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Abstract In this paper, a novel composite con-
trol, using fuzzy logic system (FLS) and disturbance
observer, is proposed for a class of uncertain non-
linear systems with actuator saturation and external
disturbances. FLS is employed to approximate the
unknown nonlinearities and a serial–parallel identifi-
cation model is introduced to construct the compos-
ite updating law. The disturbance observer is devel-
oped to estimate the unknown compounded disturbance
composed of the unknown external disturbance, the
unknown fuzzy approximation error and the effect of
actuator saturation. The uniformly ultimate bounded-
ness of the closed-loop tracking error can be guaranteed
rigorously via Lyapunov stability analysis. Simulation
results are presented to demonstrate the effectiveness
of the proposed method.
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1 Introduction

Owing to the excellent function approximation abil-
ity of neural networks (NNs) [25] or FLS [20],
intelligent systems are employed for analysis and
controller design. The tremendous advantage of design-
ing a control system using NNs or FLS is that it
does not require an exact mathematical model of the
controlled system [19]. Numerous designs have been
proposed for different kinds of systems such as the
strict-feedback system [14], single-input–single-output
(SISO) pure-feedback system [13], multi-input–multi-
output (MIMO) uncertain and perturbed system [9] and
the chaotic systems [15,16].

In practice, systems are subjected to unknown time-
varying external disturbance [2,11,26]. In [2], linear
parameter-varying systems with matched disturbance
are studied. For nonlinear systems, in [1,27,28], the
controller design is with system decomposition and
sliding mode. Recently, the disturbance observer-based
controller is gaining more and more attention as it is
argued [4] that if the observer dynamics is much faster
than the system dynamics, to a large extent, the influ-
ence of uncertainties can be estimated and compensated
for. In [11], a discrete-time fuzzy disturbance observer
(FDO) is developed to monitor the total disturbance
including the internal parameter uncertainties and the
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external disturbance. In [6], both state feedback and
output feedback designs for the nonaffine system are
presented. It is noted that time-varying disturbance can-
not be approximated directly by NNs or FLS.

Also physical actuators in control systems have
amplitude and rate limitations [8,30]. The controller
ignoring actuator limitations may cause the closed-
loop system performance to degenerate or even make
the closed-system unstable. Command filter design is
proposed for controller design of the related hyper-
sonic flight dynamics with actuator saturation [22,24].
In [7], adaptive tracking control is proposed for a class
of uncertain MIMO nonlinear systems with input con-
straints. In [29], asymptotic tracking control is inves-
tigated for discrete-time MIMO system with nonlinear
uncertainties. In [6], the saturation is considered as part
of compounded disturbance and the adaptive design is
proposed with disturbance observer.

In the above-mentioned methods, most efforts have
been directed toward one goal: achieving asymptotic
stability and tracking. Little attention has been paid
to the accuracy of the desired identified models and
to the transparency and the interpretability, whereas
there should be the key aspects motivating the use of
intelligent approximation in adaptive control. In [10],
the fuzzy approximation modeling error is included in
the updating law of the parameter estimation where
faster state tracking and better parameter convergence
were achieved due to the quicker and smoother para-
meter adaption. However, the method is impractical
in real-world applications since the nth derivative of
the plant output is required to be known. In [23], the
composite design is proposed for a class of strict-
feedback systems. Furthermore, similar design is pro-
posed in [17] and applied on Lorenz system [16]. How-
ever, in [16,17], the disturbance is considered as part
of uncertainty to be approximated by FLS and the the-
oretical analysis is not rigorous.

In this paper, we study disturbance observer-based
composite fuzzy control (DOBCFC) of a class of
uncertain nonlinear systems with both actuator satu-
ration and time-varying disturbance. The external dis-
turbance, the fuzzy approximation errors and actuator
saturation effect are integrated as a compounded dis-
turbance. The new serial–parallel identification model
is developed with disturbance observer to provide addi-
tional approximation error information for FLS weights
updating. Semiglobal uniform boundedness stability is
rigourously established using Lyapunov approach.

The paper is organized as follows. In Sect. 2, the
class of SISO nonlinear systems is characterized and
the brief introduction of FLS is given. In Sect. 3, the
composite fuzzy control is designed and the stability
analysis is presented. The effectiveness of the proposed
approach is verified by simulation in Sect. 4. The final
conclusion is included in Sect. 5.

2 Problem formulation and preliminaries

2.1 Problem formulation

Consider the nth-order nonlinear system of the control-
lability canonical form
⎧
⎪⎪⎨

⎪⎪⎩

ξ̇i = ξi+1, i = 1, 2, . . . , n − 1

ξ̇n = f (ξ̄n) + g(ξ̄n)u + d(t)

y(t) = ξ1

(1)

where ξ̄n = [ξ1, ξ2, . . . , ξn]T ∈ �n are system states
which are assumed to be available for measurement,
f and g are unknown real continuous functions (in
general nonlinear), y ∈ � is system output, u ∈ � is
system input, |u| ≤ umax, |u̇| ≤ vmax and d(t) ∈ �
denotes the external disturbance.

For system (1) to be controllable, it requires that g �=
0 for all ξ̄n in a certain controllability region Uc ⊂ �n .

Assumption 1 There exist unknown bound functions
f̄ (ξ̄n), ḡ(ξ̄n) and constants g, d̄ such that | f (ξ̄n)| ≤
| f̄ (ξ̄n)|, 0 < g ≤ |g(ξ̄n)| ≤ |ḡ(ξ̄n)|, |d(t)| ≤
d̄, |ḋ(t)| ≤ v̄d .

Assumption 2 The system nonlinearities f and g sat-
isfy

f̂
(
ξ̄n|wL

f

)
≤ f

(
ξ̄n
) ≤ f̂

(
ξ̄n|wU

f

)
(2)

ĝ
(
ξ̄n|wL

g

)
≤ g

(
ξ̄n
) ≤ ĝ

(
ξ̄n|wU

g

)
(3)

where wL
f , w

u
f , w

L
g , wu

g are the bounds of fuzzy weight
vector.

The control objective is to synthesize an adaptive
fuzzy control u for system (1), such that all signals in
the closed-loop systems are bounded, and the output
ξ̄n(t) tracks a bounded reference trajectory ȳd(t) =
[yd(t), ẏd(t), . . . , y(n−1)

d (t)]T.
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Class of uncertain nonlinear systems 343

2.2 Preliminaries

In this paper, the applied FLS [21] is employed to
approximate the unknown nonlinearity f .

f̂ (X in) = ŵTθ (X in) (4)

where X in ∈ D ⊂ �M is the input vector of the FLS,
D = Ωx1 ×Ωx2 ×· · ·×ΩxM is a fuzzy approximation
region, f̂ ∈ � is the FLS output, ŵ ∈ �L N is the
adjustable parameter vector, θ(·) : �M → �L N is a
nonlinear vector function of the inputs and the elements
in θ(X in) are given by

θl (X in) =
∏M

i=1 μAl
i
(xi )

�
L N
l=1

∏M
i=1 μAl

i
(xi )

(5)

where Al
i is the fuzzy partitions on Ωxi and μAl

i
is the

membership function of Al
i . In this paper, we select the

Gaussian functions with the form

μAl
i
(xi ) = exp

⎡

⎣−
(

xi − al
i√

2bl
i

)2
⎤

⎦ (6)

where al
i and bl

i denote the centers and widths of μAl
i
,

respectively.
For any given real continuous function f on a com-

pact set ΩX in ∈ �M and an arbitrary εM > 0, there
exist FLS in the form of (7) and an optimal parameter
vector w∗ such that

f (X in) = w∗T
θ (X in) + ε (7)

sup
Xin∈ΩXin

| ε |< εM (8)

where εM > 0 denotes the supremum value of the
reconstruction error ε that is inevitably generated.

3 Composite fuzzy controller design

Considering system (1), if the nonlinearities f and g are
known, the constraints on control inputs can be ignored,
and there is no disturbance, then based on dynamic
inversion algorithm, the control law is designed as

u∗ = 1

g

[
− f + y(n)

d (t) + k̄ē
]

(9)

where e = e(t) � yd(t) − y(t) ∈ � is the track-
ing error, ē = ē(t) � [e, ė, . . . , e(n−1)]T ∈ �n and

k̄ = [kn, . . . , k2, k1]T ∈ �n is chosen such that the
polynomial sn + k1sn−1 + · · · + kn = 0 is Hurwitz.

The error dynamics can be derived as

e(n) + k1e(n−1) + · · · + kne = 0 (10)

This implies that starting from any initial conditions,
the asymptotically stable tracking is achieved.

Since the nonlinear functions f, g are unknown
while there exists time-varying disturbance d(t) , the
controller (9) cannot be implemented.

The last equation of (1) can be written as

ξ̇n = f
(
ξ̄n
) + g

(
ξ̄n
)

u + d(t)

= w∗T

f θ f
(
ξ̄n
) + ε f

(
ξ̄n
)

+
[
w∗T

g θg
(
ξ̄n
) + εg

(
ξ̄n
)]

u + d(t)

= w∗T

f θ f
(
ξ̄n
) + w∗T

g θg
(
ξ̄n
)

u

+ [
ε f

(
ξ̄n
) + εg

(
ξ̄n
)

u
] + d(t)

= f̂ + ĝuc + � + D(t) (11)

where w∗
f , w

∗
g are the optimal FLS weight vectors

approximating f, g separately, and |ε f (ξ̄n)| ≤ ε̄ f ,

|εg(ξ̄n)| ≤ ε̄g .

f̂ = ŵT
f θ f (ξ̄n)

ĝ = ŵT
g θg(ξ̄n)

� = � f + �gu

� f = w∗T

f θ f (ξ̄n) − f̂ = w̃T
f θ f (ξ̄n)

�g = w∗T

g θg(ξ̄n) − ĝ = w̃T
g θg(ξ̄n)

D(t) = [
ε f (ξ̄n) + εg(ξ̄n)u

] + ĝ�u + d(t)

�u = u − uc

Remark 1 It is easy to see that D(t) is a compounded
disturbance with different effects of fuzzy approxima-
tion error, actuator saturation and time-varying dis-
turbance. Similar to the analysis in [6], following the
boundedness of
∣
∣ε̇ f (ξ̄n)

∣
∣ ≤ ν f ,

∣
∣ε̇g(ξ̄n)

∣
∣ ≤ νg, |u̇| ≤ vmax,

|u̇c| ≤ vc max (12)

where vc max is an unknown positive constant. From
Assumption 1, we know there exists upper bound of
the derivative of D
∣
∣Ḋ

∣
∣ ≤ vD (13)

where vD is an unknown positive constant.
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Assumption 3 [12] The parameter vectors ŵ f and ŵg

belong to compact Ω f and Ωg , respectively, which are
defined as Ω f = {ŵ f : ‖ŵ f ‖ ≤ M f } and Ωg = {ŵg :
‖ŵg‖ ≤ Mg}, where M f , Mg ∈ �+ are user-defined
finite constants.

Define

Λ =

⎡

⎢
⎢
⎢
⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−kn −kn−1 · · · −k1

⎤

⎥
⎥
⎥
⎦

(14)

and B = [0, . . . , 0, 1]T.
We propose the following indirect composite fuzzy

controller with adaptive item ua and H∞ term uh

uc = ua + uh (15)

where

ua = 1

ĝ

[
− f̂ + y(n)

d (t) + k̄ē − D̂(t)
]

(16)

with D̂(t) as the estimate of disturbance D(t) to be
designed later and

uh = − 1

ĝ
uh0 (17)

with uh0 = −1

r
BT Pē, r is positive constant and matrix

P = PT ≥ 0 is the solution of the following Riccati-
like equation

ΛT P+PΛ+Q−2

r
PBBT P+ 1

ρ2 PBBT P = 0 (18)

where Q is an arbitrary n ×n positive definite symmet-
ric matrix to be given.

The real control input u is applied

u = sat(uc)

=
{

uc if |uc| ≤ umax

umaxsgn(uc) if |uc| > umax
(19)

where sgn(·) is the sign function.

Remark 2 The saturation effect is considered as part of
D(t). Similar to the idea in [6], the main focus is on the
design of disturbance observer and there is no need to
construct the auxiliary system as [5,22].

From (15) and (16), we have

y(n)
d (t) = −k̄ē + D̂ + ĝuc + f̂ + uh0 (20)

Subtracting (11) from (20), the error dynamics is
obtained

˙̄e = Λē + B
[

D̂ + ĝuc + f̂ + uh0 − f − gu − d
]

= Λē − B
[
−uh0 + � + D̃

]
(21)

where D̃ = D − D̂.
We know Λ is a stable matrix from the selection of

k̄ in (9). Then, there exists a unique positive definite
symmetric n × n matrix P that satisfies the Lyapunov
equation

ΛT P + PΛ = −Q. (22)

To achieve the composite adaption, we define the
filtered modeling error

ζ f = ξ̂ (n−1) − ξn (23)

and introduce the following serial–parallel identifica-
tion model with a low-pass filter
{ ˙̂

ξi−1 = ξ̂i , i = 2, . . . , n
˙̂
ξn = −α f ζ f + f̂ + ĝuc + D̂

(24)

where ξ̂i is the estimation of ξi , α f ∈ � is positive
design constant.

The parameter adaptive laws are proposed with both
tracking error and filtered modeling error

˙̂w f = −γ f

(
ēTPB + γξ ζ f

)
θ f (25)

˙̂wg = −γg

(
ēTPB + γξ ζ f

)
θgu (26)

where γ f , γg and γξ are positive design parameters.
From (23), the error dynamics of ζ f is obtained as

ζ̇ f = ξ̂ (n) − ξ̇n

= −α f ζ f − � − D̃ (27)

For the estimation of D(t), an auxiliary variable is
introduced as

z = D + kdζ f (28)

where kd > 0 is the design parameter.
Considering (27) and (28), the derivative of z can be

written as

ż = Ḋ + kd ζ̇ f

= Ḋ − kd(α f ζ f + � + D̃) (29)
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The estimate of intermediate variable z is given by

˙̂z = −ēTPB − kdα f ζ f − γξ ζ f (30)

where ẑ is the estimation of z.
From (28), the estimation of D(t) can be written as

D̂ = ẑ − kdζ f (31)

Define z̃ = z − ẑ and we have

z̃ = D − D̂ = D̃ (32)

Differentiating (32) and considering (28), (30) yields

˙̃z = ż − ˙̂z
= Ḋ + ēTPB − kd z̃ − kd� + γξ ζ f . (33)

Remark 3 Since the information of time-varying dis-
turbance is included in (24), the estimate is with infor-
mation of ζ f and there is no need to construct the ẑ
as [4,6].

Remark 4 The H∞ fuzzy controller (FC) uC
1 in [3] has

the following formulation

uC = uC
a + uC

h (34)

where uC
a = 1

ĝ
[− f̂ + y(n)

d (t) + k̄ē] and uC
h = uh .

The difference between the controller in this paper and
H∞ FC (34) lies in the disturbance observer (31) and
the updating law (25) and (26).

Remark 5 Recently, disturbance observer-based con-
troller design is commonly studied and the design ori-
gins from the dynamics of ξn . The controller is simply
presented as follows:

u D = u D
a + u D

h (35)

where u D
h = uh, u D

a = 1

ĝ
[− f̂ + y(n)

d (t)

+ k̄ē − D̂d ], D̂d = ẑD + k D
d e(n−1), and

˙̂zD = −k D
d

[
y(n)

d (t) − f̂ − ĝu D − ẑD − k D
d e(n−1)

]

(36)

with k D
d as the positive design parameter.

In this paper, the composite design is developed
using serial–parallel identification model (24) and the

disturbance observer is constructed based on the fil-
tered modeling error ζ f .

Now, we have the following theorem.

Theorem 1 For the nonlinear system (1), satisfying
Assumptions 1–3, select (19) from (15) as the tracking
controller, (25) and (26) as updating algorithm and
(31) as compounded disturbance observer. Then, all
the closed-loop system signals are semiglobally uni-
formly ultimately bounded (UUB) under the proposed
disturbance-based fuzzy controller.

Furthermore, the tracking error and the filtered
modeling error remain within the following compact

Ωē =
⎧
⎨

⎩
ē : ‖ē‖ ≤ χ̄ (2kdλmin(Q))

−1

2

⎫
⎬

⎭
(37)

Ωζ f =
⎧
⎨

⎩
ζ f : |ζ f | ≤ χ̄(4kdα f γξ )

−1

2

⎫
⎬

⎭
(38)

and the H∞ tracking performance can be obtained

∫ T

0
ēT Qēdt ≤ 2V (0)+ 1

2kd

∫ T

0
(Ḋ − kd�)2dt (39)

Proof Consider the following Lyapunov function can-
didate

V = 1

2
ēT Pē + 1

2
D̃2 + 1

2γ f
w̃T

f w̃ f

+ 1

2γg
w̃T

g w̃g + γξ

2
ζ f

2 (40)

The time derivative of V is

V̇ = 1

2

( ˙̄eT Pē + ēT P ˙̄e
)

+ ˙̃DD̃ +
(

ēTPB + γξ ζ f

)
θT

f w̃ f

+
(

ēTPB + γξ ζ f

)
θT

g w̃gu + γξ ζ̇ f ζ f

= − 1

2
ēT Qē + ēTPBuh0

− ēTPB
(
θT

f w̃ f + θT
g w̃gu + z̃

)

+ z̃
(

Ḋ + ēTPB − kd z̃ − kd� + γξ ζ f

)

+
(

ēTPB+γξ ζ f

)
θT

f w̃ f +
(

ēTPB+γξ ζ f

)
θT

g uw̃g

+ γξ

(
−α f ζ f − θT

f w̃ f − θT
g w̃gu − z̃

)
ζ f (41)
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Furthermore, we know

V̇ = −1

2
ēT Qē − α f γξ ζ

2
f −

(
ēTPB

)2

2ρ2

+ z̃
(
Ḋ − kd z̃ − kd�

)

= −1

2
ēT Qē − α f γξ ζ

2
f −

(
ēTPB

)2

2ρ2

− kd

(

z̃ − Ḋ − kd�

2kd

)2

+ 1

4kd

(
Ḋ − kd�

)2

≤ −1

2
ēT Qē − αf γξ ζ

2
f + 1

4kd

(
Ḋ − kd�

)2
(42)

Similar to the analysis of the proof [18], we know

V̇ ≤ −kminV + kminVr (43)

where kmin = λmin(Q)

λmax(P)
and Vr ∈ �+ is a finite con-

stant. Then, we know all the signals are UUB.
From the bound of Ḋ and Assumption 2, we know

χ = |Ḋ − kd� | ≤ χ̄ (44)

Furthermore, ē and ζ f converge to the compact

Ωē =
⎧
⎨

⎩
ē : ‖ē‖ ≤ χ̄ (2kdλmin(Q))

−1

2

⎫
⎬

⎭

Ωζ f =
⎧
⎨

⎩
ζ f : |ζ f | ≤ χ̄

(
4kdα f γξ

)−
1

2

⎫
⎬

⎭

Similarly, we can prove the disturbance estimation
error D̃ and the error of FLS weights w̃ f , w̃g are
bounded.

From (42), we know

V̇ ≤ −1

2
ēT Qē − α f γξ ζ

2
f + 1

4kd
(Ḋ − kd�)2

≤ −1

2
ēT Qē + 1

4kd

(
Ḋ − kd�

)2
(45)

Integrating both sides of the above inequality (45)
from 0 to T yields

V (T ) − V (0) ≤ 1

4kd

∫ T

0
(Ḋ − kd�)2dt

− 1

2

∫ T

0
ēT Qēdt (46)

Then, the conclusion of (39) could be obtained. This
completes the proof. �

Remark 6 Since there exist input saturation and time-
varying disturbance, the compensating design for D(t)
is employed, while the composite learning with mod-
eling error is designed.

Remark 7 The disturbance observer design (31) with
(30) is different from the design in [6] because the fil-
tered modeling error (23) is incorporated.

Remark 8 The composite learning (25) and (26) is dif-
ferent from the design in [18] since the disturbance is
estimated and included in the identification model (24).

Remark 9 It is obvious that the controller can be
applied without any change for the case free of actuator
saturation.

Remark 10 From the derivative of the Lyapunov func-
tion V in (42), if without the item ua , the conclusion
of Theorem 1 still exists. However, with the item uh0,

one item
(ēTPB)2

2ρ2 is subtracted from V̇ and it makes

the Lyapunov function decreasing faster.

4 Simulation

In this section, the following second-order nonlinear
inverted pendulum system [3] is used for simulation

ξ̇1 = ξ2

ξ̇2 = f (ξ̄2) + g(ξ̄2)u + d(t) (47)

where

f =
ge sin ξ1 − mlξ2

2 cos ξ1 sin ξ1

mc + m

l

(
4

3
− m cos2 ξ1

mc + m

)

g =
cos ξ1

mc + m

l

(
4

3
− m cos2 ξ1

mc + m

)

d = 5 sin t

and ξ1 is the angular position of the pendulum, ξ2 is the
corresponding angular velocity, ge = 9.8 m/s2 is the
acceleration due to gravity, mc is the mass of the cart, m
is the mass of the pole and l is the half length of the pole.

The controller in this paper is denoted as DOBCFC,
while the design in (34) is marked as H∞FC, and the
controller (35) is named as disturbance observer-based
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Fig. 1 Tracking of yd

fuzzy control (DOB-FC). For simulation, mc = 1 kg,
m = 0.1 kg, l = 0.5 m, ξ̄2(0) = [0, π/12]T.

Let k1 = 2, k2 = 1, γ f = 30, γg = 1.5, γξ =
10. Select Q =

[
10 0
0 10

]

, ρ = 0.1, r = 2ρ2, P =
[

15 5
5 5

]

.

For the FLS, ŵ f (0) = [0, . . . , 0]T, ŵg(0) =
[0.5, . . . , 0.5]T, al

i , i = 1, 2 is selected as [−π/6;
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Fig. 2 Reference signal ξ2d and system output ξ2

−π/12; 0;π/12;π/6], bl
i = 0.1, L N = 25, M f =

10, Mg = 1.

4.1 Period signal tracking without input saturation

The control objective is to ensure that the output y
tracks yd = π/6 sin t with d(t) = 5 sin t . Accord-
ingly, we know ξ2d = ẏd = π/6 cos t . The parameter

Fig. 3 Tracking errors
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Fig. 4 Estimation of the compound disturbance

is kd = 0.1, α f = 2 and in this example, to clearly
show the difference between DOBCFC and H∞FC,
the input saturation is not considered.

The simulation results are shown in Figs. 1, 2, 3, 4
and 5. From the system tracking depicted in Fig. 1, it
is observed that both controllers can follow the refer-
ence trajectory yd , but the result of DOBCFC is with
higher tracking precision. From the tracking of x2d in
Fig. 2 similar conclusion can be obtained. The deduc-
tion could be further confirmed from the tracking errors

shown in Fig. 3. The estimation of disturbance observer
is presented in Fig. 4. In Fig. 5, the robust item uh(t) of
DOBCFC is with smaller value compared with H∞FC.
It means that H∞FC is mainly relying on the H∞ term,
while for DOBCFC, the basic adaptive fuzzy controller
ua(t) plays more important roles. It indicates that the
more controller could adapt to the system uncertainty
and disturbance, the higher precision could be obtained.

4.2 Square signal tracking with input saturation

The control objective is to ensure that the output y
tracks the square command with period 60 s and mag-
nitude π/6. The saturation is considered as |u| ≤ 6.5,
and control parameters are selected as kd = 0.2,

α f = 15, k D
d = 0.5. In this example, three methods

are tested on the same scenario and the disturbance is
set with a sudden change during the steady state

d(t) =
{

0.1 sin(t) if t ≤ 20
0.1 sin(t) − 5 if t > 20

(48)

The filter (49) is used to derive the reference signals
yd , ẏd and ÿd .

yd

yc
= w2

n

s2 + 2εcwns + w2
n

(49)

Fig. 5 Components of
control input
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where wn = 0.9, εc = 0.9.
The simulation results are shown in Figs. 6, 7, 8, 9,

10 and 11. From the system response depicted in Figs. 6
and 8, under DOBCFC the tracking errors in Figs. 7
and 9 converge to the neighborhood of zero faster with
higher precision. It is obvious that compared with the
other two methods, DOBCFC exhibits better perfor-
mance even with sudden disturbance (at t = 20 s) or
reference command change (at t = 30 s). It is observed
that initially since the system is not at trim state, there
exists large variation for system tracking, while for
steady state, the amplitude of tracking error is smaller
when there comes sudden disturbance or new tracking
command. Due to the compounded disturbance estima-
tion and effect of the input saturation, it is interesting
to find that the control input of DOBCFC exhibits quite
different response from H∞FC and DOB-FC as shown
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in Fig. 10. Also from the response shown in Figs. 10
and 7, in case of reference command change, DOBCFC
is with smaller control input and better transient per-
formance. Though DOBCFC and DOB-FC are both
equipped with disturbance observer, the estimation in
Fig. 11 is quite different and the reason is discussed as
in Remark 5.

5 Conclusion

In this paper, a novel composite fuzzy control is pro-
posed for a class of uncertain nonlinear systems with
actuator saturation and external disturbances. FLS is
employed to approximate the unknown nonlinearities
and a serial–parallel identification model is introduced
to construct the composite fuzzy updating law. The dis-
turbance observer is developed to estimate the unknown
compounded disturbance composed of the unknown
external disturbance, the unknown fuzzy approxima-
tion error and the actuator saturation effect. The uni-
formly ultimate boundedness of the closed-loop track-
ing error can be guaranteed rigorously via Lyapunov
stability analysis. The simulation results verify the phi-
losophy of the controller design in this paper using
composite design with disturbance observer to enhance
the tracking performance.
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