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Abstract This paper proposes a fuzzy fractional inte-
gral sliding mode control for synchronizing fractional-
order dynamical systems with mismatched fractional
orders. It is applied to synchronize the fractional-order
modified coupled dynamos chaotic systems. Synchro-
nization between two identical fractional order, differ-
ent fractional orders, integer order and fractional-order
modified coupled dynamos chaotic systems have been
demonstrated. For practical applications, these derived
synchronized fractional-order chaotic systems are uti-
lized to develop a novel cryptosystem for an image
encryption and decryption. Numerical simulations
are provided to verify the significance of theoretical
analysis.
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1 Introduction

Fractional calculus is an area of mathematics that han-
dles with derivatives and integrals of non integer orders.
It can be traced to the work of Leibniz and L’Hospital in
1695, which has almost the same long history as inte-
ger order calculus. In general, many real objects are
of fractional order, so fractional calculus opens broad
ways to describe a real object more accurately and more
adequately than the classical integer calculus method.
Recently, fractional calculus have been dominated by
modern examples of applications which involve inte-
gral equations, ordinary and partial differential equa-
tions in physics, fluid mechanics, fractals, mathemati-
cal biology, electrochemistry, automatic control, robot-
ics, secure communication or signal processing. There-
fore, fractional calculus has become an exciting new
mathematical method of solution of various problems
in applied mathematics, science and engineering.

Synchronization is the dynamical process by which
two or more oscillators adjust their rhythms due to a
weak interaction [1]. In 1990, a method to synchro-
nize two identical chaotic systems with different initial
conditions has been introduced by Pecora and Carroll
[2]. Synchronization of fractional-order chaotic sys-
tems is increasing interest among researchers in the past
few years. Also, it has been growing continuously due
to its potential applications in cryptography or secure
communication, signal and control processing [3–8].
Latterly, several techniques and methods have been
improved and applied for chaos control and synchro-
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nization. Two adaptive synchronization schemes have
been analyzed for the fractional-order memristor-based
Chua’s circuit in [9]. Robust fractional order sliding
mode control technique [10] has been applied for syn-
chronization of two fractional-order chaotic systems
with external disturbance. An active sliding mode con-
troller has been proposed to synchronize two differ-
ent fractional-order systems in [11]. Synchronization
between two classes of fractional-order new hyper-
chaotic system and Chen system has been investi-
gated in [12] via new nonlinear control technique. In
[13], chaos synchronization of variable order fractional
financial system based on active control method has
been studied. A new criterion of synchronization of
fractional-order chaotic systems based on the stability
theory of impulsive fractional-order systems has been
proposed in [14]. Phase synchronization has been stud-
ied for synchronizing fractional-order chaotic systems
in [15] by using an active nonlinear feedback control
technique, and so on. Especially, the fractional-order
controller plays an important role in controlling robots,
robotic manipulator and tip position of a lightweight
flexible manipulator, for more details see [16–19] and
references therein.

Nowadays, the sliding mode control (SMC) has
been proven to be an effective robust control strat-
egy and provides high faithfulness performance in dif-
ferent control problems for nonlinear systems. The
principal of SMC is to apply a discontinuous con-
trol to force the system state trajectories to some pre-
defined sliding surfaces. The main advantages of the
SMC are the fast response, low sensitivity to exter-
nal disturbances, robustness to the plant uncertain-
ties, and easy realization. Due to these advantages, the
SMC strategy has been successfully applied to con-
trol and synchronize the fractional order dynamical
systems, see [10,20–30]. However, one major draw-
back of the conventional SMC approach is the high
frequency of control action called chattering. In 1992,
a fuzzy sliding mode approach has been designed by
Palm [31] to avoiding the chattering in the SMC. This
fuzzy sliding mode design can contribute to stable
closed-loop system by avoiding the chattering prob-
lem in the SMC. Therefore, the stability is ensured
for the systems with the combination of SMC and
fuzzy logic control. Further, fuzzy fractional-order slid-
ing mode controller for nonlinear systems has been
investigated in [32]. Chaos synchronization between

two different uncertain fractional-order chaotic sys-
tems has been studied based on adaptive fuzzy slid-
ing mode control in [33]. In [34], integer order and
fractional-order chaotic systems have been synchro-
nized by using fuzzy sliding mode control. Fuzzy logic
controller has been addressed for controlling fractional-
order Liu system in [35]. An adaptive fuzzy sliding
mode strategy has been developed for the generalized
projective synchronization of fractional-order chaotic
system in [36]. Recently, fuzzy fractional differen-
tial equation has attracted increasing attention among
researchers. For instance, the existence and uniqueness
of the solution for a class of fractional differential equa-
tion with fuzzy initial value have been studied in [37].
A fuzzy fractional integral equation has been inves-
tigated in [38]. Fuzzy fractional Volterra–Fredholm
integro-differential equations has been introduced in
[39]. The exact and approximate solutions have been
constructed for fuzzy fractional differential equations
in [40].

In this paper, a fuzzy fractional integral sliding mode
(FFISM) control is designed for synchronizing mis-
matched fractional-order dynamical systems. Different
possibilities of fractional orders of the drive system
and the response system are analyzed and achieved
the synchronization between these systems by using
the proposed control. It is shown that the proposed
FFISM control is the generalization of existing fuzzy
sliding mode control. The validity and the performance
of the proposed FFISM control are verified by analyti-
cally and numerically. For real-life applications, a new
cryptosystem is formulated for an image encryption
and decryption based on synchronized fractional-order
modified coupled dynamos chaotic systems. The exper-
imental results are provided to validate the efficiency
and security of the proposed cryptosystem. Finally, we
conclude that the proposed cryptosystem is more secure
than existing cryptosystem according to the experimen-
tal results.

The paper is organized as follows: In Sect. 2, some
basic definitions, properties and theorems of fractional
calculus are given. The FFISM control law is designed
for the fractional-order dynamical system in Sect. 3.
Theoretical and practical applications of the proposed
FFISM control are presented in Sects. 4 and 5, respec-
tively. Numerical simulations are given to demonstrate
the proposed theory. The conclusions are finally drawn
in Sect. 6.
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2 Preliminaries for fractional calculus

In this section, basic definition of fractional derivative,
important theorems and properties of the operators of
fractional calculus will be presented.

The fractional derivatives have many nonequivalent
definitions. One of the commonly used definition is the
Caputo fractional derivative [41], which is defined as
follows:

Definition 1 The α-order fractional derivative of func-
tion f (t) with respect to t is defined by

Dα f (t) = 1

Γ (n − α)

∫ t

a
(t − τ)−α+n−1 f (n)(τ )dτ,

(1)

where n = [α] + 1, [α] is the integer part of α, Γ (·)
is the gamma function, and Dα is called the α-order
Caputo differential operator. Especially Dα0 = 0.

The fractional-order Caputo differential operator
also satisfies the following general properties of
fractional-order derivative.

Property 1 The additive index law

Dα Dβ x(t) = Dβ Dαx(t) = Dα+β x(t) = Dβ+αx(t).

(2)

Property 2 The Caputo differential operator is a lin-
ear operator

Dα(ux1(t) + vx2(t)) = u Dαx1(t) + vDαx2(t), (3)

where u, v are real constants.

Property 3 The Caputo fractional-order nonlinear
system Dαx(t) = f (x(t)), satisfies Lipschitz condi-
tion with respect to x. That is

‖ f (x1(t)) − f (x2(t))‖ ≤ l‖x1(t) − x2(t)‖, (4)

where l is a positive constant. Without loss of generality,
we assume that f (x) satisfies f (x) = 0 at x = 0. Then,

‖ f (x1(t))‖ ≤ l‖x1(t)‖
That is,

‖Dαx1(t)‖ ≤ l‖x1(t)‖
Theorem 1 [42] Consider the following fractional-
order system

Dαx(t) = Ax, x(0) = x0, (5)

where 0 < α ≤ 1, x ∈ R
n and A ∈ R

n×n with
fractional-order α. It is asymptotically stable if and
only if

|arg(eig(A))| >
απ

2
, (6)

In this case, the components of the state decay to
0 like t−α .

Theorem 2 [42] Consider a system given by the fol-
lowing linear state-space form with finite inner dimen-
sion n:

Dαx(t) = Ax + Bu,

y = Cx, x(0) = x0
(7)

where 0 < α ≤ 1, x ∈ R
n is the state, y ∈ R

p

is the observation, and u is the control. Assume that,
the triplet (A, B, C) is minimal and then the system
(7) is bounded input bounded-output if and only if
|arg(eig(A))| > απ

2 .

3 Design of fuzzy fractional integral sliding mode
control

In this section, a new FFISM control will be designed
for controlling fractional-order dynamical system. Fur-
ther, the necessary condition will be derived to achieve
the synchronization between two fractional-order
dynamical systems.

3.1 System description

Consider the following fractional-order dynamical sys-
tem as a drive system

Dα X (t) = AX + F(X), (8)

and the corresponding response system is described by

DβY (t) = BY + G(Y ) + U (X, Y ), (9)

where α, β are fractional orders of the states of the sys-
tems (8) and (9), respectively, such that 0 < α, β ≤ 1.
X, Y ∈ R

n are the state variables, A, B ∈ R
n×n are

the coefficient of the linear parts, and F, G are nonlin-
ear parts such that F, G : R

n → R
n of the systems

(8) and (9), respectively. U (X, Y ) is the control input
to be determined later. It can be added to the response
system (9), to realize the synchronization between the
systems (8) and (9).
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Define the error variable

E = Y − X. (10)

The ultimate aim is to construct a suitable FFISM
control such that

lim
t→∞ ‖E(t)‖ = lim

t→∞ ‖Y (t) − X (t)‖ = 0. (11)

If (11) is satisfied, then the synchronization between
the drive system (8) and the response (9) will be
achieved and realized.

3.2 Control design

The synchronization error E = Y −X as defined in (10)
between the drive system (8) and the response system
(9) of the fractional-order dynamical systems involve
the nonlinear parts F(X) and G(Y ). To overcome this
situation, we will construct the control input U (X, Y )

to remove the nonlinear parts from the error system. At
this point of view, U (X, Y ) can be defined as follows.

Define the control input,

U (X, Y ) = Dβ X − G(Y ) − B X + u(t), (12)

where u ∈ R
n×1 is a new supportive control input to

be evaluated later.
Substitute (12) into (9), one can obtain that

DβY (t) = BY + G(Y ) + Dβ X − G(Y )

−B X + u(t)

= B(Y − X) + Dβ X + u(t)

DβY (t) − Dβ X (t) = B(Y − X) + u(t) (13)

Since by Property 2, (13) becomes

Dβ(Y (t) − X (t)) = B(Y − X) + u(t)

Dβ E(t) = B E + u(t) (14)

3.3 Formation of fuzzy integral sliding mode control

Two steps are needed to design a sliding mode con-
trol. In the first step, we construct a sliding surface that
represents the desired system dynamics. In the second
step, we develop a switching control law such that the
sliding mode exist at every point in the sliding surface,
and any states outside the surface are driven to reach
the surface swiftly.

A fractional-order integral sliding surface is chosen
as

s(t) = C Dβ−1 E(t) − D−1[(A + M)E(t)]
= C Dβ−1 E(t) −

∫ t

0
(A + M)E(τ )dτ, (15)

where C and M are parameter matrices and whose
entries are in the real line.

When the system operates in the sliding mode, the
sliding surface s and its derivative ṡ must satisfy the
following condition

s(t) = ṡ(t) = 0.

Differentiating (15) and using (14) one can have

ṡ(t) = d

dt
s(t)

= d

dt

[
C Dβ−1 E(t) −

∫ t

0
(A + M)E(τ )dτ

]

= C Dβ E(t) − d

dt

∫ t

0
(A + M)E(τ )dτ

= C Dβ E(t) − (A + M)E(t)

= C[B E + u(t)] − (A + M)E . (16)

Since ṡ(t) = 0, one can obtain that

C[B E + u(t)] = (A + M)E .

According to the sliding mode control theory, the
equivalent control law is calculated as

ueq(t) = [C−1(A + M) − B]E . (17)

To satisfy the sliding mode condition, the discontin-
uous reaching law should be selected as

ṡ(t) = −K .F F I SM

(
s

sε

)
, (18)

where K ∈ R
n×1 and sε are positive constants. Here,

s
sε

is an input linguistic, and F F I SM(•) denotes the
fuzzy features of the decision strategy at •. The mem-
bership functions of input linguistic s

sε
and the output

F F I SM(•) are decomposed with decolorized seven
fuzzy segments, which are represented by Negative Big
(NB), Negative Medium (NM), Negative Small (NS),
Zero (ZE), Positive Small (PS), Positive Medium (PM)
and Positive Big (PB). The fuzzy logic control rules of
F F I SM(•) are defined as follows:

R1 : If s
sε

is NB, then F F I SM(•) is NB.

R2 : If s
sε

is NM, then F F I SM(•) is NM.

R3 : If s
sε

is NS, then F F I SM(•) is NS.
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R4 : If s
sε

is ZE, then F F I SM(•) is ZE.

R5 : If s
sε

is PS, then F F I SM(•) is PS.

R6 : If s
sε

is PM, then F F I SM(•) is PM.

R7 : If s
sε

is PB, then F F I SM(•) is PB.

By a weighted average defuzzification method, the
crisp of F F I SM(•) is evaluated as

F F I SM(•) =
∑7

i=1 μRi u Ri∑7
i=1 u Ri

, (19)

where μRi is the premise membership function value
of the i th rule, and u Ri is the control value in the i th
rule. The membership function of input linguistic s

sε
is shown in Fig. 1, and the membership function of
F F I SM(•) is depicted in Fig. 2.

Since ṡ(t) = 0, we have

ṡ(t) = −K .F F I SM

(
s

sε

)
= 0.

According to sliding mode control theory, the
switching control law is calculated as

usw(t) = −C−1 K .F F I SM

(
s

sε

)
. (20)

Now, the new supportive input control u(t) can be
defined as

u(t) = ueq(t) + usw(t). (21)

Substitute (21) into (12), the total control input is
obtained as

U (X, Y )= Dβ X −G(Y )−B X +
(

C−1(A+M)−B
)

E

−C−1 K .F F I SM

(
s

sε

)
. (22)

Thus, the fractional-order error dynamical system
(14) can be written as

Dβ E(t) = B E +
(

C−1(A + M) − B
)

E

−C−1 K .F F I SM

(
s

sε

)

= C−1
[
(A + M)E − K .F F I SM

(
s

sε

)]
.

(23)

Theorem 3 On the sliding surface, the fractional-
order error dynamical system (23) is a linear fractional-
order dynamical system with bounded input −C−1 K .

F F I SM
(

s
sε

)
. Also, the fractional-order error dynam-

ical system (23) is asymptotically stable.

Proof Consider the fractional-order error dynamical
system (23) and note that, the values of input linguistic
s
sε

and their corresponding output values F F I SM(•)

are defined in [−1, 1], see Figs. 1 and 2. Thus, the

function F F I SM
(

s
sε

)
is bounded. Since any con-

stant multiple of a bounded function is bounded, then

−C−1 K .F F I SM
(

s
sε

)
is also bounded.

In (23), A is a coefficient matrix of linear parts of the
fractional-order system (8), and C and M are parameter
matrices whose entries are in the real line. Hence, the
fractional order error dynamical system (23) has no
nonlinear terms.

According to Theorem 2 in the sliding surface,
the fractional-order error system (23) is a linear frac-
tional order system with bounded input −C−1 K .

F F I SM
(

s
sε

)
.

Choose the appropriate values of the matrices C and
M such that |arg(eig(C−1(A + M)))| >

βπ
2 , then the

fractional order error dynamical system (23) is asymp-
totically stable by Theorem 1.

Theorem 4 Consider the proposed control input (22).
If K > 0 and sε > 0, then the state trajectories of
the fractional-order error dynamical system (23) will
converge to the sliding surface s = 0. That is, the syn-
chronization between the fractional order dynamical
systems (8) and (9) is globally asymptotically stable.

Proof Choose a Lyapunov candidate function as

V = s2. (24)

The time derivative of (24) is given by

V̇ = 2sṡ

= 2s [C(B E + u(t)) − (A + M)E]

= 2s
[
C(B E + ueq(t) + usw(t)) − (A + M)E

]
= 2s

[
C

(
B E + C−1(A + M)E − B E

−C−1 K .F F I SM

(
s

sε

))
− (A + M)E

]

= 2s

[
−K .F F I SM

(
s

sε

)]

= −2s.K .F F I SM

(
s

sε

)
(25)

Thus, outside the boundary layer (that is, |s| > sε),
we have

V̇ = −2K .s.F F I SM(s)

= −2K .|s| < 0. (26)
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Fig. 2 Membership function of F F I SM(•)

Since K > 0 and |s(0)| > sε , then |s| will strictly
be decreased until it reaches the set |s| ≤ sε in a finite
time and remains inside thereafter.

On the other hand, inside the boundary layer (that
is, |s| ≤ sε), we have

V̇ = −2K .s.F F I SM

(
s

sε

)
= −2K .

|s|
sε

< 0. (27)

Thus, the Lyapunov candidate function V is posi-
tive definite and its derivative V̇ is negative definite. By

Lyapunov stability theory, inside the boundary layer the
synchronization between the fractional-order dynami-
cal systems (8) and (9) is globally asymptotically sta-
ble.

Remark 1 Apart from the existing fuzzy sliding mode
control for fractional systems in [33–36], the proposed
FFISM control is fully suitable for synchronizing two
identical and different fractional-order dynamical sys-
tems. Also, it is worthy for synchronizing integer order
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Fig. 3 Different portraits of the system (28) when α = 0.87 for μ = 2 and γ = 1

and fractional-order dynamical systems. Therefore, the
proposed FFISM control is the generalization of the
existing fuzzy sliding mode control presented in [33–
36]. It will be easily visualized in the following section.

4 Theoretical application of the proposed FFISM
control

In this section, the proposed FFISM control will
be applied to synchronize two identical fractional
order, two different fractional order, integer order and
fractional-order modified coupled dynamos chaotic
systems.

Consider the fractional-order modified coupled
dynamos system [43], which is described by

Dαx1(t) = −μx1 + x2(x3 + γ ),

Dαx2(t) = −μx2 + x1(x3 − γ ),

Dαx3(t) = x3 − x1x2,

(28)

where 0 < α ≤ 1, Dα is the α-order differential
operator in the sense of Caputo [41]. Here, X =
(x1, x2, x3)

T ∈ R
3 is the state variable, and μ and

γ are the parameters of fractional-order system (28).
The system (28) exhibits chaos when the fractional-
order α ≥ 0.87 for the parameters μ = 2 and γ = 1,
for more details see [43]. The chaotic attractor corre-
sponding to the system (28) when α = 0.87 is depicted
in Fig. 3.

Consider the fractional-order modified dynamos
chaotic system (28) as the drive system and the follow-
ing fractional-order modified dynamos chaotic system
with control input as the response system.

Dβ y1(t) = −μy1 + y2(y3 + γ ) + U1,

Dβ y2(t) = −μy2 + y1(y3 − γ ) + U2,

Dβ y3(t) = y3 − y1 y2 + U3,

(29)

where 0 < β ≤ 1, Dβ is the β-order differ-
ential operator in the sense of Caputo [41]. Here,
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Y = (y1, y2, y3)
T ∈ R

3 is the state variable, U =
(U1, U2, U3)

T and E = Y − X = (e1, e2, e3)
T .

Assume that the fractional orders α, β ≥ 0.87,
the parameters μ = 2, γ = 1 and the initial condi-
tions of the drive system (28) and the response sys-
tem (29) are (x1(0), x2(0), x3(0)) = (1, 2,−3) and
(y1(0), y2(0), y3(0)) = (−1,−2, 0), respectively.

From (28) and (29),

A = B =
⎛
⎝−μ γ 0

−γ −μ 0
0 0 1

⎞
⎠ , F(X) =

⎛
⎝ x2x3

x1x3

−x1x2

⎞
⎠ ,

G(Y ) =
⎛
⎝ y2 y3

y1 y3

−y1 y2

⎞
⎠ .

Now, we fix the constants K = (K1, K2, K3)
T =

(5, 3, 4)T and sε = 0.05. The parameter matrices C
and M are selected as

C =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , M =

⎛
⎝μ − c1 −γ 0

γ μ − c2 0
0 0 −(c3 + 1)

⎞
⎠ .

where ci > 0 for i = 1, 2, 3.

By (22), the total control input can be written as
⎛
⎝U1

U2

U3

⎞
⎠ = Dβ

⎛
⎝ x1

x2

x3

⎞
⎠ −

⎛
⎝ y2 y3

y1 y3

−y1 y2

⎞
⎠ −

⎛
⎝−μ γ 0

−γ −μ 0
0 0 1

⎞
⎠

⎛
⎝ y1

y2

y3

⎞
⎠ +

⎛
⎝−c1 0 0

0 −c2 0
0 0 −c3

⎞
⎠

⎛
⎝ y1 − x1

y2 − x2

y3 − x3

⎞
⎠

−

⎛
⎜⎜⎜⎝

K1.F F I SM
(

s1
sε

)

K2.F F I SM
(

s2
sε

)

K3.F F I SM
(

s3
sε

)

⎞
⎟⎟⎟⎠ (30)

According to (23), the fractional-order error dynam-
ical system can be written as

Dβ

⎛
⎝ e1

e2

e3

⎞
⎠ (t) = C−1(A + M)

⎛
⎝ e1

e2

e3

⎞
⎠

− C−1

⎛
⎜⎜⎜⎝

K1.F F I SM
(

s1
sε

)

K2.F F I SM
(

s2
sε

)

K3.F F I SM
(

s3
sε

)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

− c1 0 0

0 −c2 0

0 0 −c3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

e1

e2

e3

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝

K1.F F I SM
(

s1
sε

)

K2.F F I SM
(

s2
sε

)

K3.F F I SM
(

s3
sε

)

⎞
⎟⎟⎟⎟⎟⎠

. (31)

The eigenvalues of the matrix C−1(A+M) are λ1 =
−c1, λ2 = −c2 and λ3 = −c3. Hence, |arg(λi )| >

βπ
2

for every i = 1, 2, 3. By Theorem 3, the fractional-
order error dynamical system (31) is asymptotically
stable. According to Theorem 4, the state trajectories
of the fractional-order error dynamical system (31) are
converging to the sliding surface s = 0. Hence, the
synchronization between the systems (28) and (29) is
achieved for every fractional-order α, β ≥ 0.87.

4.1 Numerical simulations

In this subsection, the synchronization between the sys-
tems (28) and (29) will be numerically demonstrated
with different possibilities of fractional orders α and β.
Assume that the values c1, c2 and c3 are 15, 10 and 10,
respectively.

Case (i): Identical fractional orders (α = β and α �=
1 �= β).

If α = β = 0.97, then the projection of the synchro-
nized attractors of the drive system (28) and response
system (29) are depicted in Fig. 4. Further, the time
response between the states of (28) and (29) and their
synchronization errors are depicted in Fig. 5. Hence,
the synchronization between two identical fractional-
order systems is realized.
Case (ii): Two different fractional orders (α �= β �= 1).
If α = 0.91 and β = 0.97, then the projection of the
attractors between the synchronized systems (28) and
(29) are depicted in Fig. 6. The time response between
their states and synchronization errors are depicted in
Fig. 7. Hence, the synchronization between two differ-
ent fractional-order systems is realized.
Case (iii): Integer order and fractional-order (either
α = 1 or β = 1).
If α = 1 and β = 0.91, then the projection
of the synchronized attractors of the systems
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Fig. 5 The time response when α = β = 0.90: a xi and yi and b synchronization errors ei , i = 1, 2, 3

(28) and (29) are depicted in Fig. 8. The time
response between their states and synchronization
errors are depicted in Fig. 9. Hence, the
synchronization between integer order and fractional-
order systems is realized. Further, the Remark 1
is numerically conformed by the above three
cases.

5 Practical application of the proposed FFISM
control

In this section, a new cryptosystem for an image
encryption and decryption will be developed based
on the derived synchronized fractional-order modified
coupled dynamos chaotic systems.
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Fig. 7 The time response when α = 0.91, β = 0.97: a xi and yi and b synchronization errors ei , i = 1, 2, 3

Proposed cryptosystem:
In the proposed cryptosystem, we assume that Alice

as a sender and Bob as a receiver. Consider the
fractional-order drive system (28) as a sender system
and the fractional-order response system (29) with the
proposed FFISM control (30) as a receiver system. Both
Alice and Bob agree on the fractional orders α, β such

that α, β ≥ 0.87. Assume that, the synchronization
errors between the systems (28) and (29) tend to zero
after a time t0. The details of the proposed cryptosys-
tem are given in Table 1, which include key generation,
encryption and decryption phase. The following steps
are needed to understand the encryption and decryption
phase easily.
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Fig. 9 The time response when α = 1, β = 0.91: a xi and yi and b synchronization errors ei , i = 1, 2, 3

1. Alice and Bob compute the solutions of the frac-
tional order systems (28) and (29), respectively, at
time t ≥ t0.

2. The secret keys {K AR, K AG, K AB} and {K BR,

K BG, K BB} are generated by Alice and Bob,
respectively, by using key generation phase given
in Table 1.

3. Alice wants to send a RGB image I with size m ×n
to Bob secretly. For encryption, she decomposes I
into Red, Green and Blue color components.

4. Each color component of the image I is encrypted
separately by Alice and let it be ER, EG and EB .
The encrypted images ER, EG and EB are con-
verted into a single encrypted RGB image and let
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it be E . Alice sends E to Bob. The details of the
encryption process are presented in Table 1.

5. Bob receives E from Alice. For decryption, he
decomposes E into their color components ER, EG

and EB .
6. Each color component of the E is decrypted sep-

arately by Bob and let it be DR, DG and DB . The
decrypted images DR, DG and DB are converted
into a single decrypted RGB image and let it be D.
The details of the decryption process are presented
in Table 1.

7. Finally, Bob recovers an original image D = I
successfully.

5.1 Numerical example

In order to demonstrate the proposed cryptosystem, we
assume that α = β = 0.90 and t = 4.5. For these
fractional orders, the synchronization errors between
the drive system (28) and the response system (29)
are zero after a time t ≥ t0 = 0.3 since by Fig. 5.
Alice finds x1(t) = 0.8880, x2(t) = 0.7168, x3(t) =
4.6260 and generates on her own secret keys

K AR = floor
(
(x1(t)x2(t)) ∗ 103

)
= 124 mod 256

K AG = floor
(
(x2(t)x3(t)) ∗ 103

)
= 243 mod 256

K AB = floor
(
(x1(t)x3(t)) ∗ 103

)
= 11 mod 256

Similarly, Bob solves the fractional-order system
(29) and generates on his own secret keys K BR, K BG ,

K BB . Alice wants to send a RGB image I with size
650 × 487 to Bob, which is visualized in Fig. 10a.
The Red, Green and Blue color components of I
are depicted in Fig. 11a–c, respectively. Then, Alice
encrypts the color components of I . The encrypted
color components ER, EG and EB are depicted in
Fig. 12a–c, respectively. Alice converts ER, EG and
EB into a single encrypted RGB image E and sends to
Bob, which is depicted in Fig. 10b.

Bob receives E and decomposes into Red, Green
and Blue color components, respectively, equivalent to
ER, EG and EB . Then, he decrypts the color compo-
nents of E . The decrypted color components DR, DE

and DB are depicted in Fig. 13a–c, respectively. Bob
converts DR, DE and DB into a single decrypted RGB
image D, which is depicted in Fig. 10c. Hence, Bob

decrypts an original image I without loss of any infor-
mation from I .

5.2 Performance analysis of the proposed
cryptosystem

In this subsection, the key sensitivity of proposed cryp-
tosystem will be analyzed. Also, three major statistical
analysis of an image, namely histogram, entropy and
the correlation will be analyzed to prove the efficiency
of the proposed cryptosystem.

5.2.1 Key sensitivity analysis

In the proposed cryptosystem, the sender and receiver
keys are generated based on the solutions of fractional-
order chaotic systems. Naturally, chaotic systems are
very sensitive depends on initial conditions. But the
fractional-order chaotic system is a generalization of
integer order chaotic system, which is more sensitive
depends on initial conditions and the fractional order of
state variables. The proposed cryptosystem have some
secret elements: (i) initial conditions of the drive sys-
tem xi (0) and the response system yi (0), (i i) parame-
ters μ and γ , (i i i) fractional orders α and β, (iv) time t
and (v) solutions xi (t) and yi (t) of the fractional-order
drive system (28) and response system (29), respec-
tively. Therefore, the keys are highly sensitive due to
the hardness of (i) − (v). These high sensitivity keys
are used in the proposed cryptosystem for encryption
and decryption. Therefore, original image cannot be
decrypted correctly except by the receiver.

5.2.2 Histogram analysis

Histogram analysis indicates the distribution of pixel
value, and it can represent how pixels in an RGB image
are spread by marking out the number of pixels at
each intensity level. The histogram of an original RGB
image I (Fig. 10a), encrypted RGB image E (Fig. 10b)
and decrypted RGB image D (Fig. 10c) are depicted
in Fig. 14a–c, respectively. To keep the attacker from
receiving any useful statistical information, the his-
togram of the encrypted image should be uniform. Note
that, the histogram of an encrypted image E is always
uniform, and it is entirely different from the histogram
of I , see Fig. 14b. Comparing the histograms of the
encrypted image showed in [44] and [45], the encrypted

123



Applications of fuzzy fractional integral sliding mode control 261

Table 1 Proposed
cryptosystem

Alice Bob

Key generation:

K AR = floor
(
(x1(t)x2(t)) ∗ 103

)
mod 256

K AG = floor
(
(x2(t)x3(t)) ∗ 103

)
mod 256

K AB = floor
(
(x1(t)x3(t)) ∗ 103

)
mod 256

Key generation:

K BR = floor
(
(y1(t)y2(t)) ∗ 103

)
mod 256

K BG = floor
(
(y2(t)y3(t)) ∗ 103

)
mod 256

K BB = floor
(
(y1(t)y3(t)) ∗ 103

)
mod 256

Encryption:

Input: An original RGB image Im×n .

Compute: Split Im×n into Red, Green

and Blue color components.

Output: Encrypted image E .

f or i = 1 to m

f or j = 1 to n − 1

ERi, j+1 = ERi, j + K AR + IRi, j+1 mod 256

EGi, j+1 = EGi, j + K AG + IGi, j+1 mod 256

EBi, j+1 = EBi, j + K AB + IBi, j+1 mod 256

i f (i < m)

ERi+1,1 = ERi, j + K AR + IRi+1,1 mod 256

EGi+1,1 = EGi, j + K AG + IGi+1,1 mod 256

EBi+1,1 = EBi, j + K AB + IBi+1,1 mod 256

end

end

end

An encrypted RGB image E is computed from

ER , EG , EB by Alice and send it into Bob.

→ ↓ Bob receives an encrypted RGB image E .

Dncryption:

Input: Cipher image E .

Compute: Split E into Red, Green

and Blue color components.

Output: Decrypted image D.

f or i = 1 to m

f or j = 1 to n − 1

DRi, j+1 = ERi, j+1 − K BR − ERi, j mod 256

DGi, j+1 = EGi, j+1 − K BG − EGi, j mod 256

DBi, j+1 = EBi, j+1 − K BB − EBi, j mod 256

i f (i < m)

DRi+1,1 = ERi+1,1 − K BR − ERi, j mod 256

DGi+1,1 = EGi+1,1 − K BG − EGi, j mod 256

DBi+1,1 = EBi+1,1 − K BB − EBi, j mod 256

end

end

end
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Fig. 10 a An original RGB image I , b encrypted image E and c decrypted image D

Fig. 11 Color components of I : a Red, b Green and c Blue

Fig. 12 Color components of E : a Red (ER), b Green (EG) and c Blue (EB)
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Fig. 13 Color components of D: a Red (DR), b Green (DG) and c Blue (DB)
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Fig. 14 Histogram: a original image I , b encrypted image E and c decrypted image D

image histogram of the proposed cryptosystem is com-
pletely uniformly distributed. Hence, through the pro-
posed cryptosystem, one can achieve high-level secu-
rity for image encryption and decryption.

From the visualization of histograms of the origi-
nal and decrypted images, we conclude that an original
image is completely recovered by decryption. Further,
the histograms of Red, Green and Blue color compo-
nents of I are depicted in Fig. 15a–c, respectively. The
histograms of encrypted Red, Green and Blue color
components of I are depicted in Fig. 16a–c, respec-
tively.

5.2.3 Information entropy analysis

Information entropy is an important quantitative mea-
sure of the randomness and the unpredictability of an
information source. It can be computed by the follow-
ing formula

H(X) = −
2N −1∑
i=0

Pr (xi ) log2 Pr (xi ), (32)

where Pr (X = xi ) = 1/F , F is the number of inten-
sity scales associated with the image format. X is the

123



264 P. Balasubramaniam et al.

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

(a) (b) (c)

Fig. 15 Histogram of color components of I : a Red, b Green and c Blue
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Fig. 16 Histogram of color components of E : a Red (ER), b Green (EG) and c Blue (EB)

source, and xi denotes the i th possible value in X , and
Pr (xi ) is the probability of xi .

In the proposed cryptosystem, RGB image is used
for encryption and decryption, therefore F = 256 and
the upper bound of an information entropy is 8. A good
encrypted image has entropy very close to 8. Infor-
mation entropy value of the original RGB image I
(Fig. 10a), encrypted RGB image E (Fig. 10b) and

decrypted RGB image D (Fig. 10c) are displayed in
Table 2. The calculated information entropy value of
encrypted image E is 7.9998, and it is very close
to the upper bound of the information entropy value.
This entropy value is higher than the entropy value of
existing encryption algorithms analyzed in [44–46].
Further, the original image is completely decrypted
only by the receiver because the entropy value is
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Table 2 Results of information entropy

Original
image I

Encrypted
image E

Decrypted
image D

Entropy
value

7.7279 7.9998 7.7279

Table 3 Correlation coefficients for original image and
encrypted image

Direction Correlation coefficients

Original image I Encrypted image E

Horizontal 0.9760 0.0090

Vertical 0.9737 0.0030

Diagonal 0.9577 0.0011

same for an original image I and the decrypted image
D, see Table 2. Hence, the proposed cryptosystem
is a good cryptosystem for an image encryption and
decryption.

5.2.4 Correlation coefficient analysis

In an ordinary image, each pixel is highly corre-
lated with its adjacent pixel in horizontal, vertical
and diagonal direction. A good encryption scheme
should produce an encrypted image with very low
correlation in the adjacent pixels. To test the cor-
relation between horizontally, vertically and diago-
nally adjacent pixels of the original image I and
encrypted image E , we calculate the correlation coeffi-
cient rxy of each pair in each direction by the following
formula

rxy = cov(x, y)√
D(x)

√
D(y)

, (33)

where cov(x, y) = 1
N

∑n
i=1(xi − E(x))(yi − E(y)),

E(x)= 1
N

∑n
i=1(xi ) and D(x)= 1

N

∑n
i=1(xi −E(x))2.

The outcomes of correlation coefficients of images
I and E are shown in Table 3. The result indicates
that the correlation of two adjacent pixels in hori-
zontal, vertical and diagonal directions of the original
RGB image I is significant, whenever the encrypted
RGB image E is very small and close to zero.
Hence, the proposed encryption scheme is effect rather
well than the encryption algorithms demonstrated
in [44–46].

Remark 2 The experimental results show that the pro-
posed cryptosystem is more secure than other existing
algorithms proposed in [44–46].

6 Conclusions

A new fuzzy fractional integral sliding mode con-
trol has been designed which unites the fuzzy logic
control and sliding mode control for synchronizing
fractional-order dynamical systems with mismatched
fractional orders. The stability condition of synchro-
nization between fractional-order dynamical systems
has been derived and guaranteed based on Lyapunov
stability theory. The proposed control has been applied
in fractional-order modified coupled dynamos chaotic
system. We have proven that, it has been easily adapted
for synchronizing two distinct, alike fractional order
dynamical systems, integer order and fractional-order
dynamical systems. A new cryptosystem has been
proposed for an image encryption and decryption by
using synchronized fractional-order modified coupled
dynamos chaotic systems. The proposed cryptosystem
has been producing high-level security and it has been
verified through experimental results. Finally, numeri-
cal simulations have been provided to verify the effec-
tiveness of the proposed control scheme and cryptosys-
tem.
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40. Takači, D., Takači, A., Takači, A.: On the operational solu-
tions of fuzzy fractional differential equations. Fract. Calc.
Appl. Anal. 17, 1100–1113 (2014)

41. Caputo, M.: Linear models of dissipation whose Q is almost
frequency independent—II. Geophys. J. R. Astron. Soc. 13,
529–539 (1967)

123



Applications of fuzzy fractional integral sliding mode control 267

42. Matignon, D.: Stability results for fractional differential
equations with applications to control processing. In: Pro-
ceedings of Computational Engineering in Systems Appli-
cations vol. 2, pp. 963–968, Lille, France (1996)

43. Xing-yuan, W., Yi-jie, H., Ming-jun, W.: Chaos control of
a fractional order modified coupled dynamos system. Non-
linear Anal. 71, 6126–6134 (2009)

44. Zhen, W., Xia, H., Yu-Xia, L., Xiao-Na, S.: A new image
encryption algorithm based on the fractional-order hyper-
chaotic Lorenz system. Chin. Phys. B 22, 010504 (2013)

45. Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based
on synchronization of fractional chaotic systems. Commun.
Nonlinear Sci. Numer. Simul. 19, 3735–3744 (2014)

46. Liu, H., Wang, X., Kadir, A.: Color image encryption using
Choquet fuzzy integral and hyper chaotic system. Optik 124,
3527–3533 (2013)

123


	Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order  dynamical system
	Abstract
	1 Introduction
	2 Preliminaries for fractional calculus
	3 Design of fuzzy fractional integral sliding mode control
	3.1 System description
	3.2 Control design
	3.3 Formation of fuzzy integral sliding mode control

	4 Theoretical application of the proposed FFISM control
	4.1 Numerical simulations

	5 Practical application of the proposed FFISM control
	5.1 Numerical example
	5.2 Performance analysis of the proposed cryptosystem
	5.2.1 Key sensitivity analysis
	5.2.2 Histogram analysis
	5.2.3 Information entropy analysis
	5.2.4 Correlation coefficient analysis


	6 Conclusions
	Acknowledgments
	References


