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Abstract The fractional variational principles beside
the semi-inverse technique are applied to derive the
space–time fractional Boussinesq equation. The semi-
inverse method is used to find the Lagrangian of
the Boussinesq equation. The classical derivatives in
the Lagrangian are replaced by the fractional deriv-
atives. Then, the fractional variational principles are
devoted to lead to the fractional Euler–Lagrange equa-
tion, which gives the fractional Boussinesq equation.
The modified Riemann–Liouville fractional derivative
is used to obtain the space–time fractional Boussi-
nesq equation. The fractional sub-equation method is
employed to solve the derived space-time fractional
Boussinesq equation. The solutions are obtained in
terms of fractional hyper-geometric functions, frac-
tional triangle functions and a rational function. These
solutions show that the fractional Boussinesq equation
can describe periodic, soliton and explosive waves.
This study indicates that the fractional order modu-
lates the waves described by Boussinesq equation. We
remark that more pronounced effects and deeper insight
into the formation and properties of the resulting waves
are added by considering the fractional order deriva-
tives beside the nonlinearity.
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1 Introduction

Derivatives and integrals of fractional order have found
many applications in recent studies in mechanics and
physics. It includes chaotic dynamics [1], mechanics
of fractal media [2], quantum mechanics [3], physi-
cal kinetics [4], plasma physics [5,6], astrophysics [7],
mechanics of non-Hamiltonian systems [8], theory of
long range interaction [9], anomalous diffusion and
transport theory [10] and many other physical topics
[11,12].

The most methods of classical mechanics deal
with conservative systems, while almost all processes
observed in the physical real world are non-
conservative. It was shown that non-integer deriv-
atives in the Lagrangian describe non-conservative
forces. Riewe [13,14] derived a method using a frac-
tional Lagrangian that leads to a fractional Euler–
Lagrange equation that is, in some sense, equivalent to
the desired equation of motion. Hamilton’s equations
are derived from the Lagrangian and are equivalent
to the Euler–Lagrange equation. Further study of the
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fractional Euler–Lagrange can be found in the works
of Agrawal [15,16]. He presented generalized Euler–
Lagrange equations for unconstrained and constrained
fractional variational problems. Baleanu et al. [17–20]
used the fractional Euler–Lagrange equation to model
fractional Lagrangian and Hamiltonian formulations.
Many other authors exploited the fractional variational
principles to study different problems in sciences and
technology [19–31] and references therein.

The fractional integration and differentiation opera-
tors had different kinds of definitions. The most famous
one is the Riemann–Liouville definition (e.g., [32,33]),
which has been used in various fields of science and
engineering successfully, but this definition leads to
the result that constant function differentiation is not
zero. Caputo’s definition gives zero value for fractional
differentiation of constant function, but this definition
requires that the function should be smooth and differ-
entiable (e.g., [32,33]). These two definitions are exam-
ples of the nonlocal fractional derivatives [34–38]. Def-
initions of local fractional derivatives have been pro-
posed as Kolwankar and Gangal fractional derivative
[39], Cresson’s derivative [40], Chen’s fractional deriv-
ative [41] and the modified Riemann–Liouville (mRL)
derivative derived by Jumarie (e.g., [42,43]). Recently,
the mRL definition for the fractional integral and deriv-
ative is used to solve some science and technology
problems (e.g., [44,45]).

The Boussinesq equations arise in hydrodynamics to
describe propagation of waves in nonlinear and dissi-
pative media [46,47]. This equation was formulated as
part of an analysis of long waves in shallow water. It was
subsequently applied to problems in the percolation of
water in porous subsurface strata. Boussinesq equa-
tions are widely used in coastal and ocean engineering
[48,49]. Also, Boussinesq equations are the basis of
several models used to describe unconfined groundwa-
ter flow and subsurface drainage problems. Recently,
fractional differential equations have attracted consid-
erable interest because of their ability to model particle
transport in heterogeneous media and complex phe-
nomena. The fractional Boussinesq equation is suitable
for studying the water propagation through heteroge-
neous porous media. A fractional Boussinesq equation
is obtained assuming power law changes of flux in a
control volume and using a fractional Taylor series [50].

The fractional differential equations have been
solved using several methods such as Laplace transfor-
mation method, Fourier transformation method, itera-

tion method and operational method (e.g., [32,33,51]).
However, most of these methods are suitable for spe-
cial types of fractional differential equations, namely
the linear with constant coefficients. However, there
are some papers dealing with the existence and mul-
tiplicity of solution of nonlinear fractional differential
equation using techniques of nonlinear analysis such as
Adomian decomposition method [52], homotopy per-
turbation method [53], fractional variational iteration
method [54], Exp-function method [55] and fractional
sub-equation method [56,57]. The space- and time-
fractional Boussinesq equations in Caputo sense deriv-
atives are solved using homotopy perturbation method
[58]. The space–time fractional Boussinesq (STFBq)
equation was solved by applying a fractional Riccati
expansion method, which gave closed analytical solu-
tions [59].

In this paper, the classical Lagrangian of the regu-
lar Boussinesq equation is calculated using the semi-
inverse method [60]. The fractional Lagrangian is
derived from the classical one by the direct way. The
STFBq equation is derived by applying the fractional
variational principle [14,15] in terms of the mRL deriv-
ative operator [42,43]. The fractional sub-equation
technique [56,57] is devoted to solve STFBq equa-
tion. The solutions of the resultant equation are given in
terms of the Mittag–Liffler function. The STFBq equa-
tion has five solutions: Two of them are represented
by fractional hyper-geometric functions and two oth-
ers in terms of fractional triangle functions, while the
fifth solution is appeared in a rational form. The effect
of the fractional order on some of these solutions is
studied and represented graphically.

The rest of this paper is outlined as follows: Sect. 2
is devoted to the derivation of the STFBq equation
by applying the semi-inverse method and the frac-
tional variational principle. Considering a traveling
wave transformation, the STFBq equation is solved by
the fractional sub-equation method in Sect. 3. In Sect. 4,
the effects of the fractional order on the results repre-
sented by the figures are discussed. Section 5 is devoted
to the conclusions on the work.

2 Derivation of space–time fractional Boussinesq
equation

The semi-inverse method [60] and the fractional vari-
ational principle [15,16] are applied to derive STFBq
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equation that is considered to describe physical phe-
nomena.

The regular Boussinesq equation of (1 + 1)-dimen-
sional has the form

∂2

∂t2 u(x, t) + A
∂2

∂x2 u2(x, t) + B
∂2

∂x2 u(x, t)

+ C
∂4

∂x4 u(x, t) = 0, (1)

where u(x, t) is a field function and A is the constant
nonlinear coefficient; B is the dissipation coefficient
and C is the higher order dissipation coefficient.

The space–time fractional Boussinesq equation can
be formulated as follows:

Assuming a potential function U (x, t) as u(x, t) =
Ux (x, t) gives the potential equation of the regular
Boussinesq equation (1) in the form

Uxtt (x, t) + A{[u(x, t)]2}xx + BUxxx (x, t)

+ CUxxxxx (x, t) = 0, (2)

where the subscripts denote the partial differentiation
of the function with the parameter.

The functional of this equation can be represented
by

J (U ) =
∫

R
dx

∫
T

dtUx (x, t){c1Uxtt (x, t)

+ c2 A([u(x, t)]2)xx + c3 BUxxx (x, t)

+c4CUxxxxx (x, t)}, (3)

where c1, c2, c3 and c4 are Lagrangian multipliers.
Integrating this equation by parts where Ux |R =

Ut |T = Uxx |R = Uxxx |R = 0 and ([u(x, t)]2)xx is
considered as a fixed function, applying the variation of
this functional with respect to U (x, t), integrating by
parts, optimizing of this variation, δ J (U ) = 0 and com-
paring the resultant equation with (2) give the constant
multipliers as: c1 = 1

2 , c2 = 1, c3 = 1
2 and c4 = 1

2 .
The functional relation yields directly the Lagrangian

of the Boussinesq equation as

L(Uxt , Ux , Uxx , Uxxx )

= −1

2
[Uxt (x, t)]2 + A{[u(x, t)]2}xxUx (x, t)

− 1

2
B[Uxx (x, t)]2 + 1

2
C[Uxxx (x, t)]2. (4)

Similarly, the Lagrangian of the space–time fractional
version of the Boussinesq equation could be written in
the form

F
(
Dα

t Dβ
x U, Dβ

x U, Dββ
x U, Dβββ

x U
)

= −1

2

[
Dα

t Dβ
x U (x, t)

]2 + A
{

Dββ
x [u(x, t)]2

}

×Dβ
x U (x, t) − 1

2
B

[
Dββ

x U (x, t)
]2

+1

2
C

[
Dβββ

x U (x, t)
]2

, (5)

where Dγ γ
z f = Dγ

z [Dγ
z f ] and Dγ

z f (z) is the mRL
fractional derivative defined by [42,43]

Dγ
z f (z) = 1

�(1 − γ )

d

dz

{∫ z

a
dζ

[ f (ζ ) − f (a)]
(z − ζ )γ

}
,

0 ≤ γ < 1 (6)

The functional of the space–time fractional Boussinesq
equation takes the form

JF (U ) =
∫

R
(dx)β

∫
T
(dt)α

F
(
Dα

t Dβ
x U, Dβ

x U, Dββ
x U, Dβββ

x U
)
, (7a)

where [42,43]
∫ t

a
(dτ)γ f (τ ) = γ

∫ t

a
dτ(t − τ)γ f (τ ). (7b)

Integrating by parts using the relation [42,43]
∫ b

a
(dτ)γ f (z)Dγ

z g(z) = �(1 + γ )[g(z) f (z)|ba

−
∫ b

a
(dz)γ g(z)Dγ

z f (z), f (z), g(z) ∈ [a, b]. (8)

and optimizing the variation of this functional,
δ JF (U ) = 0, the Euler–Lagrange equation of space–
time fractional Boussinesq equation has the form

−Dα
t

(
∂ F

∂ Dα
t Dβ

x U

)
+

(
∂ F

∂ Dβ
x U

)
− Dβ

x

(
∂ F

∂ Dββ
x U

)

+ Dββ
x

(
∂ F

∂ Dβββ
x U

)
= 0. (9)

Substituting the Lagrange of the STFBq given by (5)
into this Euler–Lagrange formula and using the defini-
tion of the fractional potential function as Dβ

x U (x, t) =
u(x, t) lead to

Dαα
t u(x, t) + ADββ

x [u(x, t)]2 + B Dββ
x u(x, t)

+ C Dββββ
x u(x, t) = 0, (10)

which is the space–time fractional Boussinesq equa-
tion.
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3 Solution of space–time fractional Boussinesq
equation

In this section, the STFBq equation will be solved
using a fractional sub-equation method [56,57]. Con-
sidering the traveling wave transformations u(x, t) =

(ξ), ξ = x + vt , (10) can be reduced to the follow-
ing nonlinear fractional ordinary differential equation
using the relations

Dα
x [u(x)v(x)] = Dα

x [u(x)]v(x) + u(x)Dα
x [v(x)],

(11a)

Dα
x f (u(x)) = Dα

x u(x)(d f /du) = Dα
u f (u)(du/dx)α,

(11b)

for the case of β = α:

v2α Dαα
ξ 
(ξ) + ADαα

ξ [
(ξ)]2 + B Dαα
ξ 
(ξ)

+ C Dαααα
ξ 
(ξ) = 0. (12)

The fractional sub-equation method [56,57] assumes
solution of this equation as


(ξ) =
n∑

k=0

akϕ
k(ξ), (13)

where ϕ(ξ) satisfies the following fractional Riccati
equation:

Dα
ξ ϕ(ξ) =

m∑
j=0

b jϕ
j (ξ), (14)

where ak, k = 0, . . . , n are constant coefficients to be
determined later and b j , j = 0, . . . , m are arbitrary
coefficients.

By balancing the highest order derivative term and
nonlinear term in (12), the value of n can be determined,
which has, in this problem, the value n = 2.

We suppose that (12) has the following formal solu-
tion:


(ξ) = a0 + a1ϕ(ξ) + a2[ϕ(ξ)]2, (15)

where a0, a1 and a2 are constant coefficients to be
determined and ϕ(ξ) satisfies the following fractional
Riccati equation:

Dα
ξ ϕ(ξ) = b0 + b1ϕ

2(ξ), (16)

where b0 and b1 are arbitrary coefficients.

Using the generalized Exp-function method via
Mittag–Leffler functions, Zhang et al. [61] first obtained
the following solution of fractional Riccati equation
(16)

ϕ1(ξ) = −√−b0 tanhα(
√−b0ξ), b0 < 0, b1 = 1,

(17a)

ϕ2(ξ) = −√−b0 cothα(
√−b0ξ), b0 < 0, b1 = 1,

(17b)

ϕ3(ξ) = √
b0 tanα(

√
b0ξ), b0 > 0, b1 = 1,

(17c)

ϕ4(ξ) = −√
b0 cotα(

√
b0ξ), b0 > 0, b1 = 1,

(17d)

ϕ5(ξ) = −�(1 + α)/(ξα + ω),

b0 = 0, b1 = 1, ω = constant, (17e)

with the generalized hyperbolic and trigonometric
functions

tanhα(x) = sinhα(x)/ coshα(x),

cothα(x) = coshα(x)/ sinhα(x), (18a)

sinhα(x) = [Eα(x) − Eα(−x)]/2,

coshα(x) = [Eα(x) + Eα(−x)]/2, (18b)

tanα(x) = sinα(x)/ cosα(x),

cotα(x) = cosα(x)/ sinα(x), (18c)

sinα(x) = [Eα(i x) − Eα(−i x)]/(2i),

cosα(x) = [Eα(i x) + Eα(−i x)]/2, (18d)

where i = √−1 and Eα(x) is the Mittag–Leffler func-
tion defined by

Eα(x) =
∞∑

k=0

xk/�(1 + kα). (18e)

Substituting (15) along with (16) and setting the coef-
ficient of ϕk(ξ) equal to zero lead to a set of algebraic
equations in terms of the coefficients a0, a1, a2 and b0.
Solving the algebraic set of equations by Maple gives
the following case:

a0 = −(v2α + B + 8Cb0)/(2A), a1 = 0,

a2 = −6C/A, b0 = b0, b1 = 1, (19)

where the nonlinear coefficient A �= 0.
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Fig. 1 Solution (20a) of
STFBq equation with
parameters A = −3,

B = −1, C = 0.5, v = 1.5

This set of coefficients gives the following set of
solutions for the space–time fractional Boussinesq
equation:


1(ξ) = −(v2α + B + 8Cb0)/(2A)

+ (6C/A)b0[tanhα(
√−b0ξ)]2, b0 < 0,

(20a)


2(ξ) = −(v2α + B + 8Cb0)/(2A)

+ (6C/A)b0[cothα(
√−b0ξ)]2, b0 < 0,

(20b)


3(ξ) = −(v2α + B + 8Cb0)/(2A)

− (6C/A)b0[tanα(
√

b0ξ)]2, b0 > 0,

(20c)


4(ξ) = −(v2α + B + 8Cb0)/(2A)

− (6C/A)b0[cotα(
√

b0ξ)]2, b0 > 0,

(20d)


5(ξ) = −(v2α + B)/(2A)

− (6C/A)[�(1 + α)]2/(ξα + ω)2,

ω = constant. (20e)

The solutions given by (20a) and (20c) are the same
solutions appeared by (34) in [59], but other three solu-
tions here may not be represented before.

4 Results and discussion

Our main motive in this paper is to study the effect of
the fractional order (α) of the Boussinesq equation on

its solution forms. The fractional sub-equation method
[56,57] is applied to solve the derived STFBq equation.
The solutions of STFBq equation are given by equa-
tions (20) where two of these solutions are in terms of
fractional hyper-geometric functions and two solutions
in terms of fractional triangle functions, while the fifth
one is represented as a rational solution. Refereeing to
the solution of the regular Boussinesq equation [62],
the free parameter (b0) of solutions (20) is chosen to
be b0 = ∓ ∣∣(2v2α − B − 3)/(8C)

∣∣. The effects of the
space–time fractional derivative order (α) on the shape
of the solutions have been studied in Figs. 1, 2, 3, 4
and 5.

Figure 1 shows the solution (20a), which repre-
sents a soliton solution. The increasing of α increases
the height while deceases the width of the soliton
wave solution. Therefore, the fractional order can be
used to modulate the soliton shape. The solution (20b)
describes an explosive soliton and is represented in Fig.
2 where the increasing of α increases the wave width.
This type of solutions shows that the Boussinesq equa-
tion can represent explosive wave form. The third type
of fractional Boussinesq equation, given by (20c), rep-
resents a periodic explosive wave. Figure 3 illustrates
that the increasing of the fractional order (α) decreases
the wavelength and increases the number of explo-
sive waves. The solution indicated by (20d) describes
another explosive soliton. This solution is elucidated in
Fig. 4, which shows that the increasing of α increases
the width of the explosive wave. The rational solu-
tion represented by (20e) shows decreasing wave as
in Fig. 5.
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Fig. 2 Solution (20b) of
STFBq equation with
parameters A = −3,

B = −1, C = 0.5, v = 1.5

Fig. 3 Solution (20c) of
STFBq equation with
parameters A = −3,

B = −1, C = 0.5, v = 1.5

Fig. 4 Solution (20d) of
STFBq equation with
parameters A = −3,

B = −1, C = 0.5, v = 1.5
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Fig. 5 Solution (20e) of
STFBq equation with
parameters
A = −3, B = −1,

C = 0.5, v = 1.5, w = 1

5 Conclusion

In this work, the space–time fractional nonlinear
Boussinesq equation that has many different applica-
tions in science and engineering is derived. The semi-
inverse method [60] is used to find the Lagrangian of
the Boussinesq equation. The classical derivatives in
the Lagrangian are directly replaced by the fractional
derivatives. Then, the fractional variational principles
[14,15] are devoted to lead to the fractional Euler–
Lagrange equation, which gives the fractional Boussi-
nesq equation. The modified Riemann–Liouville frac-
tional derivative [42,43] is employed to obtain the
derived space–time fractional Boussinesq equation.

The fractional sub-equation method [56,57] is
applied to solve the derived STFBq equation. The solu-
tions of STFBq equation are given by equations (20)
where two of these solutions are in terms of fractional
hyper-geometric functions and two solutions in terms
of fractional triangle functions, while the fifth one is
represented as a rational solution.

The calculations of these solutions show that the
fractional order of the STFBq equation changes both
the height and the width of the waves. This means that
the fractional order can be used to modulate the shape
of the waves described by the Boussinesq equation.
We remark that more pronounced effects and deeper
insight into the formation and properties of the resulting
waves are added by considering the fractional order
derivatives beside the nonlinearity.

Some advantages of this study are as follows: The
derivation of the space–time fractional Boussinesq

equation from the classical one employs a variational
technique. The solutions of the fractional Boussinesq
equation are appeared in closed analytical forms in
terms of the Mittag–Leffler function. The used tech-
nique leads to new solutions describe periodic, soliton
and explosive waves that can explain different physical,
biological and engineering problems.
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