following proportional controller
is included in proposed scheme to improve α and σ

tracking

α̇cmd_i = kα

(
αdes_i − α

)
,

σ̇cmd_i = kσ

(
σdes_i−σ

)
, t ∈[ti , ti+1

]
(i =0, 1, 2, . . .)

(13)

where αdes_i and σdes_i are obtained via integrating
u∗

i−1. The parameters α and σ denote actual flight
attitude obtained from the output of 6DOF RLV
model.

Remark 1 In step 3, ti+1 = ti + 
Ti where 
Ti

is the time consumed to generate new reentry tra-
jectory. It should be noted that the guidance com-
mands are αdes_i−1 and σdes_i−1 during the time interval[
ti , ti+1

]
. That is because the new guidance commands

αdes_i and σdes_i are not available until time ti+1.

Remark 2 The TAEM interface in step 3 is alterable,
and this feature is beneficial for RLV to reach any fea-
sible landing site. As a result, it will enhance flexibility,
safety and autonomy of RLV significantly.

3.2 Multivariables attitude controller–disturbance
observer synthesis

3.2.1 Preliminaries

This subsection introduces some useful lemmas and
theorem to be used in controller and disturbance
observer design.

Lemma 1 [47] Consider a system in the form of ẋ =
f (x) , f (0) = 0 with x ∈ Rm. It is assumed that
there exists a continuous positive definite function V
such that V̇ (x) + c [V (x)]a ≤ 0 with c > 0 and a ∈
(0, 1). Then, the origin is finite time stable. Moreover,
the convergent time can be calculated by T (x0) ≤
[V (x0)]1−a

c(1−a)
for any initial value x0.
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Lemma 2 [41] For the following multivariables sys-
tem

ẋ1 = −k1
x1

‖x1‖1/2 − k2x1 + x2 + �1,

ẋ2 = −k3
x1

‖x1‖ − k4x1 + �2 (14)

where x1, x2 ∈ Rm and �1,�2 ∈ Rm are bounded
uncertainties satisfying ‖�1‖ ≤ δ1 ‖x1‖ , ‖�2‖ ≤ δ2

with known constants δ1 and δ2. Then, vectors x1 and x2

converge to zero in finite time if the following conditions
hold

k1 >
√

2δ2, k2 > 2δ1, k3 > max
(
k�

3 , k�
3

)
,

k4 > max
(
k�

4 , k�
4

)
(15)

where k�
3 = 3δ2 + 2δ2

2
k2

1
, k�

3 = 9(k1δ1)
2

16k2(k2−2δ1)
+

k2
1δ1−4k2

1k2+2k2δ2
2(k2−2δ1)

, k�
4 =

(
1.5k2

1k2+3k2δ2
)2

k2
1k3−2δ2

2−3k2
1δ2

+ 2k2
2 + 3

2 k2δ1

and k�
4 = α1

α2(k2−2δ1)
+ k2δ(8k2+δ1)

4(k2−2δ1)
with α1 =

9(k1δ1)
2(k2+0.5δ1)

2

16k2
2

and α2 = k2
(
k3 + 2k2

1 − δ2
) −(

2k3 + 0.5k2
1

)
δ1 − 9(k1δ1)

2

16k2
.

In addition to Lemmas 1 and 2, the following theo-
rem that is an extension (from single variable to multi-
variables) of the result in [48] is also needed in order to
obtain multivariables controller–disturbance observer.

Theorem 1 Suppose that the uncertain terms �1 and
�2 in (16) are bounded with known constants δ1 and
δ2 such that ‖�1‖ ≤ δ1 and ‖�2‖ ≤ δ2, then the solu-
tion of system (16) is globally bounded if constants
0.5 < p < 1, k1 > 0 and k2 > 0. Furthermore,
x1 and x2 converge to zero in finite time for any 0.5 <

p < 1, k1 > 0 and k2 > 0 if �1 = �2 = 0 in (16).

x1 = −k1 ‖x1‖p−1 x1 + x2 + �1,

x2 = −k2 p ‖x1‖2(p−1) x1 + �2 (16)

Proof See “Appendix”. ��

3.3 Control-oriented model

Since RLV’s rotational motion is much faster than
translational motion, the translational terms and angu-
lar velocity of the Earth are neglected in attitude con-
troller design [50]. This simplified rotational equations
are described by

�̇ = Rω + 
F (17)

Iω̇ = −� I ω + M + 
D (18)

where ω = [p, q, r ]T , � = [a, β, σ ]T , M =
[Ml , Mm, Mn]T , 
F = [
 f1,
 f2,
 f3]T and
�D = [
D1,
D2,
D3]T . 
D denotes model para-
meters uncertainties and unknown external distur-
bances. The matrices I, �, R ∈ R3×3 are defined as
follows:

I=
⎡
⎣ Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

⎤
⎦ �=

⎡
⎣ 0 −r q

r 0 −p
−q p 0

⎤
⎦

R=
⎡
⎣− cos α tan β 1 − sin α tan β

sin α 0 − cos α

− cos α cos β − sin β − sin α cos β

⎤
⎦ (19)

The controller design is based on double-loops archi-
tecture where the outer-loop generates the desired atti-
tude angular rate and the inner-loop produces the con-
trol moments commands.

3.3.1 Attitude controller–disturbance observer design

The problem of interest can be stated to design an atti-
tude controller such that guidance command �∗ =
[αcmd βcmd σcmd]T can be tracked by attitude angle �

in finite time in the presence of uncertainties 
F and

D. The system (17) and (18) can be considered as
multivariables cascaded system and the proposed atti-
tude control scheme is composed of two nested control
loops. For inner-loop, ω is chosen as the virtual control
input to be designed to make

(
� − �∗) → 0 in finite

time. For outer-loop, let M be actual input with the
aim at steering (ω − ω∗) → 0 in finite time. To this
end, define tracking errors σo = � − �∗ and σi =
ω − ω∗, then the error dynamics of (17) and (18)
can be described as following multivariables cascade
system

σ̇o = Rω∗ + R σi − �̇
∗ + 
F1 (20)

σ̇i = −I−1� I ω − ω̇∗ + I−1M + 
F2 (21)

where 
F1 = 
F, 
F2 = I−1
D and ω∗ denotes
desired attitude angular rates to be developed.

Assumption 1 For system (20) and (21), suppose that

F1 and 
F2 are continuously differentiable and there
exist known constants δ1 and δ2 such that

∥∥
̇F1
∥∥ ≤

δ1,
∥∥
̇F2

∥∥ ≤ δ2.
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The proposed multivariables controller and distur-
bance observer for attitude cascade system can be sum-
marized via the following theorem.

Theorem 2 For system (20) and (21), inner-loop and
outer-loop controllers and disturbance observers are
designed as follows:

(a1) Outer-loop disturbance observer

żo
1 = −ko

1
eo

1∥∥eo
1

∥∥1/2 − ko
2eo

1 + zo
2

+
(

R ω∗ + R σi − �̇
∗)

,

żo
2 = −ko

3
eo

1∥∥eo
1

∥∥ − ko
4eo

1 (22)

(a2) Outer-loop attitude controller

Rω∗ = �̇
∗ − K o

1 ‖σo‖p−1 σo + xo
2 − 
̂F1,

ẋo
2 = −K o

2 p ‖σo‖2(p−1) σo (23)

(b1) Inner-loop disturbance observer

żi
1 = −ki

1
ei

1∥∥eI
1

∥∥1/2 − ki
2ei

1 + zi
2

+
(
−I−1� I ω − ω̇∗ + I−1M

)
,

żi
2 = −ki

3
ei

1∥∥ei
1

∥∥ − ki
4ei

1 (24)

(b2) Inner-loop attitude controller

I−1M = −
(
−I−1� I ω − ω̇∗)− K i

1 ‖σi‖p−1 σi

+ xI
2 − 
̂F2, ẋI

2 = −K i
2 p ‖σi‖2(p−1) σi (25)

where 
̂F1 = zo
2, 
̂F2 = zi

2, e j
1 = z j

1 −
σ j ( j = i, o). If Assumption 1 holds and the para-

meters are chosen as, K j
m > 0 (m = 1, 2; j = i, o)

and k j
n (n = 1, 2, 3, 4; j = i, o) are determined

according to Lemma 2, then σo and σi converge to
zero in finite time.

Proof The proof inspired from [51] can be split into
three steps. In the first step, we will show that system
(21) is finite time convergent with inner-loop distur-
bance observer (24) and controller (25). Substituting
(25) into (21) yields

σ̇i = −K i
1 ‖σi‖p−1 σi + xi

2 +
(

F2 − 
̂F2

)
,

ẋi
2 = −K i

2 p ‖σi‖2(p−1) σi (26)

Define ei
2 = zi

2 − 
F2. Taking into account ei
1 =

zi
1 − σi , the error dynamics for inner-loop disturbance

observer (24) can be transformed into the following
form

ėi
1 = −ki

1
ei

1∥∥ei
1

∥∥1/2 − ki
2ei

1 + ei
2, ėi

2 = −ki
3

ei
1∥∥ei
1

∥∥
− ki

4ei
1 − 
̇F2 (27)

Taking into account Assumption 1 and lemma1, it can
be observed that if the parameters ki

n (n = 1, 2, 3, 4)

are chosen properly, then ei
1, ei

2 → 0 in finite time,
namely T1. Clearly, ei

2 = 
̂F2 − 
F2 is bounded
for t ∈ [0, T1]. It follows from Theorem 1 that σi (t)
in (26) is bounded for t ∈ [0, T1]. After T1, system
(26) is reduced to σ̇i = −K i

1 ‖σi‖p−1 σi + xi
2, ẋi

2 =
−K i

2 p ‖σi‖2(p−1) σi which is a special case for (16).
In view of Theorem 1, σi (t) converge to zero from
any bounded initial value σi (T1) in finite time, namely
T2. Therefore, it follows that σi (t) is bounded and
σi (t) = 0 for t ≥ T1 + T2.

Next, we need to prove that σo (t) is bounded. Sub-
stituting (23) into (20) results in

σ̇o = −K o
1 ‖σo‖p−1 σo + xo

2 + R σi +
(

F1 − 
̂F1

)
,

ẋo
2 = −K o

2 p ‖σo‖2(p−1) σo (28)

Using outer-loop disturbance observer and similar
analysis in the previous, it is easily found that zi

1 →

F1 in finite time, namely T3, which means zi

1−
F1 =

̂F1 − 
F1 is bounded and converge to zero after

T3. Therefore, the item R σi +
(

F1 − 
̂F1

)
can be

viewed as a bounded perturbation for (28). It follows
from Theorem 1 that σo is bounded.

Finally, the proof of finite time stability for (20) and
(21) is provided. In view of the analysis in the previous,
it can be seen that there exists T4 = max (T1 + T2, T3)

such that σi → 0 and
(

F1 − 
̂F1

)
→ 0 for t ≥ T4.

After that, (28) is reduced to σ̇o = −K o
1 ‖σo‖p−1 σo +

xo
2, ẋo

2 = −K o
2 p ‖σo‖2(p−1) σo. It follows from The-

orem 1 that σo → 0 from any bounded initial value
σo (T4) in finite time, namely T5. As a result, both σi

and σo converge to zero in finite time T4 + T5. This
completes the proof. ��
Remark 3 The controller (23) and (25) can be inter-
preted as a smooth multivariables controller. If para-
meter p = 1/2 is used in (26) and (28), the control
law is continuous but not smooth (the detailed analysis
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can be found in [52,53]). However, the smoothness is
necessary for multiloop system. Therefore, p = 1/2 is
not included in proposed control scheme.

3.4 Control allocation

For completeness, control allocation algorithm pro-
vided in [54] is used here to transform control moment
commands into control surface deflections. The aero-
dynamic moment expressions used in the research are
expressed as⎡
⎣Mx

My

Mz

⎤
⎦ = 0.5ρV 2S

⎡
⎣bCl

cCm

bCn

⎤
⎦ (29)

where Cl , Cm and Cn denote roll, pitch and yaw moment
coefficients. In order to implement control allocator, it
is assumed that the relationship between moments and
control surface is linear [48]

⎡
⎣ Cl

Cm

Cn

⎤
⎦ =

⎡
⎣ Clbase + Cl p + Clr

Cmbase + Cmq

Cnbase + Cn p + Cnr

⎤
⎦+

⎡
⎣ ClδREI ClδREO ClδLEI ClδELO ClδRF ClδLF ClδRR ClδLR

CmδREI CmδREO CmδLEI CmδELO CmδRF CmδLF CmδRR CmδLR

CnδREI ClδREO ClδLEI ClδELO ClδRF CnδLF CnδRR CnδLR

⎤
⎦ δ

(30)

where vector δ = [δREI δREO δLEI δLEO δRF δLF δRR δLF]
∈ R8 represents eight control surfaces, namely right
elevon inboard, right elevon outboard, left elevon
inboard, left elevon outboard, right body flap, left body
flap, right rudder and left rudder. In addition, the control
surface vector satisfies the following constraints

δmin ≤ δ ≤ δmax (31)

Substituting (30) into (29) yields

⎡
⎣Mx

My
Mz

⎤
⎦

︸ ︷︷ ︸
M

= 0.5ρV 2Sb

⎡
⎢⎣
(

Clbase + Cl p + Clr

)
c
b

(
Cmbase + Cmq

)
(
Cnbase + Cn p + Cnr

)

⎤
⎥⎦

︸ ︷︷ ︸
CB

+ 0.5ρV 2Sb

⎡
⎣ ClδREI ClδREO ClδLEI ClδELO ClδRF ClδLF ClδRR ClδLR

c
b CmδREI

c
b CmδREO

c
b CmδLEI

c
b CmLEO

c
b CmδRF

c
b CmδLF

c
b CmδRR

c
b CmδLR

CnδREI CnδREO CnδLEI CnδELO CnδRF CnδLF CnδRR CnδLR

⎤
⎦

︸ ︷︷ ︸
B

δ (32)

The resulting mapping from control moments M to
control surface δ can be rewritten as matrix form

M = �CB + �B δ (33)

where � = 0.5ρV 2Sb. Now, we hope to determine,
at each sampling instant, a control command δ that is
feasible with respect to the actuator constraints (31).
The solution of (33) can be obtained via the following
optimization problem:

δ = arg min
δ∈�

δ
T Wδδ,

� = arg min
δmin≤δ≤δmax

[�B δ − (M − �CB)]T

×WM [�B δ − (M − �CB)] (34)

where Wδ and WM denote the weight matrix which
allow designer to prioritize between the control sur-
faces. The equation (34) can be interpreted as follows:
given �, the set of feasible control input satisfies posi-
tion constraints minimizing [�B δ − (M − �CB)] and
then picks control surface that minimizes δ

T Wδδ

weighted by Wδ . Finally, the resulting optimization
problem can be efficiently solved using active set meth-
ods provided in [55].

4 Results and discussion

The reentry initial position is chosen as h0 = 183.33 kft,
φ0 = 60.43, θ0 = 14.55◦, V0 = 17,147.04 ft/s, γ0 =
−0.30◦ and χ0 = 57.51◦. The aerodynamic coef-
ficients and path constraints are same with those
provided in [6]. The elements of inertia matrix are

Ixx = 434,270 slug-ft2, Ixz = 17,880 slug-ft2, Iyy =
961,200 slug-ft2, Izz = 1,131,541 slug-ft2 and Ixy =
Iyz = 0 slug-ft2. In order to verify the robust-

123



Integrated guidance and control 405

Fig. 2 Feedback calculation times, guidance commands and reentry trajectory curves

ness of the proposed control scheme, the distur-
bances 
Di = [1 + sin (π t/125) + sin (π t/250)] ×
102 (i = 1, 2, 3) are added. In addition, the parame-
ter uncertainty 
I = 30 %I is also included in the
simulation. The control surface constraints are δmin =
[−40,−40,−40,−40,−40,−40,−40,−40] deg and
δmax = −δmin. The controller and disturbance observer
parameters are set as follows: K o

1 = 0.04, K o
2 =

0.01, K i
1 = 0.2, K i

2 = 0.01, p = 0.8 and ko
1 =

ki
1 = 0.15, ko

2 = ki
2 = 0.2, ko

3 = ki
3 = 0.35 ko

4 =
ki

4 = 0.01, the weight matrixes in control allocation
are given as: Wδ = diag (1, 1, 1, 1, 1, 1, 1, 1) , WM =
diag (1, 1, 1). In addition, the simulation stops when
landing accuracy satisfies∣∣hd − h f

∣∣ ≤ 30 ft,
∣∣Vd − V f

∣∣ ≤ 3 ft/s,
∣∣γd − γ f

∣∣
≤ 0.1◦ (35)

where hd , Vd and γd are actual final flight altitude,
velocity and FPA, respectively. The TAEM interface
will be provided in the next. The sampling time of rota-
tional motions is 5 ms. The updated cycle of guidance

commands is not fixed, and it depends on the time con-
sumed to generate the trajectory onboard which can be
seen from Fig. 2a, b. Next, two representative cases are
discussed.

Case 1 The TAEM interface is fixed and defined as
h f = 80,000 ft, V f = 2,500 ft, γ f = −5◦ namely
original TAEM interface (see Fig. 2). The performance
of proposed system in guiding RLV from initial posi-
tion to TAEM interface is to be evaluated in this case.
The simulation results are provided in Figs. 2, 3, 4
and 5. Figure 2a shows the feedback number and
time consumed to obtain new trajectory during reen-
try phase. From that, it can be seen that a new tra-
jectory can be generated between 0.4 and 1.85 s. Fur-
thermore, the feedback number during flight is 1,818.
The average time used to update guidance commands
is about 0.5806 s which are also provided in Table 1.
The guidance commands including angle of attack and
bank angle are shown in Fig. 2c, d where the contin-
uous commands can be observed. The tracking errors
for reentry attitudes and attitude angular rates are pro-
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Fig. 3 Attitude and attitude angular rate errors

Fig. 4 Path constraints and control moments

vided in Fig. 3. From the simulation results, it can be
observed that both the attitudes and attitude angular
rates can be tracked well with relatively small errors
using the proposed control scheme. The curves for path
constraints plotted in Fig. 4a–c show that they satisfy

the predefined constraints in [6]. Furthermore, it fol-
lows from the results in Fig. 4b, c that the dynamic
pressure and load factor increase with the decreasing
altitude. In fact, the increase of dynamic pressure and
load factor is caused by the increase of atmospheric
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Fig. 5 Control surface deflection

Table 1 Simulation test
results

Case
∣∣hd − h f

∣∣ (ft)
∣∣Vd − V f

∣∣ (ft/s)
∣∣γd − γ f

∣∣ (◦) Mean time (s) Feedback
number

Case 1 12.3438 2.9226 0.0985 0.5806 1,818

Case 2 29.2702 2.9789 0.0779 0.6123 1,774

density which is inversely proportional to altitude. The
curves for control moments and control surface deflec-
tions are given in Figs. 4 and 5. At the end of reentry
phase, control chattering can be observed from these
results. Further analysis shows that it may be caused
by rapid change of angle of attack which can be seen in
Fig. 2c. Figure2e shows the actual reentry flight trajec-
tory from initial position to TAEM interface. Finally,
the simulation results demonstrate that the proposed
integrated guidance and control scheme is able to guide
RLV to the desired TAEM interface in the presence of
model parameter uncertainties and unknown external
disturbance. In addition, the landing accuracy is also
provided in Table 1. The terminal errors for altitude,
velocity and FPA with respect to predefined TAEM
interface are about 12.3438 ft, 2.9226 ft/s and 0.0985◦,
respectively.

Case 2 In this case, the capacity of trajectory reshap-
ing is verified. Suppose that the TAEM interface is
h f = 80,000 ft, V f = 2,500 ft and γ f = −5◦ prior to

flight. During flight, assume that the TAEM interface is
changed to h f = 80,000 ft, V f = 2,000 ft and γ f =
−6◦, namely updated TAEM interface. For simula-
tion purpose, suppose that the moment when new
TAEM interface is available for system is determined
by tr = 100 (1 + ε) with a random number 0 < ε < 1.
The same initial conditions, constraints and controller
parameters with case 1 are used. The feedback cal-
culation time over entire reentry trajectory is shown
in Fig. 2b. From the simulation results, it can be seen
that the maximum calculation time is about 3.1316 s.
In fact, the original trajectory is still used as the ini-
tial value guess for calculation of the first reentry
trajectory with updated TAEM interface being final
condition. However, the original trajectory does not
provide a good guess for updated trajectory. There-
fore, it needs a longer time to obtain the first updated
trajectory. After that, the calculation time reduced
rapidly which can be seen from Fig. 2b. The atti-
tude tracking error and corresponding control infor-
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mation including control moments as well as control
surface deflections are also provided in Figs. 3, 4 and
5. In comparison with original trajectory in case 1,
the updated trajectory in this case needs more time
to reach updated TAEM interface. That is because
the terminal velocity in case 2 is lower than that in
case 1. Hence, RLV needs enough time to dissipate
energy to ensure that RLV is able to enter updated
TAEM interface. Furthermore, it follows from Fig. 2b, c
the dynamic pressure and load factor decrease rapidly
with the decreasing velocity. The opposite trends for
dynamic pressure and load factor at the end of reen-
try phase in case 1 and case 2 can be explained as
follows: the increase of atmospheric density is dom-
inant in case 1, whereas the velocity decreases so
quickly that it become dominant effect on dynamic
pressure and load factor. The good tracking perfor-
mance provided in Fig. 3 and flight trajectory in Fig. 2e
demonstrate that the successful landing for RLV even
in the alteration of unpredictable TAEM interface is
achieved.

5 Conclusion and future work

An integrated guidance and control scheme with tra-
jectory reshaping capacity is proposed for 6DOF RLV.
Firstly, a reentry guidance law is designed based on
real-time trajectory ensuring the flexibiligy and auton-
omy of RLV. Then, a multivariables smooth second-
order sliding mode attitude controller and disturbance
observer scheme is proposed to ensure that the guid-
ance commands can be tracked in finite time. Also, the
control allocation is included in the integrated guid-
ance and control system. Finally, some representative
simulations are provided for 6DOF RLV in order to
verify the effectiveness of proposed integrated guid-
ance and control scheme. If the aerodynamic moment
coefficients uncertainties are included in the system,
the system performance would be degraded. There-
fore, the robust control allocation will be discussed in
future.
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Appendix: Proof of Theorem 1

Proof For brevity, we present system (16) in a form
convenient for Lyapunov analysis. To this end, a new
state vector is introduced

z1 = ‖x1‖p−1 x1, z2 = x2 (36)

Furthermore, system (16) can be rewritten as

ż1 =
(

Im + (p − 1)
x1xT

1

‖x1‖2

)
‖x1‖(p−1) ẋ1,

ż2 = −k2 p ‖x1‖p−1 z1 + �2 (37)

where Im denotes m-dimensional unit matrix. Taking
into account the definition in (36), we obtain ‖z1‖ =
‖x1‖p and x1 = z1/ ‖x1‖p−1 = z1/ ‖z1‖

p−1
p . There-

fore, system (37) can be equivalently written as

ż1 =
(

Im + (p − 1)
z1zT

1

‖z1‖2

)
‖z1‖

p−1
p

× (−k1z1 + z2 + �1) ,

ż2 = −k2 p ‖z1‖
p−1

p z1 + �2 (38)

It follows from the definition in (36) that z1, z2 → 0
in finite time implies that x1, x2 → 0 in finite time.
Next, a Lyapunov function candidate is proposed as

V (z1, z2) =
(

k2 + 1

2
k2

1

)
zT

1 z1 + zT
2 z2 − k1zT

1 z2

(39)

It is easy to verify that V (z1, z2) is positive definite
and radially unbounded for arbitrary positive constants
k1 > 0 and k2 > 0. The derivative of V (z1, z2) is given
by

V̇ (z1, z2) =
(

2k2 + k2
1

)
zT

1 ż1 + 2zT
2 ż2

− k1

(
żT

1 z2 + zT
1 ż2

)
(40)

Substituting (38) into (40) yields

V =
(

2k2 + k2
1

)
zT

1

[(
Im + (p − 1)

z1zT
1

‖z1‖2

)
‖z1‖

p−1
p

× (−k1z1 + z2 + �1)

]
+ 2zT

2

(
−k2 p ‖z1‖

p−1
p z1 + �2

)

− k1

[(
Im + (p − 1)

z1zT
1

‖z1‖2

)
‖z1‖

p−1
p

(−k1z1 + z2 + �1)

]T
z2
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− k1zT
1

(
−k2 p ‖z1‖

p−1
p z1 + �2

)

=
(

2k2 + k2
1

)
p ‖z1‖

p−1
p
(
−k1 ‖z1‖2 + zT

1 z2 + zT
1 �1

)

− 2k2 p ‖z1‖
p−1

p zT
1 z2 + 2zT

2 �2 + k1 ‖z1‖
p−1

p[(
k1zT

1 − zT
2 − �T

1

)(
Im + (p − 1)

z1zT
1

‖z1‖2

)
z2

]

+ k1zT
1

[
k2 p ‖z1‖

p−1
p z1 − �2

]

=
(

2k2 + k2
1

)
p ‖z1‖

p−1
p
(
−k1 ‖z1‖2 + zT

1 z2 + zT
1 �1

)

− 2k2 p ‖z1‖
p−1

p zT
1 z2 + 2zT

2 �2 + k1 ‖z1‖
p−1

p

⎡
⎣k1 pzT

1 z2 −
⎛
⎝‖z2‖2 + (p − 1)

(
zT

2 z1

) (
zT

1 z2

)
‖z1‖2

⎞
⎠

−�T
1

(
Im + (p − 1)

z1zT
1

‖z1‖2

)
z2

]

+ k1k2 p ‖z1‖
p−1

p ‖z1‖2 − k1zT
1 �2

=
[
−
(

k2 + k2
1

)
k1 p ‖z1‖

p−1
p ‖z1‖2

+ 2k2
1 p ‖z1‖

p−1
p zT

1 z2 − k1 ‖z1‖
p−1

p

⎛
⎝‖z2‖2 + (p − 1)

(
zT

2 z1

) (
zT

1 z2

)
‖z1‖2

⎞
⎠
⎤
⎦

+
⎡
⎣−k1 ‖z1‖

p−1
p

⎛
⎝�T

1 z2 + (p − 1)

(

T

1 z1

) (
zT

1 z2

)
‖z1‖2

⎞
⎠

+ 2zT
2 �2 − k1zT

1 �2

+
(

2k2 + k2
1

)
p ‖z1‖

p−1
p zT

1 �1

⎤
⎦

= ‖z1‖
p−1

p

[
−
(

k2 + k2
1

)
k1 p ‖z1‖

p−1
p ‖z1‖2

+ 2k2
1 p ‖z1‖

p−1
p zT

1 z2 − k1 ‖z2‖2

+k1 (1 − p)

(
zT

2 z1

) (
zT

1 z2

)
‖z1‖2

⎤
⎦

+ ‖z1‖
p−1

p

[(
2k2 + k2

1

)
pzT

1 �1 − k1zT
1 �2

+ k1 (1 − p)

(

T

1 z1
) (

zT
1 z2
)

‖z1‖2

]

+ (2z2 − k1z2)
T �2 (41)

Taking into account p ∈ (0.5, 1) and using Cauchy–
Schwarz inequality on the inner product terms, we have

V ≤ ‖z1‖
p−1

p

[
−
(

k2 + k2
1

)
k1 p ‖z1‖2 + 2k2

1 p ‖z1‖
×‖z2‖ − k1 ‖z2‖2 + k1 (1 − p) ‖z2‖2

]

+ ‖z1‖
p−1

p

[(
2k2 + k2

1

)
p ‖z1‖ ‖�1‖

+ k1 ‖�1‖ ‖z2‖ + k1 (1 − p) ‖�1‖ ‖z2‖]

+ ‖(2z2 − k1z2)‖ ‖�2‖
≤ p ‖z1‖

p−1
p

[
−
(

k2 + k2
1

)
k1 ‖z1‖2

+ 2k2
1 ‖z1‖ ‖z2‖ − k1 ‖z2‖2

]

+ ‖z1‖
p−1

p

[(
2k2 + k2

1

)
p ‖z1‖

+ (2k1 − k1 p) ‖z2‖] ‖�1‖
+
√

4 + k2
1

√
‖z1‖2 + ‖z2‖2 ‖�2‖

≤ −p ‖z1‖
p−1

p

[(
k2 + k2

1

)
k1 ‖z1‖2 − 2k2

1

‖z1‖ ‖z2‖ + k1 ‖z2‖2
]

+ ‖z1‖
p−1

p

√(
2k2 + k2

1

)2
p2 + (2k1 − k1 p)2

√
‖z1‖2 + ‖z2‖2 ‖�1‖

+
√

4 + k2
1

√
‖z1‖2 + ‖z2‖2 ‖�2‖ (42)

Let z = [‖z1‖ ‖z2‖]T , it is obvious that the first
item on the right-hand side of (42) can be rewrit-

ten as −p ‖z1‖
p−1

p zT Qz with positive definite matrix

Q =
[ (

k2 + k2
1

)
k1 −k2

1
−k2

1 k1

]
for any positive constants

k1 > 0 and k2 > 0. In addition, it is easily verified
that λmim (Q) ‖z‖2 ≤ zT Qz ≤ λmax (Q) ‖z‖2 with
λmim (Q) and λmax (Q) being the minimum and max-
imum eigenvalue of matrix Q, respectively. Further-
more, in view of bounds on the terms ‖�1‖ and‖�2‖,
we have

V̇ ≤ −p ‖z1‖
p−1

p λmin (Q) ‖z‖2

+ ‖z1‖
p−1

p

√(
2k2 + k2

1

)2
p2 + (2k1 − k1 p)2

×‖z‖ δ1 +
√

4 + k2
1 ‖z‖ δ2 (43)

Next, we want to use part of −p ‖z1‖
p−1

p λmim (Q)

‖z‖2 to dominate the last two items on the right-hand
side of (43) for large ‖z‖. To this end, we rewrite the
inequality (43) as
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V̇ ≤ −p (1 − θ1 − θ2) ‖z1‖
p−1

p λmin (Q) ‖z‖2

+ ‖z1‖
p−1

p

(√(
2k2 + k2

1

)2
p2 + (2k1 − k1 p)2δ1

− θ1λmin (Q) ‖z‖) ‖z‖

+
(√

4 + k2
1δ2 − θ2 ‖z1‖

p−1
p λmin (Q) ‖z‖

)
‖z‖
(44)

where θ1 and θ2 are positive constants and satisfy 0 <

θ1 + θ2 < 1. Furthermore, let Z = [z1; z2]. It follows
from the definition of Lyapunov function in (39) that it
can be rewritten as V (z1, z2) = ZT PZ for an appro-
priate symmetric positive definite matrix P ∈ R2m×2m .
Therefore, the following inequality is satisfied for any
vector Z

λmin (P) ‖Z‖2 ≤ V ≤ λmax (P) ‖Z‖2 (45)

where λmin (P) and λmax (P) represent the minimum
and maximum eigenvalue of matrix P, respectively.
In addition, it can be observed from the definition of
z and Z that ‖z‖ = ‖Z‖. Therefore, based on (45),
we have inequality V 1/2

[λmax(P)]1/2 ≤ ‖z‖ = ‖Z‖ =≤
V 1/2

[λmin(P)]1/2 . Since 0.5 < p < 1, it can be concluded that

‖z1‖
p−1

p ≥ ‖z‖ p−1
p ≥ V (p−1)/(2p)

[λmax(P)](p−1)/(2p) . Then, inequal-

ity (44) satisfies

V̇ ≤ −p (1 − θ1 − θ2)
λmin (Q)

[λmax (P)] [λmin (P)](p−1)/(2p)

×V (3p−1)/(2p) + ‖z1‖
p−1

p

×
(√(

2k2 + k2
1

)2
p2 + (2k1 − k1 p)2δ1

− θ1λmin (Q) ‖z‖
)

‖z‖

+
(√

4 + k2
1δ2 − θ2λmin (Q) ‖z‖ 2p−1

p

)
‖z‖

(46)

Then,

V̇ ≤ −p (1 − θ1 − θ2)
λmin (Q)

[λmax (P)] [λmin (P)](p−1)/(2p)
V (3p−1)/(2p),∀ ‖z‖ ∈ �1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖z‖ ≥ max

⎛
⎜⎝
√(

2k2 + k2
1

)2
p2 + (2k1 − k1 p)2δ1

θ1λmin (Q)
,

⎛
⎝
√

4 + k2
1δ2

θ2λmin (Q)

⎞
⎠

p/(2p−1)
⎞
⎟⎠

︸ ︷︷ ︸
ϒ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(47)

It follows from (47) and theorem 4.18 in [49] that
the solution for [A3] is globally bounded. Furthermore,
inequality (A8) is reduced to

V̇ ≤ −p ‖z1‖
p−1

p λmin (Q) ‖z‖2

≤ λmin (Q)

[λmin (P) λmin (P)]
p−1
2p

V
3p−1

2p (48)

if �1 = �2 = 0. It follows from 0.5 < p < 1 that
we obtain 3p−1

2p ∈ (0.5, 1). According to Lemma 1, it
can be concluded that z1, z2 → 0 in finite time. This
completes the proof. ��
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