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Abstract In this paper, stochastic Hopf bifurcation
behavior of a stochastic lagged logistic system is inves-
tigated. Firstly, the stochastic lagged logistic system
with random parameter is approximately transformed
as its equivalent deterministic system by the orthogonal
polynomial approximation of discrete random function
in the Hilbert spaces. Then, according to the bifurca-
tion conditions of deterministic discrete system, Hopf
bifurcation is existent in the equivalent deterministic
system by mathematical analysis. Moreover, the direc-
tion and stability of its bifurcation is discussed by the
normal form and center manifold theory. Finally, we
verify the influence for the different random intensity
on bifurcation critical value by numerical simulations
and find that Hopf bifurcation phenomena under the
influence of random intensity happen to drift.
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1 Introduction

Changes of qualitative structures of the solutions in the
nature occur if a parameter passes through a critical
point means bifurcation. For any nonlinear dynamic
system, a bifurcation phenomenon may originate from
an equilibrium (fixed) point with a periodic oscil-
lation, or a limit circle, or a chaotic orbit. How-
ever, from the experimental or computational point
of perspective, many systems in daily life are illus-
trated by the discrete-time system which is more suit-
able for simulation. Certainly, the discrete-time analog
inherits the dynamic characteristics of the continuous-
time model and the dynamic of discrete-time systems
can produce more patterns of bifurcation than those
observed in continuous-time models. Meanwhile, var-
ious kinds of bifurcation in the discrete-time nonlinear
systems such as pitchfork bifurcation [1], flip bifurca-
tion [2], period-doubling bifurcation [3], saddle-node
bifurcation [4] and Hopf bifurcation [5,6] have been
researched comprehensively and systematically in the-
ory. Among them, the Hopf bifurcation that gives rise
to the closed invariant curves which present some more
interesting complex oscillatory behaviors in biological
process, social economic, chemical reaction and engi-
neering systems has received increasing interest due
to their promising potential application [7–11]. Hence,
study on the dynamical properties of periodic solution
arising from Hopf bifurcation is tremendously and vig-
orously done from mathematical and applied point.
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270 S. Ma et al.

Over the years, the logistic map that was first intro-
duced by the population ecologists in the study of pop-
ulation growth of a single species with generations
[12] has long served as perhaps the simplest nonlin-
ear discrete-time model, and it has been central in the
development and understanding of nonlinear dynamic
behaviors. Therefore, the investigation of logistic equa-
tion (map) has long been [13–18] and will continue in
many field.

However, any mathematical systems are always
inevitably affected by some random disturbances such
as uncertainty of system parameter, perturbation of
external noise and stochastic input. When we inves-
tigate the actual population growth and biological
process, the incomplete observations including natural
disasters, weather changes and technology factors and
so forth are unavoidably arousing uncertainties of mod-
els. In particular, phenomena that appear in stochas-
tic system at critical value due to the effects of ran-
dom physical parameters are always unforeseen in the
deterministic system and interfere with daily produc-
tion and life seriously. Therefore, the stochastic sys-
tem can properly and accurately represent the original
systems and the analysis about it will possess more
practical significance. Some important results about
stochastic logistic map have obtained. For instance,
the bifurcation behavior of the externally perturbed
logistic map and the noise influence on the bifurcation
are analyzed in 1997 [19]. Linz and Lcke [20] have
investigated the statistical dynamics of the response of
the logistic map toward additively and multiplicatively
coupled fluctuating forces for control parameters in the
range of the first transcritical and pitchfork bifurcation.
In 2007, randomness as fluctuations and uncertainties
due to noise and its influence in the nonlinear dynam-
ical behavior of coupled logistic maps are all consid-
ered and studied by Marcelo A. Savi [21]. Yang and
Gao [22] have researched the behaviors of a logistic
map driven by white noise and found that its nondi-
vergent interval decreases with increasing white noise.
The influence of additive colored noise near the onset
of chaos has been studied for one-dimensional logis-
tic maps by Gutierrez and Iglesias [23]. The effects of
noise on each periodic orbit of three different period
sequences are investigated for the logistic map by Li
[24]. From the previous works about stochastic logis-
tic model, those stochastic systems are all disturbed by
the external environmental perturbation. The compli-
cated environment leads to uncertainty in the internal

coefficient. This kind of uncertainty is expressed by a
random parameter. With the internal random parame-
ters, we can explore the influence of the change of the
internal conditions on dynamical behavior in system.
So we can avoid some disaster or accident due to inter-
nal questions of the systems. Therefore, the dynamic
analysis of stochastic discrete-time system with ran-
dom internal parameter is considered a little attract our
interest.

Motivated by the above discussion, taking the lagged
logistic system which has a role of cohesion between
one-dimensional and high-dimensional logistic model
as example in this paper, using the statistical character-
istic of random variable, we build a stochastic lagged
logistic system with random internal parameter sub-
jected to the given statistics, and the influence of ran-
dom parameter in the stochastic lagged logistic sys-
tem on the Hopf bifurcation is investigated by orthog-
onal polynomial approximation. The organization of
this paper is as follows: Transforming the stochastic
lagged logistic system with random parameter into its
equivalent deterministic one by orthogonal polynomial
approximation is obtained in Sect. 2. Section 3 analyzes
the Hopf bifurcation of the stochastic lagged logistic
system and stability about it. The numerical simulations
and analysis of Hopf bifurcation about the stochastic
lagged logistic system are shown in Sect. 4. Finally,
conclusions are drawn in Sect. 5.

2 Stochastic lagged logistic map with random
parameter and its orthogonal polynomial
approximation

Considering a two-dimensional deterministic lagged
logistic system [25]

z1(n + 1) = z2(n),

z2(n + 1) = μ̄z2(n)(1 − z1(n)),

(μ̄ ∈ (0, 2.28), z1, z2 ∈ (0, 1)). (1)

Obviously, within the scope of system variables, there
has only one fixed point in this lagged logistic sys-
tem S(1−1/μ̄, 1−1/μ̄). For facilitating Hopf bifurca-
tion analysis, applying the coordinate transformation,
the fixed point is converted to the origin O(0, 0); then,
we have the following logistic system

x(n + 1) = y(n),

y(n + 1) = y(n) − (μ̄ − 1)x(n) − μ̄x(n)y(n), (2)

123



Stochastic Hopf bifurcation analysis 271

where μ̄ is a random parameter which is described
as

μ̄ = μ + δk, (3)

where μ is the deterministic parameter, δ is regarded as
strength of random disturbance, k is a random variable
defined on nonnegative set integer which obeys density
function pk . So it follows from the orthogonal polyno-
mial approximation that the response of lagged logistic
system with random parameter can be expressed by the
following Fourier series

x(n, k)E =
M∑

i=0

xi (n)Pi (k),

y(n, k) =
M∑

i=0

yi (n)Pi (k), (4)

where xi (n) = ∑N
k=0 pk x(n, k)Pi (k), yi (n) = ∑N

k=0
pk y(n, k)Pi (k), Pi (k) is the i th standard orthogonal
polynomial, M represents the largest order of the poly-
nomial we retain.

Substituting (4) and (3) into (2), we have
(

M∑

i=0

xi (n + 1)Pi (k)

)
=

M∑

i=0

yi (n)Pi (k),

(
M∑

i=0

yi (n + 1)Pi (k)

)
=

M∑

i=0

yi (n)Pi (k)

− (μ + δk − 1)

M∑

i=0

xi (n)Pi (k)

− (μ + δk)

(
M∑

i=0

xi (n)Pi (k)

) (
M∑

i=0

yi (n)Pi (k)

)
.

(5)

With the help of cycle recurrence formula of orthog-
onal polynomial [26]

k Pi (k) = αi Pi+1(k) + βn Pi (k) + γi Pi−1(k), (6)

the stochastic term and the nonlinearity term in the right
second equation of system (5) are written as, respec-
tively

δk
M∑

i=0

xi (n)Pi (k)

= δ

M∑

i=0

xi (n)[αi Pi+1(k) + βn Pi (k) + γi Pi−1(k)]

= δ

[
M∑

i=0

Pi (k)(γi+1xi+1(n) + βi xi (n)

+αi−1xi−1(n)) − αi xi (n)Pi+1(k)
]
, (7)

and

δk

(
M∑

i=0

xi (n)Pi (k)

)(
M∑

i=0

yi (n)Pi (k)

)

= δk
M×2∑

i=0

Si (n)(Pi (k)), (8)

where Si (n) which stand for the linear combination
of related single polynomials in nonlinearity term are
calculated by computer algebraic.

According to Eqs. (7), (8) and (5), the system can
be further reduced to
(

M∑

i=0

xi (n + 1)Pi (k)

)
=

M∑

i=0

yi (n)Pi (k),

(
M∑

i=0

yi (n + 1)Pi (k)

)
=

M∑

i=0

yi (n)Pi (k)

+ (1 − μ)

M∑

i=0

xi (n)Pi (k)

−μ

2M∑

i=0

Si (n)Pi (k) − δ

M∑

i=0

[
Pi (k)(γi+1xi+1(n)

+βi xi (n) + αi−1xi−1(n)) − αi xi (n)Pi+1(k)
]

− δ

2M∑

i=0

[
Pi (k)(γi+1Si+1(n) + βi Si (n)

+αi−1Si−1(n)) − αi Si (n)Pi+1(k)
]
, (9)

where x−1(n), xM+1, S−1(n), SM+1(n) are zero by the
principle of approximation.

Multiplying both sides of system (9) by Pi (k), i =
0, 1, . . . , M in sequence and taking expectation with
respect to k, according to orthogonal polynomial
approximation of discrete random function in the
Hilbert spaces and the orthogonality of standard orthog-
onal polynomials, we can finally get the equivalent
deterministic logistic equation. When M → ∞,
the lagged logistic system with random parameter is
strictly equivalent to Eq. (9). In order to facilitate the
numerical analysis of this paper, we select M = 1 and
approximately obtain the equivalent deterministic sys-
tem of lagged logistic system with random parameter
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x0(n + 1) = y0(n),

y0(n + 1) = y0(n) + (1 − μ)x0(n) − μS0(n)

− δ(γ1x1(n) + β0x0(n)) − δ(γ1S1(n)

+β0S0(n)),

x1(n + 1) = y1(n),

y1(n + 1) = y1(n) + (1 − μ)x1(n) − μS1(n)

− δ(γ2x2(n) + β1x1(n) + α0x0(n))

− δ(γ2S2(n) + β1S1(n) + α0S0(n)).

(10)

Then, the approximate random response of original
stochastic logistic system can be expressed as

x(n, k) = x0(n)P0(k) + x1(n)P1(k),

y(n, k) = y0(n)P0(k) + y1(n)P1(k),

and the ensemble mean response of it (EMR) is calcu-
lated as

E[x(n, k)] = x0(n)E[P0(k)] + x1(n)E[P1(k)],
E[y(n, k)] = y0(n)E[P0(k)] + y1(n)E[P1(k)].

The strength of random disturbance of the parameter
resulting from the uncertainty is small in real model, so
in this paper, we suppose that the random intensity δ is
<0.1. Meanwhile, we take the initial conditions of sys-
tem (10) and deterministic system the same as follows,
namely

x0 = x0(0) = 0.2, y0 = y0(0) = 0.1,

x1(0) = y1(0) = 0.

So we take

x(0) = (0.2, 0)T , y(0) = (0.1, 0)T .

3 Hopf bifurcation analysis

The influence intensity of prey, environment and pol-
lution cannot be simply described as a kind of envi-
ronment noise. In this two-dimensional lagged logistic
system, the uncertainty can be express as the growth
coefficient. At the same time, we know that in this
paper, the internal random parameter is increased from
zero, and as the mean value and variance of the ran-
dom variable are larger, the nonuniformity of random
parameter measured by experiment or data is more
serious. So the Poisson distribution growth coefficient
is better to choose. In this paper, we choose the ran-
dom variable as Poisson distribution with probability

density function pk and the weight orthogonal poly-
nomial as standard Charlier polynomials. So the coef-
ficients αi , βi , γi are 1, i + ε, εi,, respectively [27],
where ε is standard deviation of random variable k and
the standard deviation ε is equal to 1 in this paper.

3.1 Existence of Hopf bifurcation

We firstly introduce the Hopf bifurcation conditions
[28–30] about the discrete-time system as follows:

(H1) Eigenvalue assignment. The Jacobian matrix
of the discrete system has a pair of complex
conjugate eigenvalues λ1(μ) and λ̄1(μ) with
|λ1(μc)| = 1 at μ = μc and the other eigenval-
ues λ j (μ), j = 3, 4, . . . n, with |λ j (μc)| < 1;

(H2) Transversality condition: d|λ1(μc)|/dμ �= 0;
(H3) Nonresonance condition λm

1 (μc) �= 1 or reso-
nance condition λm

1 (μc) = 1, m = 3, 4, . . ..

Let us assume that the solutions of deterministic
equivalent lagged logistic system undergo a Hopf bifur-
cation on some submanifold in parameter space corre-
sponding to a critical value μ = μc.

The Jacobian matrix of system (10) with Poisson
coefficient at fixed point (0, 0, 0, 0) is

A =

⎛

⎜⎜⎝

0 1 0 0
1 − μ − δ 1 −δ 0

0 0 0 1
−δ 0 1 − μ − 2δ 1

⎞

⎟⎟⎠ . (11)

Then, the characteristic polynomial of Jacobian matrix
A is

f (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4, (12)

where ai (i = 1, . . . , 4) are coefficients of Eq. (12),
which are shown as follows:

a1 = −2,

a2 = 3δ + 2μ − 1,

a3 = −2μ − 3δ + 2,

a4 = δ2 + 2μ − 3δ + μ2 + 3μδ + 1.

By the Mathematical software, all eigenvalues are

λ1,2 = 1

2
±

√
5 − 2

√
5δ − 6δ − 4μ

2
, (13)

λ3,4 = 1

2
±

√
5 + 2

√
5δ − 6δ − 4μ

2
. (14)
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Stochastic Hopf bifurcation analysis 273

If the system (10) occurs Hopf bifurcation, Eq. (12)
must exist a pair of conjugate complex roots, that is
to say the parameter μ must satisfy one of the below
conditions

μ >
5 − 2

√
5δ − 6δ

4
or μ >

5 + 2
√

5δ − 6δ

4
. (15)

So the eigenvalue’s modules are written as

|λ1| = |λ2| =
√

μ − 1 + 1

2

√
5δ + 3

2
δ, (16)

|λ3| = |λ4| =
√

μ − 1 − 1

2

√
5δ + 3

2
δ. (17)

Now, discussing when the eigenvalue’s module |λ1|
= |λ2| = 1 or |λ3| = |λ4| = 1, we can get the rela-
tions between the bifurcation parameter and the random
strength

μ1 = 2 − 1

2

√
5δ − 3

2
δ, μ2 = 2 + 1

2

√
5δ − 3

2
δ. (18)

Substituting all expressions of Eq. (18) into all eigen-
values (13)(14), respectively, for the random strength
δ > 0 and small, so there is only one equation μc =
μ1 = 2 − 1

2

√
5δ − 3

2δ which can satisfy eigenvalue’s
module is equal to 1. Then, the expression μ = μc is
substituted into Eq. (12); all eigenvalues are as follows

λ1 = 1

2
+

√
3

2
I, λ2 = 1

2
−

√
3

2
I (I 2 = −1),

λ3 = 1

2
+

√
−3 + 4

√
5δ

2
, λ4 = 1

2
−

√
−3 + 4

√
5δ

2
.

Apparently, the Hopf bifurcation condition (H1)
about the system (10) is satisfied. Meantime, the deriv-
ative of module λ1 at μ = μc is written as

d|λ1(μc)|/dμ = 1√
−4 + 2

√
5δ + 6δ + 4μ

|μ=μc

= 1

2
�= 0, (19)

and

λm
1 (μc) =

(
1

2
+

√
3

2
I

)6

= 1. (20)

It obviously follows that when m = 6, the third con-
dition (H3): Resonance condition λm

1 (μc) = 1 is sat-
isfied. So all the conditions for the existence of Hopf
bifurcation are all set up as μ = μc. The above analysis
can be summarized as:

Theorem 1 (Existence of Hopf bifurcation) The equiv-
alent deterministic lagged logistic system occurs Hopf
bifurcation at the fixed point (0, 0, 0, 0), when the sys-
tem parameter μ goes by the critical value μc =
2 − 1

2

√
5δ − 3

2δ.

3.2 Direction and stability of the Hopf bifurcation

In this section, we shall use the Kuznetsov’s normal
form method and center manifold theory [31] to inves-
tigate the direction and stability of Hopf bifurcation.

Since the fixed point of system (10) is the ori-
gin O(0, 0, 0, 0), the stochastic lagged logistic system
can be expressed as

Xn+1 = Fν(Xn) = AXn + N (Xn),

N (Xn) = 1

2
B(Xn, Xn) + 1

6
C(Xn, Xn, Xn)

+ O(X4
n), (21)

where A is Jacobian matrix of system (10) at origin
point. The multilinear functions B : R2 × R2 →
R2 and C : R3 × R3 → R3 are, respectively, defined
by

Bi (x, y) =
n∑

j,k=1

∂2 Xi (ξ)

∂ξ j∂ξk
|ξ=0x j yk, i = 1, 2,

Ci (x, y, z)=
n∑

j,k,l=1

∂3 Xi (ξ)

∂ξ j∂ξk, ∂ξl
|ξ=0x j yk zl , i=1, 2.

We know that N (Xn) of system (10) is described as

N (Xn) =

⎧
⎪⎪⎨

⎪⎪⎩

N1 = 0,

N2 = −μ̄S0(n) − δ(S0(n) + S1(n)),

N3 = 0,

N4 = −μ̄S1(n) − δ(S0(n) + 2S1(n)),

where Xn = (x0(n), y0(n), x1(n), y1(n))T . Therefore,
B(x, x) and C(x, x, x) for the system (10) are

Bi (ξ, η)=
4∑

j,k=0

∂2(−μ̄Si (n)−δ(Si (n)+(i +1)Si+1(n)))

∂ξ j∂ξk

|x=0ξ jηk, i = 0, 1, Ci (ξ, η, γ ) = 0, i = 0, 1. (22)

Meantime, according to the existence of Hopf bifur-
cation, the eigenvalues of matrix A are λ1,2(μc) =
1
2 ±

√
3

2 I = e±iθ0 , θ0 = π
3 . Let q ∈ Cn be a com-

plex eigenvector corresponding to λ1 and p ∈ Cn be an
adjoint eigenvector which satisfy the following prop-
erties
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Aq = eiθ0q, Aq̄ = e−iθ0 q̄,

AT p = e−iθ0 p, AT p̄ = eiθ0 p̄, (23)

where vector 〈p, q〉 = ∑n
1=1 p̄i qi = 1. The p, q ∈

Cn can be computed by Maple

q =
(

1,
1 + √

3I

2
,

1 + √
5

2
,
(1 + √

5)(1 + √
3I )

4

)T

,

p = 1√
15I

(
− (1 + √

3I )(
√

5 − 1)

4
,
−1 + √

5

2
,

− 1 + √
3I

2
, 1

)T

. (24)

And we also have

B(q, q) = (0,−(8 + 2
√

5) − (8
√

3 + 2
√

15

− √
15δ − √

3δ)I, 0,−(8 + 4
√

5) − (8
√

3

+ 4
√

15 − δ − √
3δ)I )T ,

B(q, q̄) = (0,−(8 + 2
√

5)

+ (8
√

3 + 2
√

15 − √
15δ − √

3δ)I,

0,−(8 + 4
√

5 − 2
√

5δ − 3) + (8
√

3 + 4
√

15

− δ − √
3δ)I )T ,

B(q̄, q̄) = (0,−(8 + 2
√

5) + (8
√

3 + 2
√

15

− √
15δ − √

3δ)I, 0,−(8 + 4
√

5) + (8
√

3

+ 4
√

15 − δ + √
3δ)I )T . (25)

So the direction coefficient of bifurcation of a closed
invariant curve can be calculated by

a(O) = Re

(
e−iθ0 g21

2

)

−Re

(
(1 − 2eiθ0)e−2iθ0

2(1 − eiθ0)
g20g11

)

− 1

2
|g11|2 − 1

4
g02|2, (26)

where

g20 = 〈p, B(q, q)〉 = 9
√

5

5
+ 7 −

√
5

5
δ

−
(

3
√

15

5
+ 7

√
3

3
+

√
15

15
δ

)
I,

g11 = 〈p, B(q, q̄)〉 = −9
√

5

5
− 7 + (

√
5 + 2)δ

−
(

3
√

15

5
+ 7

√
3

3
−

√
15

15
δ + 2

√
3

3
δ

)
I,

g02 = 〈p, B(q̄, q̄)〉 = −9
√

5

5
− 7 +

√
5

5
δ

−
(

3
√

15

5
+ 7

√
3

3
+

√
15

15
δ

)
I,

g21 =〈p, C(q, q, q̄)〉+2
〈
p, B(q, (E−A)−1 B(q, q̄))

〉

+〈p, B(q̄, (e2iθ E − A)−1 B(q, q̄)〉
+ e−iθ0(1 − 2eiθ0)

1 − eiθ0
〈p, B(q, q)〉 · 〈p, B(q, q̄)〉

− 2

1 − e−iθ0
|〈p, B(q, q̄)〉|2

− eiθ0

e3iθ0 − 1
|〈p, B(q̄, q̄)〉|2. (27)

Substituting Eqs. (24), (26) into (25), when ran-
dom intensity δ is varied from 0 to 0.05, the direction
coefficient of bifurcation a(O) < 0 is obtained. On
the basis of criterion about stability, when the bifur-
cation parameter μc = 2 − 1

2

√
5δ − 3

2δ and the ran-
dom perturbation intensity of system is a sufficiently
small positive real number, the stochastic lagged logis-
tic system occurs the supercritical bifurcation at fixed
point O(0, 0, 0, 0) that is to say the system has a stable
limit cycle around the fixed point.

4 Numerical simulations and numerical analysis

As the random perturbation intensity δ = 0.00, the sto-
chastic lagged logistic system (2) can be degenerated
to its original deterministic system. We have known
when bifurcation parameter μc = 2, the system (2)
undergoes a Hopf bifurcation at fixed point (0, 0). Fig-
ure 1 shows the bifurcation phenomenon about the sto-
chastic lagged logistic system when the random inten-
sity δ = 0.00, 0.005, 0.01, 0.05, respectively. By the
above theoretical analysis and numerical simulations,
the critical value of Hopf bifurcation about the stochas-
tic lagged logistic system is μc = 2 − 1

2

√
5δ − 3

2δ.

4.1 Hopf bifurcation of the stochastic lagged logistic
system

For the strength of random disturbance δ is very small,
if parameters μ = 1.995, δ = 0.001, the phase trajec-
tories and the time history diagrams of EMR of equiv-
alent deterministic system (10) gradually converge to
zero in Fig. 2a, b. We know that the stochastic lagged
logistic system does not occur Hopf bifurcation which
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Fig. 1 Bifurcation diagrams of deterministic and stochastic lagged logistic system

is illustrated by Fig. 2. Increasing the random intensity
to δ = 0.005, the phase trajectories and time history
diagrams of system (10) that converge a limit circle are
shown in Fig. 3.

Apparently in Fig. 3, the stochastic lagged logistic
system undergoes stochastic Hopf bifurcation. Mean-
time, when the random intensity δ is equal to 0.001,

0.005, respectively, the critical values of bifurcation
are 1.997381966, 1.98690983. However, the parame-
ter μ = 1.995 is between the two above critical values.
According to the above numerical analysis, we discover
that the critical value for Hopf bifurcation in the sto-
chastic lagged logistic system is varying from random
intensity.
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Fig. 2 Phase portrait (a) and time history diagram (b) for μ = 1.995, δ = 0.001
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Fig. 3 Phase portrait (a) and time history diagram (b) for μ = 1.995, δ = 0.005

4.2 The influence of random intensity on Hopf
bifurcation

When system parameter μ = 1.9, δ is chosen as
0.00, 0.001, 0.005, respectively, the phase trajectories
and time history diagrams of EMR converge to zero,
which are shown as Fig. 4. Figure 4b, d are local portrait
of Fig. 4a, c. As the bifurcation parameter is increasing
to μ = 2.005, the phase trajectories and time history
diagrams converge to their stable limit cycles which

are shown in Fig. 5. Figure 5b is the local portrait of
Fig. 5a. From Figs. 4, 5, we find that with the change
of bifurcation parameter, the phase trajectories of the
deterministic system accord with the phase trajectories
of stochastic lagged logistic system. The supercritical
bifurcation happens in both two systems.

Based on theoretical analysis and numerical simula-
tions, we have found that the stochastic lagged logistic
system also occurs the Hopf bifurcation with the varia-
tion of bifurcation parameter. Comparing to the deter-
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Fig. 4 Phase portrait (a, b) and time history diagram (c) for μ = 1.9

ministic system, random intensity obviously affects the
bifurcation critical value of its stochastic system, and
the bifurcation critical value decreases with the random
intensity, that is to say that the Hopf bifurcation point
is drifting.

5 Conclusion

The orthogonal polynomial approximation theory of
discrete random function is applied to investigate the
Hopf bifurcation of stochastic lagged logistic system.

We successfully reduce the lagged logistic system with
random parameter to its equivalent deterministic sys-
tem. Through the mathematical analysis, the normal
form method and center manifold theory, it is discov-
ered that the critical value of Hopf bifurcation in the
stochastic discrete system is influenced by the random
intensity and the direction and stability about it is not
changed as the random intensity is small. Theoreti-
cal results are verified by the numerical simulations.
Meanwhile, Hopf bifurcation point is drifting with the
changes in random intensity is discussed through the
numerical analysis.
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Fig. 5 Phase portrait (a, b) and time history diagram (c) for μ = 2.005
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