
Nonlinear Dyn (2015) 80:353–361
DOI 10.1007/s11071-014-1873-4

ORIGINAL PAPER

On the integrability and the zero-Hopf bifurcation
of a Chen–Wang differential system

Jaume Llibre · Regilene D. S. Oliveira ·
Claudia Valls

Received: 15 September 2014 / Accepted: 19 December 2014 / Published online: 3 January 2015
© Springer Science+Business Media Dordrecht 2015

Abstract The first objective of this paper was to study
the Darboux integrability of the polynomial differential
system

ẋ = y, ẏ = z, ż = −y − x2 − xz + 3y2 + a,

and the second one is to show that for a > 0 sufficiently
small this model exhibits two small amplitude periodic
solutions that bifurcate from a zero-Hopf equilibrium
point localized at the origin of coordinates when a = 0.
We note that this polynomial differential system intro-
duced by Chen and Wang (Nonlinear Dyn 71:429–436,
2013) is relevant in the sense that it is the first system
in R

3 exhibiting chaotic motion without having equi-
libria.
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1 Introduction and statement of the main result

In the qualitative theory of differential equations, it is
important to know whether a given differential system
is chaotic or not. One might think that it is not possi-
ble to generate a chaotic system without equilibrium
points. The answer to this question was given by Chen
and Wang [21] where the authors introduce the follow-
ing polynomial differential system in R

3

ẋ = y, ẏ = z, ż = −y − x2 − xz + 3y2 + a,

(1)

where a ∈ R is a parameter. They observe that when
a > 0 system (1) has two equilibria (±√

a, 0, 0), when
a = 0 the two equilibria collide at the origin (0, 0, 0)

and for a < 0 system (1) has no equilibria but still
generates a chaotic attractor, see for more details again
[21]. The Chen–Wang [21] differential system is rele-
vant, because it seems that it is the first example of a
differential system in R

3 which exhibits chaotic motion
and has no equilibria, as the authors of claimed.

The first objective of this paper is to study the inte-
grability of system (1). We recall that the existence of
a first integral for a differential system in R

3 allows
to reduce its study in one dimension. This is the main
reason to look for first integrals. Moreover, inside the
first integrals, the simpler ones are the so called Dar-
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354 J. Llibre et al.

boux first integrals, for more information about these
kind of first integrals see for instance [8,12–14] and the
Sect. 2.1.

The second objective is to study the zero-Hopf bifur-
cation which exhibits the polynomial differential sys-
tem (1). The main tool up to now for studying a zero-
Hopf bifurcation is to pass the system to the normal
form of a zero-Hopf bifurcation, later on in this intro-
duction we provide references about this. Our analysis
of the zero-Hopf bifurcation is different; we study them
directly using the averaging theory, see the Sect. 2.2 for
a summary of the results of this theory that we need in
this paper.

Let U be an open and dense subset of R
3, we say

that a non-locally constant C1 function H : U → R is a
first integral of system (1) on U if H(x(t), y(t), z(t))
is constant for all of the values of t such for which
(x(t), y(t), z(t)) is a solution of system (1) contained
in U . Obviously, H is a first integral of system (1) if
and only if

y
∂ H

∂x
+ z

∂ H

∂y
+ (−y − x2 − xz + 3y2 + a)

∂ H

∂z
= 0,

for all (x, y, z) ∈ U .
The first main result of this paper is:

Theorem 1 The following statements hold.

(a) System (1) has neither invariant algebraic sur-
faces, nor polynomial first integrals.

(b) All the exponential factors of system (1) are
exp(x), exp(y) and linear combinations of these
two. Moreover, the cofactors of exp(x) and exp(y)

are y and z, respectively.
(c) System (1) has no Darboux first integrals.

Theorem 1 is proved in Sect. 4. See Sect. 2 for the
definition of invariant algebraic surface, exponential
factor, and Darboux first integral.

The second main objective of this paper is to show
that system (1) exhibits two small amplitude periodic
solutions for a > 0 sufficiently small that bifurcate
from a zero-Hopf equilibrium point localized at the
origin of coordinates when a = 0.

We recall that an equilibrium point is a zero-Hopf
equilibrium of a 3-dimensional autonomous differ-
ential system, if it has a zero real eigenvalue and
a pair of purely imaginary eigenvalues. We know
that generically a zero-Hopf bifurcation is a two-

parameter unfolding (or family) of a 3-dimensional
autonomous differential system with a zero-Hopf equi-
librium. The unfolding can exhibit different topologi-
cal type of dynamics in the small neighborhood of this
isolated equilibrium as the two parameters vary in a
small neighborhood of the origin. This theory of zero-
Hopf bifurcation has been analyzed by Guckenheimer,
Han, Holmes, Kuznetsov, Marsden, and Scheurle in
[9,10,15,16,19]. In particular, they show that some
complicated invariant sets of the unfolding could bifur-
cate from the isolated zero-Hopf equilibrium under
convenient conditions, showing that in some cases the
zero-Hopf bifurcation could imply a local birth of
“chaos”, see for instance the articles [2–4,7,19] of Bal-
domá and Seara, Broer and Vegter, Champneys and
Kirk, Scheurle, and Marsden.

Note that the differential system (1) only depends on
one parameter so it cannot exhibit a complete unfolding
of a zero-Hopf bifurcation. For studying the zero-Hopf
bifurcation of system (1), we shall use the averaging
theory in a similar way at it was used in [5] by Castel-
lanos, Llibre and Quilantán.

In the next result, we characterize when the equilib-
rium points of system (1) are zero-Hopf equilibria.

Proposition 1 The differential system (1) has a unique
zero-Hopf equilibrium localized at the origin of coor-
dinates when a = 0.

The second main result of this paper characterizes
the Hopf bifurcation of system (1). For a precise defin-
ition of a classical Hopf bifurcation in R

3 when a pair
of complex conjugate eigenvalues cross the imaginary
axis and the third real eigenvalue is not zero, see for
instance [17].

Theorem 2 The following statements hold for the dif-
ferential system (1).

(a) This system has no classical Hopf bifurcations.
(b) This system has a zero-Hopf bifurcation at the equi-

librium point localized at the origin of coordinates
when a = 0 producing two small periodic solutions
for a > 0 sufficiently small of the form

x(t) = ±√
a + O(a), y(t) = O(a),

z(t) = O(a).

Both periodic solutions have two invariant mani-
folds, one stable and one unstable, each of them
formed by two cylinders. See Fig. 1 for the zero-
Hopf periodic solution with initial conditions near
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On the integrability and the zero-Hopf bifurcation 355

Fig. 1 The Hopf periodic orbit for with initial conditions near
( a
√

,a, a) for a = 1/10,000

(
√

a, a, a) with a = 1/10,000. The other Hopf
periodic orbit is symmetric of this under the sym-
metry (x, y, z, t) → (−x, y,−z,−t) which leaves
the differential system (1) invariant.

The paper is organized as follows. In Sect. 2, we
present the basic definitions and results necessary
to prove Theorems 1 and 2. In Sect. 2, we prove
Theorem 1, and in Sect. 4, we present the proof of
Proposition 1 and Theorem 2.

2 Preliminaries

2.1 Darboux theory of integrability

As usual C[x, y, z] denotes the ring of polynomial
functions in the variables x, y and z. Given f ∈
C[x, y, z] \ C, we say that the surface f (x, y, z) = 0
is an invariant algebraic surface of system (1) if there
exists k ∈ C[x, y, z] such that

y
∂ f

∂x
+ z

∂ f

∂y
+ (−y − x2 − xz + 3y2 + a)

∂ f

∂z
= k f

.(2)

The polynomial k is called the cofactor of the invariant
algebraic surface f = 0, and it has degree at most 1.
When k = 0, f is a polynomial first integral. When
a real polynomial differential system has a complex

invariant algebraic surface, then it has also its conju-
gate. It is important to consider the complex invariant
algebraic surfaces of the real polynomial differential
systems because sometimes these forces the real inte-
grability of the system.

Let f, g ∈ C[x, y, z] and assume that f and g are
relatively prime in the ring C[x, y, z], or that g = 1.
Then, the function exp( f/g) �∈ C is called an expo-
nential factor of system (1) if for some polynomial
L ∈ C[x, y, z] of degree at most 1 we have

y
∂ exp( f/g)

∂x
+ z

∂ exp( f/g)

∂y

+ (−y − x2 − xz + 3y2 + a)
∂ exp( f/g)

∂z
= L exp( f/g). (3)

As before, we say that L is the cofactor of the expo-
nential factor exp ( f/g). We observe that in the defin-
ition of exponential factor if f, g ∈ C[x, y, z] then the
exponential factor is a complex function. Again, when
a real polynomial differential system has a complex
exponential factor surface, then it has also its conju-
gate, and both are important for the existence of real
first integrals of the system. The exponential factors are
related with the multiplicity of the invariant algebraic
surfaces, for more details see [6], Chapter 8 of [11],
and [13,14].

A first integral is called a Darboux first integral if it
is a first integral of the form

f λ1
1 · · · f

λp
p Fμ1

1 · · · F
μq
q ,

where fi = 0 are invariant algebraic surfaces of system
(1) for i = 1, . . . p, and Fj are exponential factors of
system (1) for j = 1, . . . , q, λi , μ j ∈ C.

The next result, proved in [11], explains how to find
Darboux first integrals.

Proposition 2 Suppose that a polynomial system (1)
of degree m admits p invariant algebraic surfaces
fi = 0 with cofactors ki for i = 1, . . . , p and q
exponential factors exp(g j/h j ) with cofactors L j for
j = 1, . . . , q. Then, there exist λi and μ j ∈ C not all
zero such that

p∑

i=1

λi Ki +
q∑

j=1

μ j L j = 0, (4)

if and only if the function
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356 J. Llibre et al.

f λ1
1 . . . f

λp
p

(
exp

(
g1

h1

))μ1

. . .

(
exp

(
gq

hq

))μq

is a Darboux first integral of system (1).

The following result whose proof is given in [13,14]
will be useful to prove statement (b) of Theorem 1.

Lemma 1 The following statements hold.

(a) If exp( f/g) is an exponential factor for the polyno-
mial differential system (1) and g is not a constant
polynomial, then g = 0 is an invariant algebraic
surface.

(b) Eventually, exp( f ) can be an exponential factor,
coming from the multiplicity of the infinity invari-
ant plane.

2.2 Averaging theory

We also present a result from the averaging theory that
we shall need for proving Theorem 2, for a general
introduction to the averaging theory see the book of
Sanders, Verhulst and Murdock [18].

We consider the initial value problems

ẋ = εF1(t, x) + ε2 F2(t, x, ε), x(0) = x0, (5)

and

ẏ = εg(y), y(0) = x0, (6)

with x , y and x0 in some open subset � of R
n , t ∈

[0,∞), ε ∈ (0, ε0]. We assume that F1 and F2 are
periodic of period T in the variable t, and we set

g(y) = 1

T

∫ T

0
F1(t, y)dt. (7)

We will also use the notation Dxg for all the first
derivatives of g, and Dxxg for all the second derivatives
of g.

For a proof of the next result, see [20].

Theorem 3 Assume that F1, Dx F1 ,Dxx F1 and Dx F2

are continuous and bounded by a constant independent
of ε in [0,∞) × � × (0, ε0], and that y(t) ∈ � for
t ∈ [0, 1/ε]. Then, the following statements hold:

1. For t ∈ [0, 1/ε], we have x(t) − y(t) = O(ε) as
ε → 0.

2. If p �= 0 is a singular point of system (6) such that

det Dyg(p) �= 0, (8)

then there exists a periodic solution x(t, ε)of period
T for system (5) which is close to p and such that
x(0, ε) − p = O(ε) as ε → 0.

3. The stability of the periodic solution x(t, ε) is given
by the stability of the singular point.

3 Proof of Theorem 1

To prove Theorem 1(a), we state and prove two auxil-
iary results. As usual, we denote by N the set of positive
integers.

Lemma 2 If h = 0 is an invariant algebraic surface of
system (1) with nonzero cofactor k, then k = k0 − mx
for some k0 ∈ C and m ∈ N ∪ {0}.
Proof Let h be an invariant algebraic surface of system
(1) with nonzero cofactor k. Then, k = k0 + k1x +
k2 y + k3z for some k0, k1, k2, k3 ∈ C. Let n be the
degree of h. We write h as sum of its homogeneous
parts as h = ∑n

i=1 hi where each hi is a homogenous
polynomial of degree i . Without loss of generality, we
can assume that hn �= 0 and n ≥ 1.

Computing the terms of degree n + 1 in (2), we get
that
(
−x2 − xz + 3y2

) ∂hn

∂z
= (k1x + k2 y + k3z)hn .

Solving this linear partial differential equation, we get

hn(x, y, z) = Cn(x, y) exp

(
−k3z

x

)

×(x(x + z) − 3y2)p(x,y),

where Cn is an arbitrary function in the variables x and

y and, p(x, y) = −k1 + k3 − k2 y

x
− 3k3 y2

x2 . Since

hn must be a homogeneous polynomial we must have
k3 = k2 = 0 and k1 = −m with m ∈ N ∪ {0}. This
concludes the proof of the lemma. 	

Lemma 3 Let g = g(x, y) be a homogeneous polyno-
mial of degree n with n ≥ 1 satisfying

k0xg + (x2 − 3y2)
∂g

∂y
− xy

∂g

∂x
= 0. (9)

Then, g = 0.
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On the integrability and the zero-Hopf bifurcation 357

Proof We write the homogeneous polynomial of degree
n as g = g(x, y) = ∑n

i=0 ai xi yn−i with ai ∈ C. Using
that g satisfies (9) we get

k0

n∑

i=0

ai xi+1 yn−i +
n∑

i=0

(n − i)ai xi+2 yn−i−1

−3
n∑

i=0

(n − i)ai xi yn−i+1 −
n∑

i=0

iai xi yn−i+1 = 0.

(10)

Computing the coefficients of x j yn+1− j , for 0 ≤
j ≤ n + 1 in Eq. (10), we get

−3na0 = 0,

k0a0 + (2 − 3n)a1 = 0,

(n − i + 1)ai−1 + k0ai + (2i + 2 − 3n)ai+1 = 0,

...

2an−2 + k0an−1 − nan = 0,

an−1 + k0an = 0. (11)

for 1 ≤ i ≤ n − 2.
Taking into account that

2i + 2 − 3n ≤ 2(n − 2) + 2 − 3n = −n − 2 < 0,

it follows recursively from (11) that ai = 0 for all
0 ≤ i ≤ n, so g = 0. 	


Proof of Theorem 1(a) Let f = 0 be an invariant alge-
braic surface of degree n ≥ 1 of system (1) with
cofactor k(x, y, z) = k0 + k1x + k2 y + k3z. It fol-
lows from Lemma 2 that k = k(x, y, z) = k0 − mx ,
with m ∈ N ∪ {0}. We write f as sum of its homoge-
neous parts as f = ∑n

i=0 fi where fi = fi (x, y, z) is
a homogeneous polynomial of degree i .

Computing the terms of degree n + 1 in (2), we get
that

(−x2 − xz + 3y2)
∂ fn

∂z
= −mx fn .

Solving this linear differential equation, we get that

fn(x, y, z) = (x(x + z) − 3y2)m g(x, y), (12)

where g = g(x, y) is a homogeneous polynomial of
degree n − 2m in the variables x and y.

Assume first m = 0. Computing the terms of degree
n in (2), we obtain

(3y2 − x2 − xz)
∂ fn−1

∂z
+ ∂ fn

∂x
y + ∂ fn

∂y
z

+∂ fn

∂z
(−y) = k0 fn . (13)

Solving (13), we have

fn−1(x, y, z)

= K (x, y) + z

x

∂g

∂y
+ 1

x2 log[x(x + z) − 3y2]

×
(

− k0xg − (x2 − 3y2)
∂g

∂y
+ xy

∂g

∂x

)
,

where K is an arbitrary function in the variables x and
y. Since fn−1 must be a homogeneous polynomial of
degree n − 1 we must have

−k0xg − (x2 − 3y2)
∂g

∂y
+ xy

∂g

∂x
= 0.

It follows from Lemma 3 that g = 0 and from (12)
fn = 0, i.e., f is a constant, which is a contradiction
with the fact that f = 0 is an invariant algebraic sur-
face. So m > 0.

For simplifying the computations, we introduce the
weight change of variables

x = X, y = μ−1Y, z = μ−1 Z , t = μT,

with μ ∈ R\{0}. Then, system (1) becomes

X ′ = Y, Y ′ = μZ ,

Z ′ = 3Y 2 − μY − μ2 X2 − μX Z + μ2a, (14)

where the prime denotes derivative with respect to the
variable T .

Set

F(X, Y, Z) = μn f (X, μ−1Y, μ−1 Z)

=
n∑

i=1

μi Fi (X, Y, Z),

where Fi is the weight homogeneous part with weight
degree n − i of F and n is the weight degree of F
with weight exponents s = (0,−1,−1). We also set
K (X, Y, Z) = k(X, μ−1Y, μ−1 Z) = k0 − m X .

From the definition of an invariant algebraic surface,
we have
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(3Y 2 − μY − μ2 X2 − μX Z + μ2a)

n∑

i=0

μi ∂ Fi

∂ Z

+ Y
n∑

i=0

μi ∂ Fi

∂ X
+ μZ

n∑

i=0

μi ∂ Fi

∂Y

= (k0 − m X)

n∑

i=0

μi Fi . (15)

Equating in (15) the terms with μ0, we get

Y
∂ F0

∂ X
+ 3Y 2 ∂ F0

∂ Z
= (k0 − m X)F0, (16)

where F0 is a weight homogeneous polynomial of
degree n.

Solving (16) we readily obtain, by direct computa-
tion, that

F0(X, Y, Z) = G(Y, Z) exp

(
X (2k0 − m X)

2Y

)
,

where G is an arbitrary function in the variables Y and
Z . Since F0 must be a polynomial and m > 0 we must
have F0 = 0. This implies that F = 0 is not an invariant
algebraic surface of system (14); consequently, f = 0
is not an invariant algebraic surface of system (1). This
completes the proof of Theorem 1(a). 	

Proof of Theorem 1(b) Let E = exp( f/g) /∈ C be an
exponential factor of system (1) with cofactor L =
L0 + L1x + L2 y + L3z, where f, g ∈ C[x, y, z] with
( f, g) = 1. From Theorem 1(a) and Lemma 1, E =
exp( f ) with f = f (x, y, z) ∈ C[x, y, z] \ C.

It follows from Eq. (3) that f satisfies

(3y2 − y − x2 − xz + a)
∂ f

∂z
+ y

∂ f

∂x
+ z

∂ f

∂y
= L0 + L1x + L2 y + L3z, (17)

where we have simplified the common factor exp( f ).
We write f = ∑n

i=0 fi (x, y, z), where fi is a homo-
geneous polynomial of degree i . Assume n > 1. Com-
puting the terms of degree n + 1 in (17), we obtain

(−x2 − xz + 3y2)
∂ fn

∂z
= 0.

Solving it and using that fn is a homogeneous polyno-
mial of degree n, we get fn(x, y, z) = gn(x, y), where
gn(x, y) is a homogeneous polynomial of degree n.
Computing the terms of degree n in (17), we obtain

(3y2 − x2 − xz)
∂ fn−1

∂z
+ ∂gn

∂x
y + ∂gn

∂y
z = 0. (18)

Solving (18), we get

fn−1 = gn−1(x, y) + z

x

∂gn

∂y

+ 1

x2

(
(3y2 − x2)

∂gn

∂y
+ xy

∂gn

∂x

)

× log
(

x2 + xz − 3y2
)

,

where gn−1(x, y) is an arbitrary function in the vari-
ables x and y. Since fn−1 must a homogeneous poly-
nomial of degree n − 1 we must have

(3y2 − x2)
∂gn

∂y
+ xy

∂gn

∂x
= 0,

which yields

gn = gn

(2y2 − x2

2x6

)
.

Taking into account that gn must be a homogeneous
polynomial of degree n, we get gn = 0. This implies
that fn = 0, so n = 1.

We can write f = a1x + a2 y + a3z with ai ∈ C.
Imposing that f must satisfy (17), we get f = a1x +
a2 y with cofactor a1 y + a2z. This concludes the proof
of Theorem 1(b). 	

Proof of Theorem 1(c) It follows from Proposition 2
and statements (a) and (b) of Theorem 1 that if system
(1) has a Darboux first integral then there exist μ1, μ2 ∈
C not both zero such that (4) holds, that is, such that

μ1 y + μ2z = 0.

But this is not possible. In short, there are no Darboux
first integrals for system (1) and the proof of Theorem
1(c) is completed. 	


4 Zero-Hopf bifurcation

In this section, we prove Proposition 1 and Theorem 2.

Proof of Proposition 1 System (1) has two equilibrium
points e± = (±√

a, 0, 0) when a > 0, which collide at
the origin when a = 0. The proof is made computing
directly the eigenvalues at each equilibrium point. Note
that the characteristic polynomial of the linear part of
system (1) at the equilibrium point e± is

p(λ) = λ3 ± √
aλ2 + λ ± 2

√
a.

As p(λ) is a polynomial of degree 3, it has either one,
two (then one has multiplicity 2), or three real zeros.
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On the integrability and the zero-Hopf bifurcation 359

Using the discriminant of p(λ), it follows that p(λ) has
a unique real root, see the ”Appendix” for more details.

Imposing the condition

p(λ) = (λ − ρ)(λ2 − ε − iβ)(λ − ε + iβ)

with ρ, ε, β ∈ R and β > 0, we obtain a system of
three equations that correspond to the coefficients of
the terms of degree 0, 1 and 2 in λ of the polynomial
p(λ) − (λ − ρ)(λ − ε − iβ)(λ − ε + iβ). This system
has only two solutions in the variables (a, β, ρ), which
are
(

1 − 24ε2 + 32ε4 − √
1 − 32ε2 + 8ε2

√
1 − 32ε2

8ε2 ,

√
3 − 2ε2 − √

1 − 32ε2
√

2
,
−1 + √

1 − 32ε2

4ε

)

= (4ε2 + O(ε4), 1 + O(ε2),−4ε + O(ε3)),

and
(

1 − 24ε2 + 32ε4 + √
1 − 32ε2 − 8ε2

√
1 − 32ε2

8ε2 ,

√
3 − 2ε2 + √

1 − 32ε2
√

2
,
−1 − √

1 − 32ε2

4ε

)

=
(

1

4ε2 + O(1),
√

2 + O(ε2),− 1

2ε
+ O(ε)

)
.

Clearly, at ε = 0, only the first solution is well defined
and gives (a, β, ρ) = (0, 1, 0). Hence, there is a unique
zero-Hopf equilibrium point when a = 0 at the origin
of coordinates with eigenvalues 0 and ±i . This com-
pletes the proof of Proposition 1. 	

Proof of Theorem 2 It was proven in Proposition 1 that
when a = 0 the origin is zero-Hopf equilibrium point.
We want to study if from this equilibrium it bifurcates
some periodic orbit moving the parameter a of the sys-
tem. We shall use the averaging theory of first order
described in Sect. 2 (see Theorem 3) for doing this
study. But for applying this theory, there are three main
steps that we must solve in order that the averaging the-
ory can be applied for studying the periodic solutions
of a differential system.

Step 1 Doing convenient changes of variables we must
write the differential system (1) as a periodic
differential system in the independent variable
of the system, and the system must depend on
a small parameter as it appears in the normal

form (5) for applying the averaging theory. To
find these changes of variables sometimes is the
more difficult step.

Step 2 We must compute explicitly the integral (7)
related with the periodic differential system in
order to reduce the problem of finding periodic
solutions to a problem of finding the zeros of a
function g(y), see (7).

Step 3 We must compute explicitly the zeros of the
mentioned function, in order to obtain periodic
solutions of the initial differential system (1).

In order to find the changes of variables for doing the
step 1 and write our differential system (1) in the normal
form for applying the averaging theory, first we write
the linear part at the origin of the differential system
(1) when a = 0 into its real Jordan normal form, i.e.,
into the form
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠.

To do this, we apply the linear change of variables

(x, y, z)→(u, v, w), where x =−u+w, y =v, z =u.

In the new variables (u, v, w), the differential sys-
tem (1) becomes

u̇ = a − v + uw + 3v2 − w2,

v̇ = u,

ẇ = a + uw + 3v2 − w2. (19)

Now, we write the differential system (19) in cylindrical
coordinates (r, θ, w) doing the change of variables

u = r cos θ, v = r sin θ, w = w,

and system (19) becomes

ṙ = cos θ(a − w2 + rw cos θ + 3r2 sin2 θ),

θ̇ = 1 + 1

r
(w2 − a) sin θ − w cos θ sin θ − 3r sin3 θ,

ẇ = a − w2 + rw cos θ + 3r2 sin2 θ. (20)

Now, we do a rescaling of the variables through the
change of coordinates

(r, θ, w) → (R, θ, W ), where r =
√

a

2
R,

w =
√

a

2
W.
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After this, rescaling system (20) becomes

Ṙ =
√

a

2
cos θ(4 − W 2 + RW cos θ + 3R2 sin2 θ),

θ̇ = 1 −
√

a

2R
sin θ(4 − W 2 + RW cos θ + 3R2 sin2 θ),

Ẇ =
√

a

2
(4 − W 2 + RW cos θ + 3R2 sin2 θ). (21)

This system can be written as

dR

dθ
=

√
a

2
F11(θ, R, W ) + O(a),

dW

dθ
=

√
a

2
F12(θ, R, W ) + O(a), (22)

where

F11(θ, R, W )=cos θ(4−W 2+RW cos θ+3R2 sin2 θ),

F12(θ, R, W ) = (4 − W 2 + RW cos θ + 3R2 sin2 θ).

Using the notation of the averaging theory described
in Sect. 2, we have that if we take t = θ , T = 2π ,
ε = √

a, x = (R, W )T and

F1(t, x) = F1(θ, R, W ) =
(

F11(θ, R, W )

F12(θ, R, W )

)
,

ε2 F2(t, x) = O(a),

it is immediate to check that the differential system
(22) is written in the normal form (5) for applying the
averaging theory and that it satisfies the assumptions
of Theorem 3. This completes the step 1.

Now, we compute the integral in (7) with
y = (R, W )T , and denoting

g(y) = g(R, W ) =
(

g11(R, W )

g12(R, W )

)
,

we obtain

g11(R, W ) = 1

4
RW,

g12(R, W ) = 1

4
(8 + 3R2 − 2W 2).

So the step 2 is done.
The system g11(R, W ) = g12(R, W ) = 0 has the

unique real solutions (W, R) = (±2, 0). The Jacobian
(8) is
∣∣∣∣∣∣∣∣

1

4
W

1

4
R

3

2
R −W

∣∣∣∣∣∣∣∣
= −1

8
(3R2 + 2W 2),

and evaluated at the solutions (R, W ) = (0,±2) takes
the value −1 �= 0. Then, by Theorem 3, it follows
that for any a > 0 sufficiently small system (21) has
a periodic solution x(t, ε) = (R(θ, a), W (θ, a)) such
that (R(0, a), W (0, a)) tends to (0,±2) when a tends
to zero. We know that the eigenvalues of the Jaco-
bian matrix at the solution (0,−2) are 2,−1/2 and
the eigenvalues of the Jacobian matrix at the solution
(0, 2) are −2, 1/2. This shows that both periodic orbits
are unstable having a stable manifold and an unstable
manifold both formed by two cylinders.

Going back to the differential system (20), we get
that such a system for a > 0 sufficiently small has two
periodic solutions of period approximately 2π of the
form

r(θ) = O(a),

w(θ) = ±√
a + O(a).

These two periodic solutions become for the differen-
tial system (19) into two periodic solutions of period
also close to 2π of the form

u(t) = O(a),

v(t) = O(a),

w(t) = ±√
a + O(a).

for a > 0 sufficiently small. Finally, we get for the
differential system (1) the two periodic solutions

x(t) = ±√
a + O(a),

y(t) = O(a),

z(t) = O(a).

of period near 2π when a > 0 is sufficiently small.
Clearly, these periodic orbits tend to the origin of
coordinates when a tends to zero. Therefore, they are
small amplitude periodic solutions starting at the zero-
Hopf equilibrium point. This concludes the proof of
Theorem 2. 	
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Appendix: Roots of a cubic polynomial

We recall that the discriminant 
 of the polynomial
ax3 + bx2 + cx + d is


 = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2.

It is known that

– If 
 > 0, then the equation has three distinct real
roots.

– If
 = 0, then the equation has a root of multiplicity
2 and all its roots are real.

– If 
 < 0, then the equation has one real root and
two non–real complex conjugate roots.

For more details see [1].

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables.
National Bureau of Standards Applied Mathematics Series,
vol. 55 (1964)

2. Baldomá, I., Seara, T.M.: Brakdown of heteroclinic orbits
for some analytic unfoldings of the Hopf-Zero singularity.
J. Nonlinear Sci. 16, 543–582 (2006)

3. Baldomá, I., Seara, T.M.: The inner equation for genereic
analytic unfoldings of the Hopf-Zero singularity. Discret.
Contin. Dyn. Syst. Ser. B 10, 232–347 (2008)

4. Broer, H.W., Vegter, G.: Subordinate silnikov bifurcations
near some singularities of vector fields having low codimen-
sion. Ergod. Theory Dyn. Syst. 4, 509–525 (1984)

5. Castellanos, V., Llibre, J., Quilantán, I.: Simultaneous peri-
odic orbits bifurcating from two Zero-Hopf equilibria in a
tritrophic food chain model. J. Appl. Math. Phys. 1, 31–38
(2013)

6. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of
invariant algebraic curves in polynomial vector fields. Pac.
J. Math. 229, 63–117 (2007)

7. Champneys, A.R., Kirk, V.: The entwined wiggling of
homoclinic curves emerging from saddle-node/Hopf insta-
bilities. Phys. D Nonlinear Phenom. 195, 77–105 (2004)

8. Darboux, G.: Mémoire sur les équations différentielles
algébriques du premier ordre et du premier degré
(Mélanges). Bull. Sci. math. 2ème série. 2 , 60–96; 123–
144; 151–200 (1878)

9. Guckenheimer, J.: On a codimension two bifurcation. In:
Dynamical Systems and Turbulence, Warwick (Coventry,
1979/1980), Lecture Notes in Math., no. 654886 (83j:58088)
vol. 898, pp. 99–142. Springer, Berlin (1981)

10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields,
Applied Mathematical Sciences, vol. 42. Springer, Berlin
(2002)

11. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of
Planar Differential Systems. Springer, New York (2006)

12. Jouanolou, J.P.: Equations de Pfaff algébriques. In: Lectures
Notes in Mathematics, vol. 708. Springer, Berlin (1979)

13. Llibre, J., Zhang, X.: Darboux theory of integrability in C
n

taking into account the multiplicity. J. Differ. Equ. 246, 541–
551 (2009)

14. Llibre, J., Zhang, X.: Darboux theory of integrability for
polynomial vector fields in R

n taking into account the mul-
tiplicity at infinity. Bull. Sci. Math. 133, 765–778 (2009)

15. Han, M.: Existence of periodic orbits and invariant tori in
codimension two bifurcations of three-dimensional systems.
J. Syst. Sci. Math. Sci. 18, 403–409 (1998)

16. Kuznetsov, Yu.A.: Elements of applied bifurcation the-
ory. In: Applied Mathematical Sciences, 3rd ed., vol. 12,
Springer, New York (2004)

17. Marsden, J. E., McCracken, M.: The Hopf bifurcation and
its applications. In: Chernoff, P., Childs, G., Chow, S., Dor-
roh, J. R., Guckenheimer, J., Howard, L., Kopell, N., Lan-
ford, O.,Mallet-Paret, J., Oster, G., Ruiz, O., Schecter, S.,
Schmidt., D. and Smale, S. (eds.) Applied Mathematical
Sciences, vol. 19.Springer-Verlag, New York (1976)

18. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging methods
in nonlinear dynamical systems. In: Applied Mathematical
Sciences. 2nd ed., vol. 59. Springer, New York (2007)

19. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori
in the interaction of steady state and Hopf bifurcations.
SIAM J. Math. Anal. 15, 1055–1074 (1984)

20. Verhulst, F.: Nonlinear Differential Equations and Dynami-
cal Systems. Springer, Berlin (1991)

21. Wang, X., Chen, G.: Constructing a chaotic system with any
number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)

123


	On the integrability and the zero-Hopf bifurcation  of a Chen--Wang differential system
	Abstract
	1 Introduction and statement of the main result
	2 Preliminaries
	2.1 Darboux theory of integrability
	2.2 Averaging theory

	3 Proof of Theorem 1
	4 Zero-Hopf bifurcation
	Acknowledgments
	Appendix: Roots of a cubic polynomial
	References


