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Abstract This paper is concerned with the problem of
parameter estimation for nonlinear Wiener systems in
the stochastic framework. Based on the expectation–
maximization (EM) algorithm in dealing with the
incomplete data, it is applied to estimate the parame-
ters of nonlinear Wiener models considering the ran-
domly missing outputs. By means of the EM approach,
the parameters and the missing outputs can be esti-
mated simultaneously. To obtain the noise-free output
in the linear subsystem of the Wiener model, the aux-
iliary model identification idea is adopted here. The
simulation results indicate the effectiveness of the pro-
posed approach for identification of a class of nonlinear
Wiener models.
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1 Introduction

Many industrial processes have the feature of nonlin-
earity and dynamic nature [1,2]. Some nonlinear sys-
tems are too complicated for researchers to study their
corresponding performances. System identification is
to find a system model based on measured data [3,4]
and is basis for signal processing, process monitor-
ing and optimization [5,6]. So-called block-oriented
models, such as Wiener and Hammerstein models,
can be used to approximate many nonlinear dynamic
processes and have a simple structure as well [7,8].
The Wiener model can be represented by a dynamic
linear subsystem followed by a nonlinear static block.
It is a reasonable model for a distillation column, a
pH control process, a linear system with a nonlinear
measurement device, etc. [9]. In the field of system
identification, many least-squares-based identification
methods and their extension versions have been devel-
oped to cope with the identification issues for Wiener
systems [10–12]. Wigren [13,14] proposed a recur-
sive prediction error identification algorithm to iden-
tify the nonlinear Wiener model, and the convergence
property of the algorithm was established. Wang et al.
[15,16] proposed auxiliary model-based and gradient-
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based iterative identification algorithms for Wiener or
Hammerstein nonlinear systems.

Xiong et al. [17] derived an iterative numerical algo-
rithm for modeling a class of output nonlinear Wiener
systems. Westwick and Verhaegen [18] extended the
multivariable output-error state space subspace model
identification schemes to identify Wiener systems.
Hagenblad et al. [9] proposed a maximum-likelihood
method with general consistency property for identifi-
cation of Wiener models. Among the literatures men-
tioned above, most of the contributions were derived
from the same assumption that the input–output mea-
surement data are available at every sampling instant.
That is to say, the measurement data set for identifica-
tion are complete.

Because of the growing scale and complexity of
process industry, data missing problem is commonly
encountered and should be handled carefully because
of its negative effects imposed on the process identi-
fication and control [19]. There are many reasons for
data missing such as a sudden mechanical fault, hard-
ware measurement failures, data transmission malfunc-
tions and losses in network communication [20,21]. In
such cases, the standard least-squares-based identifica-
tion algorithm cannot be applied to estimate the system
parameters directly. Ding et al. [22] presented an aux-
iliary model-based least-squares algorithm and hier-
archical least-squares identification algorithm to iden-
tify the parameters of dual-rate systems, which can be
seen as a special case, but may not be directly applied
to identification with irregularly or randomly missing
data. Then, the recursive least-squares algorithm com-
bined with an auxiliary model was derived to cope with
possibly irregularly missing outputs through output-
error models and convergence properties were estab-
lished simultaneously [23]. They derived the parame-
ter estimation algorithm for systems with scarce mea-
surements which are extension from dual-rate systems
through gradient-based algorithm [24]. An output-error
method is used [25] to identify systems with slowly
and irregularly sampled output data. It was proven that
when the system is in the model set, the consistence and
minimum variance property of the output-error model
can be obtained.

On the other hand, some works on irregularly or
randomly missing data problems under the statisti-
cal framework have been paid great attention since
1990’s. Isaksson [26] studied parameter estimation of
an ARX model when the measurement information

may be incomplete by using several methods includ-
ing the Kalman filtering and smoothing, maximum-
likelihood estimation, and a new method so-called the
expectation–maximization (EM) algorithm. A simpli-
fied iteration of data reconstruction and ARX parame-
ter estimation were proposed in [27]. Raghavan and
Gopaluni et al. [28] studied the EM-based state space
model identification problems with irregular output
sampling and presented some simulations, laboratory-
scale and industrial case studies. Xie et al. [29] pro-
posed a new EM algorithm-based approach to estimate
an FIR model for multirate processes with random
delays. Because of the feature of the statistical prop-
erties and the simplicity to realize, the EM algorithm
has been used in linear parameter varying (LPV) soft
sensor development and nonlinear parameter varying
systems with irregularly missing output data [30–32].

The objective of this paper is to handle parameter
identification and output estimation problems for non-
linear Wiener systems with randomly missing output
data using the EM algorithm. The auxiliary model iden-
tification idea is utilized to estimate the noise-free out-
put iteratively in the linear dynamic subsystem and the
parameter estimation and missing output estimation are
handled simultaneously in the EM algorithm.

The remainder of this paper is organized as follows.
Section 2 introduces the identification model of non-
linear Wiener models and the data missing patterns. In
Sect. 3, the auxiliary model identification idea is used
to estimate the noise-free output of the dynamic linear
subsystem in the nonlinear Wiener model. Based on this
idea, the identification algorithm under the framework
of the EM algorithm to deal with randomly missing
output data is derived. Section 4 provides an illustrative
example to show the effectiveness of the proposed algo-
rithm. Finally, we draw some conclusions in Sect. 5.

2 Problem statement

Consider the stochastic Wiener model as shown in
Fig. 1 with randomly missing output data. It is com-
posed of a linear dynamic subsystem followed by
a static nonlinear block. Assume that {u(t), t =
1, 2, . . . , N } is the input sequences of the system,
{y(t), t = 1, 2, . . . , N } is the measurable output but
randomly missing with certain percentage, e(t) is a
white noise sequence with zero mean and variance σ 2,
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Fig. 1 The Wiener nonlinear system [23]

and A(z−1) and B(z−1) are polynomials in the unit
backward shift operator, namely z−1 y(t) = y(t − 1).

The linear dynamic subsystem takes the form,

x(t) = B(z−1)

A(z−1)
u(t)

= −a1x(t − 1) + · · · − an x(t − an)

+ b1u(t − 1) + · · · + bnu(t − bn)

= ϕT
p (t)ϑp, (1)

where A(z−1) and B(z−1) are polynomials defined as

A(z−1) = 1 + a1z−1 + a2z−2 + · · · + anz−an ,

B(z−1) = b1z−1 + b2z−2 + · · · + bnz−bn . (2)

For this class of Wiener systems, the static nonlin-
ear block f (·) is generally assumed to be the sum
of nonlinear basis functions based on a known basis
f = ( f1, f2, . . . , fn):

y(t) = f (x(t)) + e(t)

= r1 f1(x(t)) + r2 f2(x(t))

+ · · · + rnr fnr (x(t)) + e(t) (3)

Here, we assume that the nonlinear function f (·) can
be represented by the polynomial with the order r :

f (x(t)) = r1x(t) + r2x2(t) + · · · + rnr xnr (t). (4)

As seen from Fig. 1, the linear noise-free block output
x(t) is the input of the nonlinear block in the nonlinear
Wiener system. A direct substitution of x(t) from Eqs.
(1) to (4) would result in a very complex expression.
Therefore, the key-term separation principle is incor-
porated to simplify this problem, namely the first coef-
ficient of the nonlinear block is fixed to 1, i.e., r1 = 1.
Then, the system output y(t) can be written as

y(t) = x(t) +
nr∑

i=2

ri xi (t) + e(t)

= ϕT
p (t)ϑp + ϕT

r (t)ϑr + e(t)

= ϕT (t)ϑ + e(t), (5)

where the information vector ϕ(t) includes ϕp(t) is
defined as:

ϕp(t) = [−x(t − 1), − x(t − 2), . . . , − x(t − na)

u(t − 1), u(t − 2), . . . , u(t − nb)]
T

× ∈ R
na+nb

ϑp = [
a1, a2, . . . , ana b1, b2, . . . , bnb

]T

× ∈ R
na+nb

ϕr (t) =
[
x2(t), . . . , xnr (t)

]T ∈ R
nr −1

ϑr = [
r2, . . . , rnr

]T ∈ R
nr −1

ϕ(t) =
[
ϕT

p (t), ϕT
r (t)

]T ∈ R
na+nb+nr −1

ϑ = [
ϑp, ϑr

]T ∈ R
na+nb+nr −1 (6)

The missing data problem is very common in process
industry. In this article, we assume that the causes for
the missing outputs are unknown and believe that the
occurrence of missing outputs does not depend on any
input and output. This means part of the outputs is miss-
ing completely at random (MCAR) [20]. Thereafter,
the data Y are divided into two parts, the randomly
missing output Ymis = {yt }t=m1,...,mα and the observed
output sequence Yobs = {yt }t=o1,...,oβ . So, the identifi-
cation problem considered under the EM framework is
to estimate the parameters ϑ = {ϑp, ϑr } and the noise
variance σ 2 based on the following data set:

Cobs = {Yobs, U }, (7)

Cmis = {Ymis}. (8)

3 The EM algorithm-based identification approach

3.1 The EM algorithm revisited

The EM algorithm is an ideal candidate for solving esti-
mation problems for the maximum-likelihood estimate
in the presence of missing data. The core idea behind
the EM algorithm is to introduce hidden or missing
variables to make the maximum-likelihood estimates
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tractable [33]. The observed data set Cobs with missing
data set Cmis performs a series of iterative optimiza-
tions. The steps including E-step and M-step proceed
as follows [33]:

1) Initialization: initialize the value of the model para-
meter vector Θ0.

2) E-step: given the parameter estimate Θs obtained
in the previous iteration, calculate the Q-function

Q(Θ|Θs) = ECmis|Cobs,Θs {log p(Cobs, Cmis)|Θ)},

3) M-step: calculate the new parameter estimate Θs+1

by maximizing Q(Θ|Θs) with respect to Θ . That
is

Θs+1 = arg max
Θ

Q(Θ|Θs).

The procedure including E-step and M-step is carried
out iteratively until the change in parameters after each
iteration is within a specified tolerance level. The value
of the Q-function is ensured to be non-decreasing at
each iteration. The convergence of the EM algorithm
has been proved by Wu [34].

3.2 The application of auxiliary model approach

Because x(t) in the information vector ϕp(t) are
unknown and are also included in ϕr (t) and ϕ(t),
the calculation of E-step cannot be applied to Eq. (5)
directly. The solution is to construct an auxiliary model
or reference model Ba(z−1)/Aa(z−1)) using the sys-
tem input u(t), where Ba(z−1) and Aa(z−1) have the
same order with B(z−1) and A(z−1) [35]. The main
idea of auxiliary model approach can be described as
shown in Fig. 2.

Fig. 2 The Wiener nonlinear system with the auxiliary model
[23]

xa(t) = Ba(z−1)

Aa(z−1)
u(t)

= −a1xa(t − 1) + · · · − an xa(t − an)

+ b1u(t − 1) + · · · + bnu(t − bn)

= ϕT
a (t)ϑa, (9)

where ϕa(t) and ϑa are the information vector and the
parameter vector of the auxiliary model, respectively.
If we replace these unknown x(t) in the information
vector ϕp(t) with output xa(t) of the auxiliary model,
then the identification problem of ϑ can be solved by
using u(t), y(t) and xa(t). It is noticed that the output
xa(t) of the auxiliary model denoted by x̂(t) is used
here as the estimate of x(t). Define

ϕ̂p(t) = [−x̂(t − 1),−x̂(t − 2), . . . ,−x̂(t − na),

u(t − 1), u(t − 2), . . . , u(t − nb)]
T

ϕ̂r (t) =
[
x̂2(t), . . . , x̂nr (t)

]T

ϕ̂(t) =
[
ϕ̂T

p (t), ϕ̂T
r (t)

]T
(10)

In identification, we use ϕ̂(t) to replace ϕ(t), and based
on the renewed and complete the information vectors,
the EM algorithm can be carried out to identify the
parameters of the Wiener model.

3.3 The mathematical formulation of the
identification problem with EM algorithm

In this section, the EM algorithm is applied to solve
the identification problem. The unknown parameters
are Θ = {ϑ, σ 2}. The complete log likelihood function
can be first decomposed using the probability chain rule
as follows:

log p(Y, U |Θ) = log p(Y |U,Θ)p(U |Θ) (11)

The first term p(Y |U,Θ) can be decomposed into

p(Y |U,Θ) = p(y1:N |u1:N ,Θ)

= p(yN |yN−1:1, u1:N ,Θ)p(yN−1:1|u1:N ,Θ)

= p(yN |yN−1:1, u1:N ,Θ)p(yN−1|yN−2:1, u1:N ,Θ)

× . . . p(y2|y1, u1:N ,Θ)p(y1|u1:N ,Θ)

123



EM algorithm 333

=
N∏

t=1

p(yt |yt−1:1, u1:N ,Θ)

=
N∏

t=1

p(yt |ut−1:1,Θ). (12)

Here,
∏N

t=1 p(yt |yt−1:1, u1:N ,Θ) can be simplified to∏N
t=1 p(yt |ut−1:1,Θ) based on the fact that yt only

depends on the previous input sequence, namely ut−1:1
and the parameter Θ . Since the input U of the system
is the measurable data and is independent of the para-
meter Θ , the second term p(U |Θ) is constant defined
as C . Therefore, the log likelihood function can be
written as

log p(Y, U |Θ) = log p(Y |U,Θ)p(U |Θ)

=
N∑

t=1

log p(yt |ut−1:1,Θ) + log C

=
mα∑

t=m1

log p(yt |ut−1:1,Θ)

+
oβ∑

t=o1

log p(yt |ut−1:1,Θ) + log C.

(13)

The Q-function can be obtained by calculating the
expectation of the complete-data log likelihood func-
tion over the missing variable Ymis,

Q(Θ|Θs) = ECmis|Cobs,Θs {log p(U, Y |Θ)}

= EYmis|Cobs,Θs

{ mα∑

t=m1

log p(yt |ut−1:1,Θ)

+
oβ∑

t=o1

log p(yt |ut−1:1,Θ) + log C

}

=
mα∑

t=m1

∫
p(yt |Cobs,Θ

s) log p(yt |ut−1:1,Θ)dyt

+
oβ∑

t=o1

log p(yt |ut−1:1,Θ) + log C. (14)

Based on Eq. (5) and the Gaussian white noise assump-
tion, we have

p(yt |ut−1:1,Θ)= 1√
2πσ 2

exp

{−(yt − ϕT (t)ϑ)2

2σ 2

}
.

(15)

The problem left is to calculate the integral term∫
p(yt |Cobs,Θ

s) log p(yt |ut−1:1,Θ)dyt in the
Q-function. Based on the definitions of the first order
and second order moments, the integral term can be
calculated as

∫
p(yt |Cobs,Θ

s) log p(yt |ut−1:1,Θ)dyt

=
∫

p(yt |Cobs,Θ
s) log

1√
2πσ 2

× exp
−(yt − ϕT (t)ϑ)2

2σ 2 dyt

= −1

2
log(2πσ 2) − 1

2σ 2

∫
p(yt |Cobs,Θ

s)

× (yt − ϕT (t)ϑ)2dyt

= −1

2
log(2πσ 2) − 1

2σ 2 ((σ s)2 + (ϕT (t)ϑ s)2)

+ 1

σ 2 (ϕT (t)ϑ)(ϕT (t)ϑ s) − 1

2σ 2 (ϕT (t)ϑ)2

= −1

2
log(2πσ 2) − 1

2σ 2 ((σ s)2

+ (ϕT (t)ϑ − ϕT (t)ϑ s)2) (16)

Substituting Eqs. (15) and (16) into Eq. (14), we have

Q(Θ|Θs) =
mα∑

t=m1

{
−1

2
log(2πσ 2) − 1

2σ 2 ((σ s)2

+(ϕT (t)ϑ − ϕT (t)ϑ s)2
}

+
oβ∑

t=o1

{
−1

2
log(2πσ 2) − 1

2σ 2

×(yt − ϕT (t)ϑ)2
}

+ log C. (17)

The following step is to obtain the estimates of all the
unknown parameters, that is M-step. Taking the gra-
dient of Q(Θ|Θ(s)) with respect to ϑ and σ 2, respec-
tively and setting them to zeros, the estimate of Θ can
be derived as

ϑ s+1 =
∑mα

t=m1
ϕ(t)ϕT (t)ϑ s + ∑oβ

t=o1
ϕ(t)y(t)

∑N
t=1 ϕ(t)ϕT (t)

(18)
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(σ 2)s+1 =
∑mα

t=m1
((σ s)2 + (ϕT (t)ϑ s+1 − ϕT (t)ϑ s)2) + ∑oβ

t=o1
(yt − ϕT (t)ϑ s+1)2

N
(19)

The detailed derivations of Eqs. (18) and (19) are
given in Appendix.

Since the {x(t)}t=1,...,N in the information vector
ϕ(t) are unknown, they can be estimated by using the
auxiliary model identification idea. Here, the auxiliary
model in Eq. (9) is constructed based on the parame-
ter estimates obtained in previous iteration. Therefore,
the estimate of the information vector ϕ(t) can be con-
structed based on Eq. (10). The new parameter esti-
mates can be calculated by substituting ϕ(t) with ϕ̂(t)
in Eqs. (18) and (19):

ϑ s+1 =
∑mα

t=m1
ϕ̂(t)ϕ̂T (t)ϑ s + ∑oβ

t=o1
ϕ̂(t)y(t)

∑N
t=1 ϕ̂(t)ϕ̂T (t)

,

(20)

(σ 2)s+1 =
∑mα

t=m1
((σ s)2 + (ϕ̂T (t)ϑ s+1 − ϕ̂T (t)ϑ s)2) + ∑oβ

t=o1
(yt − ϕ̂T (t)ϑ s+1)2

N
. (21)

3.4 The summary of the proposed identification
algorithm

The proposed approach for nonlinear Wiener models
taking the randomly missing outputs into account using
the EM algorithm can be summarized as follows:

1) Set s = 1 and initialize the parameter vector ϑ and
the variance σ 2.

2) Calculate the estimates of {x(t)}t=1,...,N according
to Eq. (9) with the parameters obtained in the pre-
vious iteration.

3) Update the estimates of the parameter ϑ s+1 and the
variance (σ 2)s+1 according to Eqs. (20) and (21),
respectively.

4) Set s = s + 1 and repeat step 2 to step 3 until
convergence.

4 Simulation sample

Considering the following Wiener nonlinear system
with the linear subsystem given as follows,

x(t) = B(z−1)

A(z−1)
u(t),

A(z−1) = 1+a1z−1+a2z−2 =1+0.58z−1+0.41z−2

B(z−1) = b1z−1 + b2z−2 = −0.18z−1 + 0.44z−2

(22)

and the nonlinearity is described by

f (x(t)) = r1x(t) + r2x2(t) + · · · + rnr xnr (t)

= x(t) − 0.45x2(t) + 0.25x3(t) (23)

The output of the Wiener system y(t) can be expressed
as

y(t) = f (x(t)) + e(t) (24)

For this example system, the parameter vector of the
Wiener model to be identified is ϑ = [0.58, 0.41,

−0.18, 0.44, − 0.45, 0.25]. The input sequence
u(t) and output sequence y(t) are generated by sim-
ulation, and e(t) is a white noise process with zero
mean and variance 0.001 added to the output. The
input–output data of the system are given in Fig. 3.
Setting the missing rate of the output data at around
12.5 %, the proposed method is applied to identify
the six parameters and noise variance simultaneously.
The initial values of vector ϑ and variance σ 2 are
[0.45, 0.5, −0.2, 0.5, −0.41, 0.41] and 0.05, respec
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Fig. 3 The input and output data
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Fig. 4 The EM estimates of the Wiener model parameters with
output missing 15 %

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

s

Fig. 5 The EM estimate of the noise with output missing 15 %
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Fig. 6 The EM estimates of the Wiener model parameters with
output missing 25 %

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

s

Fig. 7 The EM estimate of the noise with output missing 25 %

tively. The estimated parameters versus iteration are
shown in Fig. 4. It can be seen that the proposed EM-
based identification algorithm has good performances
since the parameter estimates approach the real ones
after a few iterations. The noise variance trajectory is
shown in Fig. 5. It is clear that almost all the parameters
are close to the real value after 10 iterations.

To illustrate the effectiveness of the proposed
method in dealing with the randomly data missing, the
simulation is also carried out with the missing rate of
the output at around 25 and 50 %, respectively. The
simulation results are shown from Figs. 6, 7, 8 and 9.
It is noticed that the proposed approach keeps a good
identification performance when the missing data are
near the half of the whole output sequence. To evaluate
the performance of the proposed algorithm, the relative
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Fig. 8 The EM estimates of the Wiener model parameters with
output missing 50 %
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Fig. 9 The EM estimate of the noise with output missing 50 %

error (RE) of the estimated parameter criterion can be
used and is defined as:

RE =
√

‖Θ̂ − Θ‖
‖Θ‖ (25)

From Table 1, we can see that with the increase in the
missing rate, the relative error becomes larger.

5 Conclusions

This paper considers the parameter identification for
a class of nonlinear Wiener models in the stochas-
tic framework and takes the randomly missing out-

Table 1 Parameter estimates after 30 iterations under different
missing rates

Para No
missing

12.5 (%)
missing

25 (%)
missing

50 (%)
missing

a1 0.5817 0.5801 0.5849 0.5901

a2 0.4175 0.4166 0.4180 0.4233

b1 −0.1780 −0.1783 −0.1792 −0.1809

b2 0.4390 0.4373 0.4412 0.4393

r2 −0.4517 −0.4548 −0.4474 −0.4372

r3 0.2437 0.2594 0.2289 0.2121

σ 2 0.0010 0.0010 0.0010 0.0010

RE 0.0104 0.0128 0.0233 0.0435

put problem into account. To deal with the missing
outputs, the EM algorithm is employed to estimate
the parameters and the noise variance simultaneously
and the unknown noise-free outputs are estimated by
using the auxiliary model identification idea [36,37].
Thereafter, the identification problem is formulated
under the framework of the EM algorithm. A numerical
example is provided to demonstrate the effective-
ness of the proposed algorithm. The proposed algo-
rithm can be extended to study identification prob-
lem of other linear systems [38–42] and nonlinear
systems [43–45].

Appendix: Detailed derivation of Eqs.(18) and (19)

The Q-function in Eq. (17) can be further written as

Q(Θ|Θs) =
mα∑

t=m1

{
−1

2
log(2πσ 2) − 1

2σ 2 ((σ s)2

+(ϕT (t)ϑ − ϕT (t)ϑ s)T (ϕT (t)ϑ − ϕT (t)ϑ s)

}

+
oβ∑

t=o1

{
−1

2
log(2πσ 2) − 1

2σ 2 (yt − ϕT (t)ϑ)T

(yt − ϕT (t)ϑ)

}
+ log C. (26)

Taking the gradient of Q(Θ|Θs) with respect to ϑ and
setting it to zero,
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∂ Q(Θ|Θs)

∂ϑ
=

mα∑

t=m1

{
− 1

2σ 2 (2ϕ(t)ϕT (t)ϑ

−2ϕ(t)ϕT (t)ϑ s)

}

+
oβ∑

t=o1

{
− 1

2σ 2 (2ϕ(t)ϕT (t)ϑ

−2ϕ(t)yt )

}

= 0 (27)

Through keeping the terms that not related with ϑ

at the right side, Eq. (27) can be written as

mα∑

t=m1

ϕ(t)ϕT (t)ϑ +
oβ∑

t=o1

ϕ(t)ϕT (t)ϑ

=
mα∑

t=m1

ϕ(t)ϕT (t)ϑ s +
oβ∑

t=o1

ϕt yt (28)

Then, the new estimate of parameter ϑ can be obtained
as:

ϑ s+1 =
∑mα

t=m1
ϕ(t)ϕT (t)ϑ s + ∑oβ

t=o1
ϕ(t)y(t)

∑N
t=1 ϕ(t)ϕT (t)

(29)

Taking the gradient of Q(Θ|Θs) with respect to σ 2 and
setting it to zero,

∂ Q(Θ|Θs)

∂σ 2 =
mα∑

t=m1

{
− 1

2σ 2 + 1

2σ 4

[
(σ s)2

+(ϕT (t)ϑ − ϕT (t)ϑ s)2
]}

+
oβ∑

t=o1

{
− 1

2σ 2 + 1

2σ 4 (yt − ϕT (t)ϑ)2
}

= 0. (30)

Through keeping the two terms including σ 2 at the left
side, the Eq. (30) can be written as:

mα∑

t=m1

σ 2 +
oβ∑

t=o1

σ 2 = N · σ 2

=
mα∑

t=m1

{
(σ s)2 + (ϕT (t)ϑ − ϕT (t)ϑ s)2

}

+
oβ∑

t=o1

(yt − ϕT (t)ϑ)2 (31)

Then, the estimation of parameter σ 2 can be obtained
as:

(σ 2)s+1 =
∑mα

t=m1
((σ s)2 + (ϕT (t)ϑ s+1 − ϕT (t)ϑ s)2) + ∑oβ

t=o1
(yt − ϕT (t)ϑ s+1)2

N
(32)
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