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Abstract This study proposes a new car-following
model that considers the effects of two-sided lateral
gaps on a road without lane discipline. In particular, a
car-following model is proposed to capture the impacts
from the lateral gaps of the leading vehicles on both
sides of the following vehicle. Linear stability analysis
of the proposed model is performed using the perturba-
tion method to obtain the stability condition. Nonlinear
analysis is performed using the reductive perturbation
method to derive the modified Korteweg de Vries equa-
tion to describe the density wave propagation. Results
from numerical experiments illustrate that the proposed
car-following model has larger stable region compared
to a car-following model that considers the effect of
lateral gap on only one side. Also, it is able to more
rapidly dissipate the effect of a perturbation such as a
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sudden stimulus from a leading vehicle. In addition, the
findings of this study provide insights in analyzing sys-
tem performance of a non-lane-discipline road system
in the future.
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1 Introduction

Traffic flow modeling based on the fluid-dynamic
approach can date back to 1950s, which aims to model
the flow and interactions in the traffic stream consid-
ering the similar characteristics between traffic flow
and the fluid dynamics [1–3]. In the literature, various
microscopic and macroscopic traffic flow models have
been proposed. At the microscopic level, each individ-
ual vehicle is represented as a particle and the vehicular
traffic is treated as a system of interacting particles. The
car-following theory is used to describe the interactions
between each pair of leading and following vehicles
[4–8].

In the car-following theory, the relationship between
the leading vehicle and the following vehicle is based
on the following vehicle decelerating or accelerating
in response to a stimulus from the leading vehicle [8].
Bando et al. [9] propose a car-following model in which
the concept of optimal velocity (OV) is introduced
based on the assumption that the desired velocity of
the following vehicle is determined by its space head-
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way with the leading vehicle. Helbing and Tilch [10]
calibrate the OV model using the empirical follow-
the-leader data and develop a generalized force (GF)
model by considering the impact of lower leading vehi-
cle velocity on the behavior of the following vehicle.
However, neither the OV model nor the GF model can
explain the following traffic phenomena described by
Treiber et al. [11]: In reality, when the leading vehicle
is much faster than the following vehicle, the follow-
ing vehicle will not decelerate even when its headway
is lower than the safe space headway. Consequently,
Jiang et al. [12,13] argue that the impact of relative
speed between the leading and the following vehicles
on the behavior of following vehicle should be consid-
ered explicitly. They propose a full velocity difference
(FVD) model by considering both positive and negative
velocity differences. However, the FVD model does not
study the effects of the lateral gaps on vehicular traf-
fic flow. By considering multiple attributes of leading
vehicles, other car-following models have since been
developed, such as the FVAD model [14], MVD model
[15], MHVD model [16], MHVAD model [17] and so
on (see [8] for a review). Other car-following models
[18–23] have also been proposed in the literature.

A key assumption in car-following theory is that
vehicles follow the lane discipline and move in the mid-
dle of the lane. However, this assumption may not be
valid in many developing countries where lanes may
not be clearly demarcated on a road though multiple
vehicles can travel in parallel. That is, the notion of a
lane does not exist, and consequently, the middle of a
lane is not meaningful either. Therefore, the aforemen-
tioned car-following models cannot be readily applied
[24]. A common situation in such non-lane-based traf-
fic environment is that vehicles are positioned off the
center-line of the road. The off-center effect will cause
lateral gaps between vehicles, and the lateral gap may
increase with the road width. Hence, there is the need
to study the impact of lateral gaps on the behavior of
the following vehicles [25,26]. Jin et al. [25] propose
a non-lane-based full velocity difference car-following
(NLBCF) model to analyze the impact of the lateral
gap on one side on the car-following behavior. They
illustrate that considering the one-sided lateral gap can
improve the stability of the traffic flow. However, the
NLBCF model cannot distinguish the right-side and the
left-side lateral gaps. In addition, the main properties
of the NLBCF model are derived based on linear per-
turbation analysis only, without conducting a nonlinear

analysis. The nonlinear analysis is an important aspect
in the study of car-following models [27–36]. The lin-
ear stability analysis can provide the conditions under
which a small perturbation of a stationary state can dis-
sipate over time. However, as the traffic system is a non-
linear strongly coupled complex system, conducting
nonlinear analysis can characterize density wave pro-
files under larger perturbations [27]. In particular, the
Korteweg de Vries (KdV) equation can be used to find
exact solutions such as solitons by applying the inverse
scatting transform [27]. Kurtz et al. [28] derive the KdV
equation from the hydrodynamic model and show that
the traffic soliton appears near the neutral stability line.
Komatsu et al. [29] deduce the modified KdV (mKdV)
equation from the OV model. Nagatani [30] and Li et al.
[31] also investigate a car-following model with next-
nearest-neighbor interaction through nonlinear analy-
sis and derive the mKdV equation. Ge et al. [32] per-
form nonlinear analysis to a car-following model. Lei
et al. [33] and Yu et al. [34] also perform nonlinear
analysis to obtain kink–antikink density waves of an
OV-based traffic flow model. Kurtze et al. [35] and Lv
et al. [36] analyze the solitons and kinks for a general
car-following model.

The literature review heretofore illustrates the
importance of incorporating lateral gaps for modeling
non-lane-discipline traffic flow as well as improving the
stability of car-following models. However, consider-
ing the lateral gap on only one side is restrictive because
in many non-lane-discipline road systems, more than
two vehicles travel on the road in parallel as shown in
Fig. 1. Hence, there is the need to analyze the behav-
ior of the following vehicle by considering the lateral
gaps on both sides to address the more general scenario
in non-lane-discipline roads. The focus of this study is
on the effects of two-sided lateral gaps on the vehicu-
lar traffic flow. The FVD model does not consider the
effects of lateral gap. The NLBCF model considers the
effects of a one-sided lateral gap, but cannot be used
under the scenarios with two-sided lateral gaps. Addi-
tionally, no nonlinear analysis has been conducted for
the NLBCF model.

Motivated by the scenarios with two-sided lateral
gaps, we propose a generalized model considering the
effects of two-sided lateral gaps of the following vehi-
cle in a road system without lane discipline. Theoretical
analyses show that the FVD and NLBCF models are
special cases of the proposed model. The linear stabil-
ity of the proposed model is analyzed using the pertur-
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bation method to obtain the stability condition. Theo-
retical and simulation analyses verify that the stability
region of the proposed model is improved compared
to those of the OV, FVD and NLBCF models under
the same condition. The nonlinear analysis of the pro-
posed model is performed using the reductive perturba-
tion method to obtain the corresponding mKdV equa-
tion, which can describe the density wave propagation
such that the traffic congestion pattern and its evolution
can be better understood. Finally, the numerical exper-
iments conducted in this study verify that the capabil-
ity of perturbation rejection of the proposed model is
improved compared to that of the NLBCF model under
the same condition.

The rest of this paper is organized as follows: Sect. 2
proposes a new car-following model considering the
effects of two-sided lateral gaps. Section 3 performs
the linear stability analysis of proposed model using
the perturbation method. Section 4 conducts the non-
linear analysis using the reductive perturbation method.
Section 5 presents the numerical experiments and com-
parisons. The final section concludes this study.

2 Dynamic model

In this study, it is assumed that all vehicles travel on a
road without lane discipline as shown in Fig. 1. Hence,
vehicle may not travel in the middle of the road or
follow any lane discipline. The dashed lines in the fig-
ure indicate the center lines associated with the various
vehicles and are used in the modeling process.

The leading vehicle (i.e., vehicle n + 3 in Fig. 1) is
traveling in front of the following vehicle (i.e., vehicle
n in Fig. 1). The vehicle traveling on the right side of
the road (i.e., vehicle n + 1 in Fig. 1) and the vehicle
traveling on the left side of the road (i.e., vehicle n + 2
in Fig. 1) constitute two lateral gaps with respect to
the following vehicle n. Denote Lgn,n+1 as the lateral
gap between the following vehicle n and the vehicle
traveling on the right side n + 1 and Lgmax as the lat-
eral gap between the vehicles traveling on the right side
and on the left side of the following vehicle n. Then,
the ratio pn = Lgn,n+1/Lgmax ∈ [0, 1] indicates the
relative location of the following vehicle n with respect
to the two extreme lateral locations of vehicles n + 1
and n + 2. Note that, as the following vehicle n and
the leading vehicle n + 3 may not align with each
other, there may be another lateral gap constituted by

these two vehicles. However, this study does not focus
on the effects from this lateral gap on the following
vehicle.

A new car-following model considering the effects
of two-sided lateral gaps can be developed based on the
FVD model as follows

an(t) = α
{
U

[
�xn,n+1(t),�xn,n+2(t),�xn,n+3(t)

]

− vn(t)} + κG
[
�vn,n+1(t),�vn,n+2(t),

�vn,n+3(t)
]

(1)

where xn(t) > 0, vn(t) > 0 and an(t) represent the
position (m), velocity (m/s) and acceleration (m/s2)

of the vehicle n, respectively. t ∈ R represents the
time (s). α ∈ R (α = 1/τ > 0) is the sensitivity
coefficient of a driver to the difference between the
optimal and the current velocities. κ ∈ R(κ = λ/τ ≥
0) represents the sensitivity coefficient of response to
the stimulus G(·, ·, ·). �xn,n+1(t) ≡ xn+1(t) − xn(t)
and�vn,n+1(t) ≡ vn+1(t)− vn(t) are the longitudinal
space headway and the velocity difference between the
leading vehicle n + 1 and the following vehicle n at
time t , respectively. �xn,n+2(t) ≡ xn+2(t) − xn(t)
and�vn,n+2(t) ≡ vn+2(t)− vn(t) are the longitudinal
space headway and the velocity difference between the
leading vehicle n + 2 and the following vehicle n at
time t , respectively. �xn,n+3(t) ≡ xn+3(t) − xn(t)
and�vn,n+3(t) ≡ vn+3(t)− vn(t) are the longitudinal
space headway and the velocity difference between the
leading vehicle n + 3 and the following vehicle n at
time t , respectively.

Considering the two-sided lateral gaps from center-
line of the following vehicle, the function U (·, ·, ·) and
G(·, ·, ·) can be represented as

U
[
�xn,n+1(t),�xn,n+2(t),�xn,n+3(t)

]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V
[
(1 − 2pn)�xn,n+1(t)+ 2pn�xn,n+3(t)

]

Lgn,n+1 ∈ [
0, 0.5Lgmax

]

V
[
(2pn −1)�xn,n+2(t)+ 2(1− pn)�xn,n+3(t)

]

Lgn,n+1 ∈ [
0.5Lgmax,Lgmax

]

(2)

G
[
�vn,n+1(t),�vn,n+2(t),�vn,n+3(t)

]

=

⎧
⎪⎪⎨

⎪⎪⎩

(1 − 2pn)�vn,n+1(t)+ 2pn�vn,n+3(t)
Lgn,n+1 ∈ [

0, 0.5Lgmax
]

(2pn − 1)�vn,n+2(t)+ 2(1 − pn)�vn,n+3(t)
Lgn,n+1 ∈ [

0.5Lgmax,Lgmax
]

(3)

V (�x) = 0.5vmax [tanh(�x − hc)+ tanh(hc)] (4)
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Fig. 1 Car-following with
two-sided lateral gaps
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Traffic direction

pn = Lgn,n+1

Lgmax
(5)

where V (·) is the optimal velocity function, vmax is the
maximal speed of the vehicle, hc is the safe longitudinal
space headway, and tanh(·) is the hyperbolic tangent
function [9]. pn is the parameter representing the effect
of lateral gap. The value of Lgmax can be chosen as
3.6 m to be consistent with the typical road width [25].

Based on Eqs. (2)–(5), Eq. (1) can be reformulated
as:

Case 1 Lgn,n+1 ∈ [0, 0.5Lgmax]
an(t) = α

{
V

[
(1 − 2pn)�xn,n+1(t)+ 2pn�xn,n+3(t)

]

− vn(t)} + κ
[
(1 − 2pn)�vn,n+1(t)

+ 2pn�vn,n+3(t)
] ; (6)

Case 2 Lgn,n+1 ∈ [0.5Lgmax,Lgmax]
an(t) = α

{
V

[
(2pn − 1)�xn,n+2(t)

+ 2(1 − pn)�xn,n+3(t)
] − vn(t)

}

+ κ [
(2pn − 1)�vn,n+2(t)

+ 2(1 − pn)�vn,n+3(t)
]
. (7)

Based on Eqs. (6) and (7), three specific conditions can
be analyzed:

(i) If Lgn,n+1 = 0 , then pn = 0 , which represents
the vehicle n will follow vehicle n + 1 , then the
model becomes

an(t) = αV [�xn,n+1(t)−vn(t)}+κ�vn,n+1(t);
(8)

(ii) If Lgn,n+1 = 0.5Lgmax, then pn = 0.5, which rep-
resents the vehicle n follow vehicle n + 3, then the
model becomes

an(t)=αV [�xn,n+3(t)−vn(t)} + κ�vn,n+3(t);
(9)

(iii) If Lgn,n+1 = Lgmax, then pn = 1, which repre-
sents the vehicle n follow vehicle n + 2, then the
model becomes

an(t)=αV [�xn,n+2(t)−vn(t)} + κ�vn,n+2(t).

(10)

Remark 1 Eqs. (6) and (7) indicate that if the impact
of lateral gaps on only one-sided is considered, the
model is similar to the NLBCF model in [25]; and
if Lgn,n+1 = 0, Lgn,n+1 = 0.5Lgmax, or Lgn,n+1 =
Lgmax, the model is deduced to FVD model in [12].
Therefore, the FVD model and the NLBCF model are
some special cases of the proposed model.

In addition, Eqs. (6) and (7) can be rewritten using
the asymmetric forward difference [18,25] to facilitate
stability analyses of the proposed model as:

Case 1 Lgn,n+1 ∈ [
0, 0.5Lgmax

]

xn(t + 2τ) = xn(t + τ)+ τV
[
(1 − 2pn)�xn,n+1(t)

+ 2pn�xn,n+3(t)
] + τλ {(1 − 2pn)

× [
�xn,n+1(t + τ)−�xn,n+1(t)

]

+ 2pn
[
�xn,n+3(t + τ)−�xn,n+3(t

]} ;
(11)
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Case 2 Lgn,n+1 ∈ [0.5Lgmax,Lgmax]
xn(t + 2τ) = xn(t + τ)+ τ {V [(2pn − 1)

× �xn,n+2(t)+ 2(1 − pn)�xn,n+3(t)
]

+ τλ
{
(2pn − 1)

[
�xn,n+2(t + τ)−�xn,n+2(t)

]

+ 2(1 − pn)
[
�xn,n+3(t + τ)−�xn,n+3(t)

]}
.

(12)

3 Linear stability analysis

The stability of the proposed model is analyzed under
the following assumption.

Assumption 1 The initial state of the traffic flow is
steady, and all vehicles in the traffic move with the
identical space headway and the optimal velocity.

Based on this assumption, the stability analysis is con-
ducted in two cases:

Case 1 Lgn,n+1 ∈ [
0, 0.5Lgmax

]

Following Assumption 1, the position solution to the
steady flow is:

x0
n (t) = hn + V (h, 3h)t (13)

where V (h, 3h) = V [(1 − 2pn) · h + 2pn · 3h] is the
optimal velocity in uniform traffic flow and h is the
steady headway, x0

n (t) is the position of the nth vehicle
in steady state.

Adding a small disturbance yn(t) to the steady-state
solution x0

n (t) , i.e.,

yn(t) = xn(t)− x0
n (t). (14)

Substituting Eq. (14) into Eq. (11) and linearizing
the resulting equation using the Taylor expansion, it
deduces:

yn(t + 2τ) = yn(t + τ)+ τV ′(h, 3h) [(1 − 2pn)

×�yn,n+1(t)+ 2pn�yn,n+3(t)
]

+ τλ
{
(1 − 2pn)

[
�yn,n+1(t + τ)−�yn,n+1(t)

]

+ 2pn
[
�yn,n+3(t + τ)−�yn,n+3(t

]}
. (15)

Set yn(t) be in the Fourier models, i.e., yn(t) =
A exp(ikn + zt), substituting it in Eq. (15) and we have

e2τ z = eτ z + τV ′(h, 3h)
[
(1 − 2pn)(e

ik − 1)

+ 2pn(e
3ik − 1)

]
+ τλ

[
(1 − 2pn)(e

τ z − 1)

× (eik − 1)+ 2pn(e
τ z − 1)(e3ik − 1) ]. (16)

Let z = z1(ik) + z2(ik)2 + · · · and expand it to the
second term of (ik), we obtain

1 + 2τ z1(ik)+
(

2τ z2 + 2τ 2z2
1

)
(ik)2 = 1 + τ z1(ik)

+
(
τ z2 + 1

2
τ 2z2

1

)
(ik)2 + τV ′(h, 3h)(1 − 2pn)

×
(

ik+ 1

2
(ik)2

)
+ 2τV ′(h, 3h)pn

(
3ik + 9

2
(ik)2

)

+ τ 2λ(1 − 2pn)z1(ik)
2 + 6τ 2λpnz1(ik)

2. (17)

Therefore,
⎧
⎪⎪⎨

⎪⎪⎩

τ z1 = τV ′(h, 3h)(1 − 2pn)+ 6τV ′(h, 3h)pn

2τ z2 + 2τ 2z2
1 = τ z2 + 1

2τ
2z2

1 + 1
2τV ′(h, 3h)

(1 − 2pn)+ 9τV ′(h, 3h)pn + τ 2λ

(1 − 2pn)z1+6τ 2λpnz1.

(18)

Consequently
⎧
⎨

⎩

z1 = V ′(h, 3h)(1 + 4pn)

z2 = 1+16pn
2 V ′(h, 3h)+ τV ′(h, 3h)(1 + 4pn)

2

(λ− 3
2 V ′(h, 3h)).

(19)

Thus, the neutral stability condition is given by

τ = 1 + 16pn

[3V ′(h, 3h)− 2λ] (1 + 4pn)2
. (20)

For small disturbance with long wavelengths, the uni-
form traffic flow is unstable in the condition that

τ >
1 + 16pn

[3V ′(h, 3h)− 2λ] (1 + 4pn)2
. (21)

Case 2 Lgn,n+1 ∈ [0.5Lgmax,Lgmax]
Using the similar method in Case 1, the position

solution to the stability flow is:

x0
n (t) = hn + V (2h, 3h)t (22)

where V (2h, 3h) = V [(2pn −1) ·2h +2(1− pn) ·3h]
is the optimal velocity in uniform traffic flow. The neu-
tral stability condition is obtained as

τ = (7 − 5pn)

2 [3V ′(2h, 3h)− 2λ] (2 − pn)2
. (23)

And the uniform traffic flow in this case is unstable
when

τ >
(7 − 5pn)

2 [3V ′(2h, 3h)− 2λ] (2 − pn)2
. (24)

Based on Eqs. (20) and (23), we obtain

(i) If Lgn,n+1 = 0, then pn = 0, thus the neutral
stability condition is

τ = 1

3V ′(h)− 2λ
; (25)
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Fig. 2 Neutral stability lines in the space headway-sensitivity
coefficient diagram with different (λ, pn)

(ii) If Lgn,n+1 = 0.5Lgmax, then pn = 0.5, thus the
neutral stability condition is

τ = 1

3V ′(3h)− 2λ
; (26)

(iii) If Lgn,n+1 = Lgmax, then pn = 1, thus the neutral
stability condition is

τ = 1

3V ′(2h)− 2λ
. (27)

Remark 2 According to Eqs. (20), (23), (25)-(27), we
can verify the effectiveness of the proposed model and
the correctness of the stability analysis. Moreover, Eq.
(25) is the neutral stability condition of the FVD model
in [12], and Eq. (27) is the neutral stability condition
of the NLBCF model in [25] with pn = 1.

Figure 2 is the critical curves between sensitivity
coefficient α and the space headway with respect to
different values of (λ, pn). In Fig. 2, the space formed
by the sensitivity coefficient and the space headway
is divided into two regions (stable region and unstable
region) by the critical curve. Specifically, the region
over each critical curve is the stable region in which
the traffic flow is stable; the remainder is the unstable
region in which density waves emerge. In addition, if
λ = 0, pn = 0 , the proposed model is reduced to the
OV model in [9] and if λ �= 0, pn = 0 , the proposed
model is reduced to the FVD model in [12] while if
λ �= 0, pn ∈ [0, 0.5] or λ �= 0, pn ∈ [0.5, 1] , the
proposed model is reduced to the NLBCF model in
[25]. Moreover, Fig. 3 shows the sensitivity of critical
points for the neutral stability lines as a function of λ
and pn . Figure 3 also shows that the sensitivity coeffi-
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Fig. 3 Critical points for the neutral stability lines

cient obtains the maximum values under the condition
of λ = 0 , which can also be verified by Fig. 2.

To conclude, we can find that (i) the stability region
of the uniform traffic flow will been enlarged with the
increase of parameter λ in the case of the same value
of parameter pn ; (ii) the critical curve will be shifted
left from the initial state (i.e., λ = 0, pn = 0) with the
increase of parameter pn ; and (iii) the steady dynamics
of the uniform traffic flow will be improved by con-
sidering the two-sided lateral gaps compared with OV
model, FVD model and NLBCF model under the same
condition.

4 Nonlinear analysis

To verify the nonlinear characteristics of the proposed
model, the weakly nonlinear wave equation of the jam
formation is derived using the reductive perturbation
method [27–36]. Starting from the definition, the small
scaling parameters ε(0 < ε � 1) and new quantities
have to be defined, i.e., the slow space, time variables
X and T and perturbation R. To investigate the slowly
varying behavior of slow scales near the critical point
α = αc, h = hc in the unstable region, the scaling
between variables X , T and R are chosen such that
[27–36]:
⎧
⎨

⎩

X = ε(n + bt)
T = ε3t
�xn(t) = hc + εR(X, T )

(28)

where b is an arbitrary constant that will be specified
later and�xn(t) ≡ �xn,n+1(t) = �xn+1(t)−�xn(t).
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Table 1 The coefficients βi
of the proposed model β1 α

[
b − V ′(1 + 4pn)

]
β5 − 1

6αV ′′′[(1 + 16p3
n

)

β2 b2 − αV ′ ( 1
2 + 8pn

) − κb(1 + 4pn) β6 2b − κ(1 + 4pn)

β3 α β7 −αV ′ ( 1
24 + 20

3 pn
) − κ

( 1
6 b + 26

3 bpn
)

β4 − 1+52pn
6 αV ′ − κb

( 1
2 + 8pn

)
β8 − 1

6κV ′′′ ( 1
2 + 32p3

n

)

Case 1 Lgn,n+1 ∈ [
0, 0.5Lgmax

]

Let us start by Eqs. (6) and rewrite it with the reduc-
tive perturbation method as follows

�x(t + 2τ) = �x(t + τ)+ τ
{

V
[
(1 − 2pn+1)�xn+1,n+2(t)

+ 2pn+1�xn+1,n+4(t)
] − V [(1 − 2pn)�xn,n+1(t)

+ 2pn�xn,n+3(t)]
} + λτ

{[
(1 − 2pn+1)

(
�xn+1,n+2(t + τ)

− �xn+1,n+2(t)
) + 2pn+1

(
�xn+1,n+4(t + τ)

− �xn+1,n+4(t)
)] − [

(1 − 2pn)
(
�xn,n+1(t + τ)

− �xn,n+1(t)
) + 2pn(�xn,n+3(t + τ)−�xn,n+3(t))

]}
.

(29)

Substituting Eq. (28) into Eq. (29) and making the Tay-
lor expansions to the fifth order of ε, we have

ε2β1∂X R + ε3β2∂
2
X R + ε4

(
β3∂T R + β4∂

3
X R

+β5∂X R3
)
+ε5

(
β6∂X∂T R+β7∂

4
X R+β8∂

2
X R3

)
=0.

(30)

The coefficients βi (i = 1, 2, . . . , 8) are given in the
Table 1,
where ∂X = ∂

∂X
, ∂T = ∂

∂T
, ∂X∂T = ∂2

∂X ∂T
, V ′ =

dV (�x)
d�x

|�x=hc and V ′′′ = d3
V (�x)

d�x3 |�x=hc .
By taking b = V ′(1 + 4pn) , the second-order term

of ε is eliminated from Eq. (30) and near the critical
point (αc, hc), the neighborhood of the critical point τc

is considered as follows [27–36]
τ

τc
= 1 + ε2 (31)

where τc = 1+16pn
(3V ′−2λ)(1+4pn)2

. And let

∂X∂T R = 1 + 52pn + λ(3 + 48pn)(1 + 4pn)

6
V ′∂4

X R

+ 1

6
V ′′′ [(1 + 16p3

n

)
∂2

X R3 + O(ε) . (32)

Then Eq. (30) becomes

∂T R − 1 + 52pn + λ(3 + 48pn)(1 + 4pn)

6
V ′∂3

X R

− 1

6
V ′′′ [(1 + 16p3

n

)
∂X R3 + O(ε) = 0.

(33)

In order to get the standard mKdV equation, the fol-
lowing transformations are introduced [27–36]:

T ′ = g1T, R = √
g1/g2 R′ (34)

where

g1 = 1 + 52pn + λ(3 + 48pn)(1 + 4pn)

6
V ′,

g2 = −1

6
V ′′′ [(1 + 16p3

n

)

with 1+52pn +λ(3++48pn)(1+4pn) ≥ 0, (0 ≤ λ ≤
1). Substituting (35) into (34), the regularized equation
is referred

∂T ′ R′ − ∂3
X R′ + ∂X R′3 + O(ε) = 0. (35)

If O(ε) is ignored, Eq. (35) is just the mKdV equation
and the kink–antikink solution according to the general
solution is derived:

R′
0(X, T ′) = √

c tanh

√
c

2

(
X − cT ′ ). (36)

Suppose R′(X, T ′) = R′
0(X, T ′) + R′

1(X, T ′) with
the consideration of O(ε) , the existence condition of
R′

0(X, T ′) is presented to obtain the propagation speed
c in Eq. (37) as [29]

(R′
0,M[R′

0]) =
∫ +∞

−∞
dX R′

0(X, T ′)

× M
[
R′

0(X, T ′)
] = 0 (37)

where M[R′
0] = c1∂

2
X R′ + c2

2 ∂
4
X R′ − c3

2 ∂
2
X R′3 and

c1 = λ

1 + 52pn + λ(3 + 48pn)(1 + 4pn)
,

c2 = 1

1 + 52pn + λ(3 + 48pn)(1 + 4pn)
, c3 = 1.

Using the integral method, we can obtain the propaga-
tion speed c = 2c1

2c2+3c3
, and the amplitude A of the

kink–antikink solution is

A =
[

1 + 52pn + λ(3 + 48pn)(1 + 4pn)

3

×
(αc

α
− 1

)
c
]1/2

(38)
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Table 2 The coefficients γi
of the proposed model γ1 α

[
b − V ′(4 − 2pn)

]
γ5 − 1

6αV ′′′ [1 + 4(1 − pn)
3
]

γ2 b2 − αV ′(9 − 7pn)− κb(4 − 2pn) γ6 2b − κ(4 − 2pn)

γ3 α γ7 − 73−65pn
12 αV ′ − 25−23pn

3 κb

γ4 − 23−19pn
3 αV ′ − κb(7 − 5pn) γ8 − 1

3αV ′′′ [1 + 15(1 − pn)
3
]

where αc = 1
τc

= (3V ′−2λ)(1+4pn)
2

1+16pn
. Thus, the follow-

ing kink–antikink soliton solution of the mKdV equa-
tion is obtained by

R(X, T ) =
⎡

⎣− 2 [1 + 52pn + λ(3 + 48pn)(1 + 4pn)]

3
(

1 + 16p3
n

)
V ′′′ V ′c

⎤

⎦

1/2

× tanh

√
c

2

(
X − 1 + 52pn + λ(3 + 48pn)(1 + 4pn)

6
V ′cT

)
.

(39)

Therefore, the kink–antikink soliton solution to the
space headway is

�xn = hc +
⎡

⎣− 2 [1 + 52pn + λ(3 + 48pn)(1 + 4pn)]

3
(

1 + 16p3
n

)
V ′′′ V ′c

⎤

⎦

1/2

× tanh

√
c

2

(
X − 1 + 52pn + λ(3 + 48pn)(1 + 4pn)

6
V ′cT

)
.

(40)

If pn = 0, we have

�xn = hc +
[
−2(1 + 3λ)

3V ′′′ V ′c
]1/2

× tanh

√
c

2

(
X − 1 + 3λ

6
V ′cT

)
. (41)

If pn = 0.5, we have

�xn = hc +
[
−6(1 + 3λ)

V ′′′ V ′c
]1/2

× tanh

√
c

2

[
X − 9(1 + 3λ)

2
V ′cT

]
. (42)

Case 2 Lgn,n+1 ∈ [
0.5Lgmax,Lgmax

]

Similarly, Eq. (7) can be rewritten as follows

�x(t + 2τ) = �x(t + τ)+ τ
{

V
[
(2pn+1 − 1)

×�xn+1,n+3(t)+ 2(1 − pn+1)�xn+1,n+4(t)
]

− V
[
(2pn−1)�xn,n+2(t)+ 2(1−pn)�xn,n+3(t)

]}

+ λτ
{[
(2pn+1 − 1)

[
�xn+1,n+3(t + τ)

−�xn+1,n+3(t)
] + 2(1−pn+1)

[
�xn+1,n+4(t + τ)

−�xn+1,n+4(t)
]]−[(2pn−1)[�xn,n+2(t + τ)

−�xn,n+2(t)
] + 2(1−pn)

[
�xn,n+3(t + τ)

− �xn,n+3(t)
]]}

. (43)

Substituting Eq. (28) into Eq. (43) and applying the
Taylor expansions to the fifth order of ε, we have

ε2γ1∂X R + ε3γ2∂
2
X R + ε4

(
γ3∂T R + γ4∂

3
X R

+ γ5∂X R3
)
+ε5

(
γ6∂X∂T R+γ7∂

4
X R+γ8∂

2
X R3

)
= 0

(44)

The coefficients γi (i = 1, 2, . . . , 8) are given in the
Table 2.

By taking b = V ′(4 − 2pn) , the second-order term
of ε is eliminated from Eq. (44) and near the critical
point (αc, hc). The neighborhood of the critical point
τc is considered as follows [27–36]
τ

τc
= 1 + ε2 (45)

where τc = 7−5pn
2(3V ′−2λ)(2−pn)2

. And let

∂X∂T R = 23 − 19pn + λ(42 − 30pn)(2 − pn)

3

×V ′∂4
X R+ 1

3
V ′′′ [(1+4(1 − pn)

3
)
∂2

X R3+O(ε).

(46)

Then Eq. (44) becomes

∂T R − 23 − 19pn + λ(42 − 30pn)(2 − pn)

3

V ′∂3
X R− 1

3
V ′′′ [(1+ 4(1 − pn)

3
)
∂X R3+O(ε)=0 .

(47)

In order to get the standard mKdV equation, the fol-
lowing transformations are introduced [27–36]:

T ′ = ψ1T, R = √
ψ1/ψ2 R′ (48)

where

ψ1 = 23 − 19pn + λ(42 − 30pn)(2 − pn)

3
V ′,

ψ2 = −1

3
V ′′′ [1 + 4(1 − pn)

3
]
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with 23−19pn +λ(42−30pn)(2− pn) ≥ 0, (0 ≤ λ ≤
1). Substituting (47) into (46), the regularized equation
is referred

∂T ′ R′ − ∂3
X R′ + ∂X R′3 + O(ε) = 0 (49)

If O(ε) is ignored, Eq. (48) is just the mKdV equation
and the kink–antikink solution according to the general
solution is derived:

R′
0(X, T ′) = √

c tanh

√
c

2
(X − cT ′) (50)

Suppose R′(X, T ′) = R′
0(X, T ′) + R′

1(X, T ′) with
the consideration of O(ε) , the existence condition of
R′

0(X, T ′)is presented to obtain the propagation speed
c in Eq. (50) as [29]

(R′
0,M[R′

0]) =
∫ +∞

−∞
dX R′

0(X, T ′)M[R′
0(X, T ′)]

= 0 (51)

where M[R′
0] = c1∂

2
X R′ + c2

2 ∂
4
X R′ − c3

2 ∂
2
X R′3 and

c1 = λ

23 − 19pn + λ(42 − 30pn)(2 − pn)
,

c2 = 1

23 − 19pn + λ(42 − 30pn)(2 − pn)
,

c3 = 1.

Using the integral method, we can obtain the propaga-
tion speed c = 2c1

2c2+3c3
, and the amplitude A of the

kink–antikink solution is

A =
[

23 − 19pn + λ(42 − 30pn)(2 − pn)

3

×
(αc

α
− 1

)
c
]1/2

(52)

where αc = 1
τc

= 2(3V ′−2λ)(2−pn)
2

7−5pn
. Thus, the follow-

ing kink–antikink soliton solution of the mKdV equa-
tion is obtained by

R(X, T )

=
[
−2[23 − 19pn + λ(42 − 30pn)(2 − pn)]

3(1 + 4(1 − pn)3)V ′′′ V ′c
]1/2

× tanh

√
c

2
(X (53)

−23 − 19pn + λ(42 − 30pn)(2 − pn)

3
V ′cT

)
.

Therefore, the kink–antikink soliton solution to the
space headway is

�xn = hc

+
[
−46 − 38pn +2λ(42 − 30pn)(2 − pn)]

3[1+4(1− pn)3]V ′′′ V ′c
]1/2

× tanh

√
c

2
(X (54)

− 23 − 19pn + λ(42 − 30pn)(2 − pn)

3
V ′cT

)
.

If pn = 0.5 , we have

�xn = hc +
[
−6(1 + 3λ)

V ′′′ V ′c
]1/2

× tanh

√
c

2

(
X − 9(1 + 3λ)

2
V ′cT

)
. (55)

If pn = 1 , we have

�xn = hc +
[
−8(1 + 3λ)

3V ′′′ V ′c
]1/2

× tanh

√
c

2

(
X − 2(1 + 3λ)

3
V ′cT

)
. (56)

Remark 3 Through the nonlinear analysis, the mKdV
equation of the proposed model is derived, which rep-
resents the kink wave under the unstable condition.
And the kink solution represents the coexisting phase
which includes both freely moving phase and jamming
phase, and the headways of the two phases are given
by �xn = hc − A and �xn = hc + A, respectively.

5 Numerical experiments

Based on the foregoing theoretical analyses, numeri-
cal experiments are carried out to verify the proposed
model described by Eqs. (6) and (7) and demonstrate
the dynamic performance. Suppose that there are N
vehicles distributed homogeneously on a road under
a periodic boundary condition and the lateral gap is a
constant for all vehicles. The initial conditions are set
as follows [18,25]:

�xn,n+1(t) |t=0 = �xn,n+1(t) |t=1

= 4.0 for n �= 0.5N and n �= 0.5N + 1

�xn,n+1(t) |t=0 = �xn,n+1(t) |t=1

= 4.0 − 0.5 for n = 0.5N

�xn,n+1(t) |t=0 = �xn,n+1(t) |t=1

= 4.0 + 0.5 for n = 0.5N + 1 (57)

And to calculate the initial values of �xn,n+2(t) and
�xn,n+3(t) , we define that
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Fig. 4 Space headway
evolution after 104 time
steps and the profile at
t = 104 with λ = 0.02 ,
where a, c, e, g, i are the
outputs from the one-sided
lateral gap condition while
b, d, f, h, j are the outputs
from the two-sided lateral
gaps condition with
pn = 0, 0.02, 0.1, 0.2, 1.0 ,
respectively
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�xn,n+2(t) ≡ �xn,n+1(t)+�xn+1,n+2(t),�xn,n+3(t)

≡ �xn,n+1(t)+�xn+1,n+2(t)

+�xn+2,n+3(t)

Moreover, the total number of vehicles N = 100
and the related parameters are chosen as vmax =
2m/s, hc = 4m and α = 1/τ = 2s−1 [18,25].

Figure 4 shows the space headway evolution after
104 time steps and the corresponding profile at the
time step t = 104 with parameter λ = 0.02. The
curves in Fig. 4 are the profiles of corresponding three-
dimensional diagrams at the time step t = 104.

In Fig. 4, the parameter pn is set as 0, 0.02, 0.1,
0.2 and 1.0. The subfigures on the left-hand side of
Fig. 4, i.e.: Fig. 4a, c, e, g, i, are the simulation results
based on the NLBCF model in [25]. The subfigures on
the right-hand side of Fig. 4, i.e.: Fig. 4b, d, f, h, j,
are the simulation results based on the proposed model
considering two-sided lateral gaps. The comparisons
are mainly to demonstrate the capability of perturbation
rejection in the vehicular traffic flow. By comparing the
results under one-sided lateral gap and two-sided lateral
gaps conditions, the main findings are summarized as
follows:

(i) Under the one-sided lateral gap condition, as
shown in Fig. 4a, c, e, the stop-and-go traffic
appears with parameter pn = 0, 0.02, 0.1, while
the stop-and-go traffic disappears with parameter
pn = 0.1 under the two-sided lateral gaps condi-
tion as shown in Fig. 4b, d, f. This accounts for the
condition that when small perturbations (57) are
put into the uniform flow, they will be amplified
with time and the uniform flow will eventually
evolve toward a heterogeneous flow. The jams in
Fig. 4a, b are the most serious in NLBCF model
[25] and the proposed model, where there are no
effects of lateral gaps. And when the effects of
lateral gaps are considered, the stability of traffic
flow can be improved. As shown in Fig. 4c, e, d, f,
the amplitudes of perturbations decrease with the
increase of pn , and the traffic flow can evolve
toward a homogeneous flow in NLBCF model
with pn = 0.2[25] and in the proposed model
with pn = 0.1 under the condition of λ = 0.02.

(ii) Figure 4f–j indicate that the effects of two-sided
lateral gaps can improve the stability of traffic
flow. The introduction of effects of the two-sided
lateral gaps is necessary traffic flow.

(iii) According to Fig. 4e, f, the dynamic perfor-
mance of the proposed model is better than that
of NLBCF model [25]. That is to say traffic flow
described by the proposed model can overcome
the effects of small perturbations such as the
sudden acceleration or deceleration with smaller
value of parameter pn than that of NLBCF model.
This is because the NLBCF model only consid-
ers the effect of one-sided lateral gap while the
proposed model considers the effect of two-sided
lateral gaps, which implies that the rich informa-
tion of leading and lateral vehicles can enhance
the performance of car-following model.

(iv) The density waves in Fig. 4a–j always propagate
backwards. This has been observed in reality and
reported in relevant studies [9–26].

6 Conclusions

Considering the effects of two-sided lateral gaps of
the following vehicle in a road without lane disci-
pline, a new car-following model is proposed. The-
oretical analysis proves that the FVD model and the
one-sided lateral gap non-lane-based NLBCF model
are special cases of the proposed model. Compared
with NLBCF model, the stability region is enlarged
through the linear stability analysis using the pertur-
bation method and the corresponding mKdV equation
of the proposed model is derived through nonlinear
analysis using the reductive perturbation method to
describe the density wave propagation. Additionally,
results from simulation-based numerical experiments
show that the proposed mode is able to more rapidly
dissipate the effect of a perturbation such as a sudden
acceleration or deceleration of a leading vehicle.

Note that the proposed model does not consider the
scenario that the leading vehicle in the middle of a road
has lateral gap with respect to the following vehicle. For
some specifically cases, this gap may impact the fol-
lowing vehicle behavior. This leads to one of the future
research directions. In addition, the results of this study
illustrate the effects of lateral gaps on the stability of
traffic flow. These findings motivate us to study the
impacts of lateral gaps on the energy consumption of
vehicular flow in non-lane-discipline road system in the
future.
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