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Abstract This paper deals with the problems of track-
ing and H∞ control for output-constrained and state-
constrained nonlinear switched systems in strict feed-
back form. Under a mild condition on the initial out-
put tracking error and the simultaneous domination
assumption, a novel approach is proposed to design
controller such that the output tracking error converges
to zero asymptotically and is always within a pre-
specified limit range. Smooth or p-times differentiable
unbounded functions are introduced and incorporated
in output tracking error transformations to complete the
control design. Furthermore, the developed method is
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extended to the state-constrained H∞ control problem
for a class of nonlinear switched systems with distur-
bance input. Finally, simulation examples are provided
to demonstrate the applicability of the presented results.
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1 Introduction

In many practical applications, it is important to design
an effective controller for a dynamical system and at
the same time consider the influence of the system
constraints. Constraints are ubiquitous in realistic sys-
tems and demonstrate themselves as nonlinear satura-
tion, physical stoppages, as well as increasing produc-
tivity demands and tighter environmental regulations,
etc. Violation of the constraints during operation may
result in performance degradation, hazards, or system
damage. Thus, the study on constraint-handling meth-
ods in control design and analysis has attracted many
researchers from various fields in science and engineer-
ing, due to theoretical challenges and importance in
real-world applications.

There exist various techniques to deal with the con-
strained control problems for linear systems and non-
linear systems [1–7]. Most of the results in the liter-
ature are dependent on the notions of set invariance
and admissible set control [8,9], and other methods
include model predictive control [10], reference gov-
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ernors [11]. Recently, barrier Lyapunov functions have
been proposed in [12,13] to handle the control prob-
lems with state or output constraints. [13] also proposed
asymmetrical barrier Lyapunov functions to handle an
asymmetric output constraint. However, a problem with
the control design presented in [13] is that the asym-
metric barrier Lyapunov function used in the first step
of the control design procedure is of a switching type,
a C1 function. Consequently, the subsequent stabiliz-
ing functions must be of a high power of the output
tracking error. This is somewhat undesirable and could
increase the control effort and decrease the robustness
of the controlled system.

On the other hand, as a special class of hybrid sys-
tems, switched systems have attracted considerable
attention during the last decade because of its impor-
tance from both theoretical and practical points of
views [14–23]. Stability analysis and control synthesis
are two fundamental problems in the study of switched
systems for which many contributions have been pro-
posed [24–33]. However, as a valuable problem which
has great practical significance, the tracking problem of
switched dynamical systems subject to output tracking
error constraints has been paid little attention so far. For
instance, it is necessary to ensure the noncontactness
between the rotor and stator in the control of a magnetic
bearing with possible switching models [34]. Another
example is to guarantee no contact between the mov-
able and fixed electrodes when controlling the electro-
static parallel plate microactuators [35]. Furthermore,
the H∞ property analysis of switched systems is an
interesting issue. However, most of the results related
to this problem have been focused on the linear case,
and for the nonlinear case, the results depend mainly
on the solution of HJI inequalities [36].

Motivated by the aforementioned observations, this
article presents a controller design method to handle the
output-constrained tracking control (OCTC) and state-
constrained H∞ control (SCHC) problems for nonlin-
ear switched systems in strict feedback form. Under
an appropriate condition on the output tracking error
and the simultaneous domination assumption, the out-
put tracking error is always within a pre-specified limit
range. The key to the success of our control design
method is the introduction of smooth and/or p-times
differentiable unbounded functions that are incorpo-
rated in the output tracking error transformation. More-
over, the SCHC prolem for a class of disturbed nonlin-
ear switched systems in strict feedback form is also

considered. The contributions of this article lie in that:
(i) it should be noted that the results obtained in this
paper is not a simple parallel extension of [37]. Because
in each step of the controller design procedure, we must
choose a common virtual control law to counteract the
influence of switched subsystems on the performance
of closed-loop system, which is different with [37];
(ii) in comparison with the barrier Lyapunov function
approach proposed in [13], no switchings are needed in
our proposed controller even if the constraint is asym-
metric; (iii) in the simulation, we further add a practical
application to demonstrate the effectiveness of the pro-
posed design scheme.

Notations: We use the following notations through-
out this paper. R+ denotes the set of nonnegative real
numbers, Rn stands for the n-dimensional real Euclid-
ean vector space, and ‖•‖ represents the Euclidean vec-
tor norm. We also denote x̄i = [x1, x2, . . . , xi ]T , z̄i =
[z1, z2, . . . , zi ]T and ỹdi =

[

yd , y(1)
d , y(2)

d , . . . , y(i)
d

]T
,

for a positive integer i.

2 System description and problem statement

In this paper, we discuss a class of nonlinear switched
systems of the following form:

ẋi = f σ(t)
i (x̄i ) + xi+1, i = 1, 2, · · · , n − 1,

ẋn = f σ(t)
n (x̄n) + gσ(t)(x̄n)u,

y = x1, (1)

where x1, x2, . . . , xn are the states, u =
[

u1, u2, . . .,

uq

]T ∈ Rq and y ∈ R are the input and output

respectively. σ (t) : [0,∞) → Im = {1, 2, · · ·, m}
is the switching signal. For all i = 1, 2, . . . , n and
k = 1, 2, . . . , m, the functions f k

i , gk are smooth with
gk (x̄n) �= 0,∀x̄n ∈ Rn . We assume that the state of
the system (1) does not jump at the switching instants,
i.e., the trajectory x(t) is everywhere continuous.

In this paper, we first deal with the following OCTC
problem.

The OCTC problem: For the system (1), under arbi-
trary switchings, design a continuous feedback con-
troller u that forces the output y of the system (1) to
track a reference trajectory yd(t) such that:

(1) Asymptotic tracking is accomplished, i.e.,

lim
t→∞(y(t) − yd(t)) = 0. (2)
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(2) The output tracking error is within a pre-specified
limit range, i.e.,

− L ≤ y(t) − yd(t) ≤ L̄ (3)

for all t ≥ t0 ≥ 0, where L and L̄ are strictly
positive constants. If L = L̄ , the constraint (3) is
referred to as a symmetric constraint. If L �= L̄ ,
the constraint (3) is referred to as an asymmetric
constraint.

(3) All signals of the closed-loop system (1) are
bounded.

In this paper, we adopt the following assumptions to
develop the main results.

Assumption 1 The functions gk (x̄n) = [

gk,1 (x̄n) ,

gk,2 (x̄n) , . . . , gk,q (x̄n)
]

, k =1, 2, . . . , m are known.
Fur
ther, for each j ∈ {1, 2, . . . , q}, assume that min

k∈{1,2,...,m}gk, j (x̄n) ≥ 0,∀x̄n ∈ Rn or maxk∈{1,2,...,m}
gk, j (x̄n) ≤ 0,∀x̄n ∈ Rn . For convenience, denote

M =
{

j ∈{1, 2, . . . , q} |mink∈{1,2,...,m}gk, j (x̄n)≥0
}

,

F = { j ∈ {1, 2, . . . , q} | j /∈ M} . (4)

Assumption 2 At the initial time t0, there exist strictly
positive constants L1 < L and L̄1 < L̄ , such that

− L1 ≤ y(t) − yd(t) ≤ L̄1. (5)

Assumption 3 The reference trajectory yd(t) and their
time derivatives ẏd(t), ÿd(t), . . . , y(n)

d (t) are bounded.

We review two definitions and two relevant lemmas
that will be used in the sequel.

Definition 1 [37] A scalar function h(x, a, b) is said
to be a p-times differentiable step function if it enjoys
the following properties:

(1) h(x, a, b) = 0, ∀ − ∞ < x ≤ a,

(2) h(x, a, b) = 1, ∀b ≤ x < +∞,

(3) 0 < h(x, a, b) < 1, ∀x ∈ (a, b),

(4) h(x, a, b) is p times differentiable with respect to
x ,

(5) h′(x, a, b) > 0, ∀x ∈ (a, b),

(6) h′(x, a, b) ≥ δ1(ρ1) > 0,∀x ∈ (a + ρ1, b − ρ1),

with 0 < ρ1 < b−a
2 , where p is a positive integer,

x ∈ R , a and b are constants such that a < 0 <

b, h′(x, a, b) = ∂h′(x,a,b)
∂x and δ1(ρ1) is a positive

constant depending on the positive constant ρ1.
Furthermore, if the function h(x, a, b) is infinite
times differentiable with respect to x , then it is said
to be a smooth step function.

Lemma 1 [37] Let the scalar function h(x, a, b) be
defined as

h(x, a, b)=
∫ x

a f (τ − a) f (b − τ)dτ
∫ b

a f (τ − a) f (b − τ)dτ
(6)

with a and b being constants such that a < 0 < b, and
the function f (y) being defined as follows:

f (y) = 0, if y ≤ 0,

f (y) = g(y), if y > 0,
(7)

where g(y) is a single-valued function that enjoys the
following properties:

(a) g(τ − a) f (b − τ) > 0, ∀τ ∈ (a, b),

(b) g(τ −a) f (b−τ) ≥ δ2(ρ2) > 0,∀τ ∈ (a+ρ2, b−
ρ2), with 0 < ρ2 < b−a

2 ,

(c) g(y) is p times differentiable with respect to y, and

limy→0+ ∂k g(y)

∂ yk = 0, k = 1, 2, . . . , p − 1, with p

being a positive integer and δ2(ρ2) is a positive
constant depending on the positive constant ρ2.
Then, the function h(x, a, b) is a p-times differ-
entiable step function. Moreover, if g(y) in (7) is
replaced by g(y)=e−1/y then property (4) in Def-
inition 1 is replaced by (4)′, i.e., h(x, a, b) is a
smooth step function.

Remark 1 It is worth pointing out that the function g(y)

in (7) can be chosen as g(y)=yp, g(y)= tanh(y)p,

g(y)= arctan(yp), etc. It is easy to check that these
functions satisfy all the properties (a)-(c) listed in
Lemma 1.

Definition 2 [37] A function �(x, a, b) is said to be
a p-times differentiable unbounded function if it holds
the following properties:

(1) x = 0 ⇔ �(x, a, b) = 0,

(2) limx→a−�(x, a, b) = −∞, limx→b+�(x, a, b)

= ∞,

(3) �(x, a, b) is p-times differentiable with respect to
x , for all x ∈ (a, b),.

(4) �
′
(x, a, b) > 0,∀x ∈ (a, b),

(5) �
′
(x, a, b) ≥ δ3(ρ3) > 0,∀x ∈ (a +ρ3, b −ρ3),

with 0 < ρ3 < b−a
2 ,

where p is a positive integer, a and b are constants such
that a < 0 < b, �

′
(x, a, b) = ∂�(x,a,b)

∂x , and δ3(ρ3) is
a positive constant depending on the positive constant
ρ3. Moreover, if p = ∞, then the function �(x, a, b)

is said to be a smooth unbounded function.
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Remark 2 If a= −b in the function �(x, a, b), then it
is easy to get many p-times differentiable unbounded
functions. An example is the function tan(− π

2a x). If
a �= −b, it is more difficult to find a p-times differen-
tiable unbounded function. However, we can construct
a p-times differentiable unbounded function by using
the p-times differentiable step function in Definition 1
with the following lemma.

Lemma 2 [37] Let the scalar function �(x, a, b) be
defined as

�(x, a, b) = �̄(ϕ(x, a, b)) − �̄(ϕ(0, a, b)), (8)

where the function ϕ(x, a, b) is defined as follows:

ϕ(x, a, b) = ε(2h(x, a, b) − 1) (9)

with ε being a positive constant, h(x, a, b) being the p-
times differentiable step functions in Definition 1. The
function �̄(ξ) is such that

(1) ξ = 0 ⇔ �̄(ξ) = 0,

(2) limξ→−ε−�̄(ξ) = −∞, limξ→ε+�̄(ξ) = ∞,

(3) �̄(ξ) is p-times differentiable with respect to ξ ,
for all ξ ∈ (−ε, ε),.

(4) �̄
′
(ξ) > 0,∀ξ ∈ (−ε, ε),

(5) �̄
′
(ξ) > δ4(ρ4) > 0,∀ξ ∈ (a + ρ4, b − ρ4), with

0 < ρ4 < b−a
2 ,

where �̄
′
(ξ) = ∂�̄(ξ)

∂ξ
> 0,∀ξ ∈ (−ε, ε), and δ4(ρ4) is

a positive constant depending on the positive constant
ρ4. Then, the function �(x, a, b) is a p-times differen-
tiable unbounded function. Moreover, if h(x, a, b) is a
smooth step function, then the function �(x, a, b) is a
smooth unbounded function.

Remark 3 As an example, we provide a p-times differ-
entiable unbounded function �(x, a, b) as �(x, a, b)

= tan[π
2 (2h(x, a, b) − 1)] − tan[π

2 (2h(0, a, b) − 1)].
Lemma 3 [38] (Barbalat’ s Lemma) Consider a dif-
ferentiable function h(t). If limt→∞ h(t) is finite and
ḣ(t) is uniformly continuous, then limt→∞ ḣ(t) = 0.

3 Tracking control

In this subsection, under the simultaneous domination
assumption, we present a controller design approach to
solve the OCTC problem of the system (1) by applying
the p-times differentiable unbounded function in Def-
inition 2 and the well-known backstepping technique.

First, we use the following change of coordinates:

z1 = �(x1d , a, b), (10)

where x1d = x1 − yd = y − yd is the output
tracking error, �(x1d , a, b) is a p-times differentiable
unbounded function with p ≥ n − 1, and the constants
a and b are chosen such that

− L ≤ a < −L1, L1 < b ≤ L̄. (11)

Based on the properties of �(x1d , a, b) shown in Defi-
nition 2, we conclude that if we are able to design a con-
trol input u such that limt→∞z1(t) = 0 and keep all sig-
nals of the corresponding closed-loop system bounded
for a bounded z1(t0), then the output tracking control
problem of the system (1) is solved. It is seen that z1(t0)
is bounded under the choice of the constants a and b in
(11), the assumption on the initial output tracking error
in (5), and the properties of the function �(x1d , a, b)

listed in Definition 2.
Differentiating both sides of (10) in conjunction with

the system (1), we can rewrite them in the form:

ż1 = � ′(x1d , a, b)( f σ(t)
1 (x1) + x2 − ẏd),

ẋi = f σ(t)
i (x̄i ) + xi+1, i = 2, 3, . . . , n − 1,

ẋn = f σ(t)
n (x̄n) + gσ(t)(x̄n)u,

y = x1, (12)

Step 1. We consider the following collection of auxil-
iary z1- equations:

ż1 = � ′(x1d , a, b)( f k
1 (x1) + x2 − ẏd),

k = 1, 2, . . . , m. (13)

Define V1(z1) = 1
2 z2

1. Viewing x2 as the virtual
input of the system (13), we say that these first-
order subsystems are simultaneously dominatable if
there exists a common smooth stabilizing function
φ1
(

x1, z1, ỹd1

) = φ∗
1 (x1, yd) + ẏd such that, along

the solutions of the subsystems in (13),

V̇1 (z1) = z1 ż1 = z1�
′(x1d , a, b)( f k

1 (x1)

+φ∗
1 (x1, yd)) < 0, ∀z1 �= 0,

k = 1, 2, . . . , m. (14)

Define

dk
1

(

x1, z1, ỹd1

) = z1�
′(x1d , a, b)( f k

1 (x1)

+φ∗
1 (x1, yd)),

k = 1, 2, . . . , m. (15)

With V1 (z1), the control design for the first step is
completed if a common smooth stabilizing function
x2 = φ1

(

x1, z1, ỹd1

)

is found.
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Step i (for i = 2, . . . , n − 1). Define

zi = xi − φi−1
(

x̄i−1, z̄i−1, ỹdi−1

)

,

Vi (z̄i ) = Vi−1 (z̄i−1) + 1

2
(xi − φi−1)

2 = 1

2

i
∑

j=1

z2
j .

(16)

Then, we consider the following collection of auxiliary
(z1, z2, . . . , zi )-equations:

ż1 = � ′(x1d , a, b)( f k
1 (x1) + x2 − ẏd),

ż2 = f k
2 (x̄2) + x3 − ∂φ1

∂x1

(

f k
1 (x1) + x2

)

−
1
∑

j=0

∂φ1

∂y( j)
d

y( j+1)
d ,

. . .

żi = f k
i (x̄i ) + xi+1 −

i−1
∑

j=1

∂φi−1

∂x j

(

x j+1 + f k
j

(

x̄ j
)

)

−
i−1
∑

j=0

∂φi−1

∂y( j)
d

y( j+1)
d ,

k = 1, 2, . . . , m. (17)

With the candidate Lyapunov function Vi (z̄i ) and tak-
ing xi+1 as the virtual input of the system (17), we say
that the i th-order subsystems are simultaneously dom-
inatable if there exists a common smooth stabilizing
function xi+1 = φi

(

x̄i , z̄i , ỹdi

)

, such that along the
solutions of the subsystems in (17),

V̇i (z̄i ) =
i
∑

j=1

z j ż j =
i
∑

j=1

dk
j

(

x̄i , z̄i , ỹdi

)

< 0,

∀z̄i �= 0, k = 1, 2, . . . , m, (18)

where, for j = 2, . . . , i,

dk
2

(

x̄2, z̄2, ỹd2

) = z2

(

� ′z1 + φ2 + f k
2 (x̄2)

−∂φ1

∂x1

(

x2 + f k
1 (x1)

)

−
1
∑

l=0

∂φ1

∂y(l)
d

y(l+1)
d

)

,

dk
j

(

x̄ j , z̄ j , ỹd j

) = z j

(

z j−1 + φ j + f k
j

(

x̄ j
)

−
j−1
∑

l=1

∂φ j−1

∂xl

(

xl+1+ f k
l (x̄l)

)

−
j−1
∑

l=0

∂φ j−1

∂y(l)
d

y(l+1)
d

⎞

⎠ .

(19)

With the constructed Vi (z̄i ), the control design for the
i th step is completed if a common smooth stabilizing
function xi+1 = φi

(

x̄i , z̄i , ỹdi

)

is found.

By this procedure, we say that the subsystems of
(12) are simultaneously dominatable if the (n − 1)th
step is completed. In this case, we design a continuous
feedback controller at the final step.

Step n. Define

żn = xn − φn−1
(

x̄n−1, z̄n−1, ỹdn−1

)

,

Vn (z̄n) = Vn−1 (z̄n−1) + 1

2
(xn − φn−1)

2 = 1

2

n
∑

i=1

z2
i .

(20)

It is obvious that Vn (z̄n) is positive definite and radi-
ally unbounded in (z1, z2, . . . , zn)T . Thus, along the
solutions of the kth subsystem in (20), we have

V̇n =
n
∑

i=1

zi żi =
n−1
∑

i=1

dk
i

(

x̄i , z̄i , ỹdi

)

+zn

(

zn−1 + f k
n (x̄n) + gk (x̄n) u

−
n−1
∑

j=1

∂φn−1

∂x j

(

x j+1 + f k
j

(

x̄ j
)

)

−
n−1
∑

j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)

= ak
(

x̄n, z̄n, ỹdn

)+ bk
(

x̄n, z̄n, ỹdn

)

u, (21)

where

ak
(

x̄n, z̄n, ỹdn

) =
n−1
∑

i=1

di,k
(

x̄i , z̄i , ỹdi

)

+ zn(zn−1 + f k
n (x̄n)

−
n−1
∑

j=1

∂φn−1

∂x j

(

x j+1 + f k
j

(

x̄ j
)

)

−
n−1
∑

j=0

∂φn−1

∂y( j)
d

y( j+1)
d ),

bk
(

x̄n, z̄n, ỹdn

) = zngk (x̄n) . (22)

In view of the above discussions and the simultaneous
domination condition, a continuous feedback controller
for system (1) can be designed in the following form:

u
(

x̄n, z̄n, ỹdn

) = [

u1
(

x̄n, z̄n, ỹdn

)

, u2
(

x̄n, z̄n, ỹdn

)

,

. . . , uq
(

x̄n, z̄n, ỹdn

)]T
, (23)

where
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u j
(

x̄n, z̄n, ỹdn

)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

mini∈{1,2,...,m}
{

pi, j
(

x̄n, z̄n, ỹdn

)}

, if zn > 0
maxi∈{1,2,...,m}

{

pi, j
(

x̄n, z̄n, ỹdn

)}

, if zn < 0
for j ∈ M

0, if zn = 0

(24)

and

u j
(

x̄n, z̄n, ỹdn

)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

maxi∈{1,2,...,m}
{

pi, j
(

x̄n, z̄n, ỹdn

)}

, if zn > 0
mini∈{1,2,...,m}

{

pi, j
(

x̄n, z̄n, ỹdn

)}

, if zn < 0,

for j ∈ F
0, if zn = 0

(25)

with

pk
(

x̄n, z̄n, ỹdn

) = [

pk,1
(

x̄n, z̄n, ỹdn

)

, pk,2
(

x̄n, z̄n, ỹdn

)

,

. . . , pk,q
(

x̄n, z̄n, ỹdn

)]T

=
⎧

⎨

⎩

−bT
k

max
{

a+bk bT
k ,0

}

bk bT
k

, if zn �= 0

0, if zn = 0.

(26)

Lemma 4 Consider the system (12). Suppose that all
subsystems of (12) are simultaneously dominatable.
Then, a continuous feedback controller (23) can be
designed such that along the solutions of all closed-
loop subsystems

V̇n(z̄n) < 0, ∀z̄n �= 0 (27)

holds, where Vn(z̄n) is the Lyapunov function obtained
in (20). Thus, Vn(z̄n) is a common Lyapunov function
(CLF) for the system (12).

Proof The proof is similar to the proof of Lemma 3 in
[29]. �
Now, we summarize the main result of this subsection
in the following theorem.

Theorem 1 Suppose that Assumption 1-3 are satisfied.
If the simultaneous domination assumption holds, then
the OCTC problem of the system (1) is solved by the
controller u designed as in (23) under arbitrary switch-
ings. Moreover, the output tracking error x1d(t) locally
exponentially converges to zero.

Proof (i) First, we show that all zi , i = 1, 2, . . . , n
are bounded. It follows from V̇n < 0 in Lemma 4
that Vn (t) < Vn (0) ,∀t > t0 ≥ 0. This means that

1

2

n
∑

j=1

z2
j (t) <

1

2

n
∑

j=1

z2
j (t0) (28)

Under the initial condition specified in (3), and
the choice of the constants a and b in (11), the
right-hand side of (28) is bounded. This implies
that the left-hand side of (28) must be bounded.
It is easy to infer that the boundedness of the
left-hand side of (28) implies that all zi , i =
1, 2, . . . , n are bounded. Then, boundedness of all
xi , i = 1, 2, . . . , n follows from the boundedness
of all zi , y(i)

d (t), smooth property of all functions
f k
i (xi ), gk(xn), φi

(

x̄i , z̄i , ỹdi

)

, and differentiable
property of �(x1d , a, b). With x̄n (t) , z̄n (t) , ỹdn

bounded, we can infer that the continuous con-
troller u (t) in (23) is bounded. Hence, all closed-
loop signals are bounded.

(ii) Since |z1| is bounded for all t > t0 ≥ 0, the output
tracking error x1d(t) never reaches its boundary
values a and b, i.e., x1d ∈ (a, b) for all t > t0 ≥
0. This in turn implies from (11) and L1 ≤ L ,
L1 ≤ L̄ (Assumption 2) that x1d(t) is always in
its constraint range, i.e., L1 ≤ x1d(t) ≤ L1 for all
t > t0 ≥ 0.

(iii) From the fact that x̄i (t) , z̄i (t) , i = 1, 2, . . . , n
are bounded, it can be checked from (20) that
V̈n (t) is bounded, which means that V̇n (t) is
uniformly continuous. Then, applying Lemma 3,
leads to z̄i (t) → 0 as t → ∞, which means
y(t) → yd(t) as t → ∞.

(iv) Now, by using the Taylor expansion of the func-
tion �(x1d , a, b) about x1d(t) = 0 with a notice
of Property (5) of the function �(x1d , a, b), Prop-
erty (6) of the function h(x1d , a, b), and the
construction of the function �(x1d , a, b) (see
Lemma 2), it can be shown that there exists a
strictly positive constant δ5(ρ5) depending on the
positive constant ρ5 with 0 < ρ5 > b−a

2 , such
that

δ5(ρ5) |x1d(t)| ≤ |�(x1d , a, b)| , t > t1 > t0

(29)

where t1 is a fixed number. By definition z1 =
�(x1d , a, b), a combination of (23) and z1 → 0
gives

|x1d(t)| ≤ |�(x1d(t), a, b)|
δ5(ρ5)

= |z1(t)|
δ5(ρ5)

→ 0

(30)

which implies x1d(t) converges to zero asymptot-
ically.

�

123



Tracking and H∞ control of constrained nonlinear switched systems 93

4 H∞ control

In this subsection, the above OCTC design method is
extended to the state-constrained H∞ control (SCHC)
problem of the following disturbed switched nonlinear
systems:

ẋi = f σ(t)
i (x̄i ) + xi+1 + aσ(t)

i (x̄i ) ω,

i = 1, 2, . . . , n − 1,

ẋn = f σ(t)
n (x̄n) + u + aσ(t)

n (x̄n) ω,

y = hσ(t) (x̄n) + dσ(t) (x̄n) ω, (31)

where x1, x2, . . . , xn are the states, u ∈ R and y ∈ Rn p

are the input and output respectively. ω ∈ Rnω rep-
resents the disturbance input of function class ω ∈
L2[0,+∞).The switching signal σ (t) is the same as
the one for system (1). All functions are smooth func-
tions satisfying f k

i (0) = 0, ak
i (0) = 0, hk(0) =

0, dk(0) = 0 for ∀k ∈ Im, i = 1, . . . , n.
The switching signal σ (t) can be characterized by

the switching sequence
∑

= {

xT
0 ; (i0, t0) , (i1, t1) , . . . , (ik, tk) , . . . ,

|ik ∈ M, k ∈ Im} ,

in which t0 is the initial time, xT
0 is the initial state.

When t ∈ [tk, tk+1), σ (t) = ik , that is, the ik th sub-
system is active, and the trajectory x(t) of the switched
system (1) is the trajectory of the ik th subsystem.

Assumption 4 For i = 1, 2, . . . , n,
∣

∣

∣ f k
i (x̄i )

∣

∣

∣ ≤ (|x1| + |x2| + . . . + |xi |) μk
i (x̄i ) , (32)

where μk
i (x̄i ) are a set of known nonnegative smooth

functions.

Assumption 5 The controlled output y of the system
(31) is of the form

y = hk(x1) + dk(x̄n)ω, k ∈ Im, (33)

where hk(x1) are smooth real functions with hk(0) = 0
and dk(x̄n) are uniformly bounded, i.e.,

‖dk(x̄n)‖ ≤ γd , ∀x̄ T
n ∈ Rn, k ∈ Im, (34)

where γd is some positive constant.

Assumption 6 At the initial time t0, there exist strictly
positive constants L1 < L and L1 < L such that

− L1 ≤ x1(t0) ≤ L1, (35)

where x1(t0) is the initial value of the state x1.

Assumption 7 The p-times differentiable unbounded
function in Definition 1 is strictly monotonic and sat-
isfies

�(x, a, b) = x[1 + χ(x, a, b)], (36)

where χ(x) is a nonnegative smooth function.

Lemma 5 [39] For any positive real numbers c, d and
any real-valued function ρ(x, y) > 0,

|x |a |y|d ≤ a

a + d
ρ(x, y) |x |a+d

+ d

a + d
ρ−a/d(x, y) |y|a+d . (37)

The state-constrained H∞ control (SCHC) problem
to be addressed in this paper is stated as follows: given
a constant γ ≥ 0, find, if possible, a state feedback con-
troller u = u(x̄n) with u(0) = 0 such that the resulting
closed-loop system (31) with u(x̄n) satisfies the follow-
ing:

(i) when w ≡ 0, the closed-loop system (31) is
asymptotically stable in a domain at the equilib-
rium under arbitrary switchings.

(ii) when w ≡ 0, the state x1 is within a pre-specified
limit range, i.e.,

− L ≤ x1(t) ≤ L (38)

for all t ≥ t0 ≥ 0, where L and L are strictly
positive constants.

(iii) for every disturbance ω ∈ L2, the response of the
closed-loop system (1) starting from the initial
state x̄n(0) ∈ Rn is such that
∫ T

0
yT (t)y(t)dt ≤ γ 2

∫ T

0
ωT (t)ω(t)dt+V (xT

0 ).

(39)

where V : Rn → R+ is a function with V (0) = 0.

We are now in position to state the main result of
this subsection.

Theorem 2 Consider the disturbed switched system
(31) satisfying Assumptions 4-7. Then, the SCHC prob-
lem is solvable under arbitrary switchings for any
scalar γ > γd .

Proof The main ingredients of the proof are recursive
constructions of both a common Lyapunov function
and a smooth-state feedback controller by backstep-
ping. �
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Step1. Similarly to Theorem 1, we apply a change of
coordinates:

z1 = �(x1, a, b), (40)

where�(x1, a, b) is a p-times differentiable unbounded
function with p ≥ n − 1.

Differentiating both sides of (40) in conjunction with
the system (31), one can rewrite them in the form:

ż1 = � ′(x1, a, b)( f k
1 (x1) + x2 + ak

1 (x̄1) ω),

ẋi = f k
i (x̄i ) + xi+1 + ak

i (x̄i ) ω, i = 2, 3, . . . , n,

y = hk (x1) + dk (x̄n) ω, k ∈ Im . (41)

Using (31), we can calculate from Assumption 5 that

yT y − δ2
1ωT ω

≤ (1 + γ 2
d

γ 2
1

)hT
k (x1) hk (x1) − γ 2

2 ωT ω. (42)

where δ1, γ1 and γ2 are positive constants satisfying
γd < δ1 < γ and γ 2

2 = δ2
1 − γ 2

1 − γ 2
d .

Choose V1(z1) = 1
2 z2

1 and let z2 = x2 − φ1(z1),

where φ1(z1) is the common stabilizing function to be
designed.

Combining (42), Assumption 7 and the derivative of
V1(z1) is given by

V̇1 (z1)+yT y−δ2
1ωT ω = � ′ (x1, a, b) z1

[

f k
1 (z1)

+ x2 + ak
1 (z1) ω

]

+ (1 + γ 2
d

γ 2
1

)hT
k (x1) hk (x1)

− γ 2
2 ωT ω

≤ � ′ (x1, a, b)

[

∣

∣

∣z1 f k
1 (z1)

∣

∣

∣

+ z1φ1 (z1) + z1z2

]

+ 1

4γ 2
2

(

� ′ (x1, a, b) z1ak
1 (z1)

)2

+ γ 2
2 ωT ω + (1 + γ 2

d

γ 2
1

)hT
k (x1)

× hk (x1) − γ 2
2 ωT ω

≤ � ′ (x1, a, b)

[

∣

∣

∣z1 f k
1 (z1)

∣

∣

∣

+ z1φ1 (z1) + z1z2

]

+ z2
1 A1(z1) + z2

1 H(z1), (43)

where A1(z1) and H(z1) are smooth and satisfy

A1(z1) ≥ 1
4γ 2

2

(

� ′ (x1, a, b) ak
1 (z1)

)2
and z2

1 H(z1) ≥
(1 + γ 2

d
γ 2

1
)hT

k (x1) hk (x1) ,∀k ∈ Im

Using Assumption 4 and Assumption 7, it can be
found that
∣

∣

∣ f k
1 (z1)

∣

∣

∣ ≤ |z1|μ̂k
1 (z1) ,∀k ∈ Im, (44)

where μ̂k
1 (z1) are a set of nonnegative smooth func-

tions.
Then, we can get

∣

∣

∣z1�
k
1 (z1)

∣

∣

∣ ≤ z2
1ϕ̃

k
1 (z1) ,∀k ∈ Im . (45)

where �k
1(z1) = f k

1 (z1) and ϕ̃k
1 (z1) = μ̂k

1 (z1) , k ∈
Im are nonnegative smooth functions.

Then, it can be seen that

V̇1 (z1) + yT y − δ2
1ωT ω

≤ � ′ (x1, a, b)

[

∣

∣

∣z1�
k
1 (z1)

∣

∣

∣+ z1φ1 (z1) + z1z2

]

+ z2
1 A1(z1) + z2

1 H(z1)

≤ � ′ (x1, a, b)

[

z2
1ϕ̃1,max (z1) + z1φ1 (z1) + z1z2

]

+ z2
1 A1(z1) + z2

1 H(z1), (46)

where ϕ̃1,max (z1) ≥ ϕ̃k
1 (z1) ≥ 0,∀k ∈ Im is a smooth

function.
Design the common stabilizing function

φ1(z1) = −z1[ϕ̃1,max (z1)

+ z1 + (n + z1 A1(z1)

+ z1 H(z1))/� ′(x1, a, b)]. (47)

Substituting (47) into (46), one has

V̇1 (z1) + yT y − δ2
1ωT ω

≤ � ′ (x1, a, b)

[

z2
1ϕ̃1,max (z1)− z2

1ϕ̃1,max (z1)− z2
1

−n� ′−1
(x1, a, b) z2

1 + z1 (x2 − φ1 (z1))

]

≤ −nz2
1 − � ′ (x1, a, b) z2

1 + � ′ (x1, a, b) z1z2,

(48)

where the coupling term � ′ (x1, a, b) z1z2 will be can-
celed in the subsequent step.

Step 2. Let z3 = x3 − φ2(z̄2), where φ2(z̄2) is the
common stabilizing function to be designed.

Choose V 2(z̄2) = V1(z1) + 1
2 z2

2, and then the time
derivative of V 2(z̄2) is given by

V̇ 2 (z̄2) + yT y − δ2
2ωT ω

≤ −nz2
1 − � ′ (x1, a, b) z2

1 + � ′ (x1, a, b) z1z2

+ z2

(

�k
2 (z̄2) + φ2 (z̄2) + z3

)
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− (δ2
2 − δ2

1)ωT ω + z2 Ak
2(z̄2)ω

≤−nz2
1 − � ′ (x1, a, b) z2

1 + � ′ (x1, a, b) |z1z2|
+ |z2�

k
2 (z̄2) | + z2φ2 (z̄2) + z2z3

− τ 2
2 ωT ω + z2 Ak

2(z̄2)ω, (49)

where τ 2
2 = δ2

2 − δ2
1, δ1 < δ2 < �, �k

2 (z̄2) = f k
2 (z̄2)

− ∂φ1(z1)
∂z1

�k
1 (z̄2) , �k

1 (z̄2) = � ′ (x1, a, b) ( f k
1 (z1) +

(z2 + φ1(z1))), Ak
2(z̄2) = ak

2(z̄2) − ∂φ(z1)
∂z1

� ′ (x1, a, b)

ak
1(z1), k ∈ Im

Using Assumption 4 gives that
∣

∣

∣�
k
2 (z̄2)

∣

∣

∣ ≤ (|z1| + |z2|) μ̂k
2 (z̄2) , (50)

where μ̂k
2 (z̄2) are a set of nonnegative smooth func-

tions.
Furthermore, according to Lemma 5 and (49)–(50),

one can infer that

−τ 2
2 ωTω + z2 Ak

2 (z̄2) ω

≤ −
∣

∣

∣

∣

τ2ω − 1

2τ2
z2 Ak

2 (z̄2)

∣

∣

∣

∣

2

+ 1

4τ 2
2

(

z2 Ak
2 (z̄2)

)2

≤ 1

4τ 2
2

(z2 A2 (z̄2))
2 (51)

|z1z2| ≤ z2
1 + z2

2ϕ̃2 (z̄2) , (52)
∣

∣

∣z2�
k
2 (z̄2)

∣

∣

∣ ≤ z2
1 + z2

2ϕ̂
k
2 (z̄2) , (53)

where A2 (z̄2) ≥ Ak
2 (z̄2) , ϕ̃2 (z̄2) ≥ 0, ϕ̂k

2 (z̄2) ≥
0, k ∈ Im are some smooth functions.

Thus, we obtain

V̇ 2 (z̄2) + yT y − δ2
2ωT ω

≤ −nz2
1 − � ′ (x1, a, b) z2

1 + � ′ (x1, a, b) z2
1

+� ′ (x1, a, b) z2
2ϕ̃2 (z̄2) + z2

1+z2
2ϕ̂

k
2 (z̄2)

+ 1

4τ 2
2

(z2 A2 (z̄2))
2+z2φ2 (z̄2)+z2z3

≤ − (n−1) z2
1 +

(

� ′ (x1, a, b) ϕ̃2 (z̄2) + ϕ̂k
2 (z̄2)

)

z2
2

+ 1

4τ 2
2

(z2 A2 (z̄2))
2 + z2φ2 (z̄2) + z2z3

≤ − (n − 1) z2
1 + z2

2ϕ2,max (z̄2) + z2φ2 (z̄2)

+ 1

4τ 2
2

(z2 A2 (z̄2))
2 + z2z3, (54)

where ϕ2,max ≥ � ′(x1d , a, b)ϕ̃2 (z̄2) + ϕ̂k
2 (z̄2) is a

smooth function.

Design the common stabilizing function

φ2(z̄2) = −z2[ϕ2,max (z̄2) + 1

4τ 2
2

(A2 (z̄2))
2z2

+(n − 1)]. (55)

Substituting (55) into (54) yields

V̇ 2 (z̄2) + yT y − δ2
2ωT ω ≤ −(n − 1)(z2

1 + z2
2)

+z2
2z2

3, (56)

where the coupling term z2
2z2

3 will be canceled in the
subsequent step.

Step i. Let zi+1 = xi+1 − φi (z̄i ), where φi (z̄i ) is
the common stabilizing function to be designed.

Assume that we have completed the first i − 1(2 ≤
i ≤ n) steps, that is, for the following collection of
auxiliary (z1, . . . , zi−1)-equations:

ż j = �k
j (z̄ j ) + x j+1 + Ak

j

(

z̄ j
)

ω,

j = 1, . . . , i − 1, (57)

where �k
j (z̄ j ) = f k

j (z̄ j )−∑ j−1
l=1

∂φ j−1(z̄ j−1)

∂zl
�k

l (z̄l−1),

Ak
j

(

z̄ j
) = ak

j

(

z̄ j
) − ∂φ j−1

∂x1
� ′(x1, a, b)ak

1 (z1) ω −
∑ j−1

l=2
∂φ j−1
∂xl

ak
l (z̄l), we have had positive scalars δ1,

. . . , δi −1 satisfying γd < δ1 < δ2 < . . . < δi−1 < γ ,
a set of common stabilizing functions (47), (55) and

φ j (z̄ j ) = −z j [ϕ j,max
(

z̄ j
)+ 1

4τ 2
j

(

A j
(

z̄ j
))2

z j

+(n − j + 1)], (58)

where 3 ≤ j ≤ i − 1, such that there exists a CLF for
the transform system (57),

V i−1(z̄i−1) = V1(z1) +
i−1
∑

l=2

1

2
z2

l , (59)

and the time derivative of V i−1(z̄i−1) satisfies V̇ i−1

(z̄i−1)+yT y−δ2
i−1ω

T ω ≤ −(n−i+2)(z2
1+. . .+z2

i−1)+zi−1zi .

Choose V i (z̄i ) = V i−1(z̄i−1) + 1
2 zi , then one con-

clude

V̇ i (z̄i ) + yT y − δ2
i ωT ω

≤− (n−i +2)
(

z2
1+. . .+ z2

i−1

)

+ zi−1zi − τ 2
i ωT ω

+ zi

(

�k
i (z̄i ) + Ak

i (z̄i ) ω + φk
i (z̄i ) + zi+1

)
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≤−(n−i +2)
(

z2
1+. . .+z2

i−1

)

+|zi−1zi |−τ 2
i ωT ω

+
∣

∣

∣zi�
k
i (z̄i )

∣

∣

∣+ziφ
pi
i (z̄i )+

∣

∣

∣zi Ak
i (z̄i ) ω

∣

∣

∣+zi zi+1,

(60)

where τ 2
i = δ2

i − δ2
i−1,�

k
i (z̄i ) = f k

i (z̄i ) − ∑i−1
l=1

∂φl−1(z̄l−1)
∂zi

�k
l (z̄l−1), Ak

i (z̄i ) = ak
i (z̄i ) − ∂φi−1

∂x1
� ′

(x1, a, b) ak
1 (z1) ω −∑i−1

l=2
∂φi−1
∂xl

ak
l (z̄l).

Similarly to Step 2, one has |zi−1zi | ≤ z2
1
2 +

. . . + z2
i−1
2 + z2

i ϕ̃i (z̄i ) , |zi�i (z̄i )| ≤ 1
2 z2

1 + . . . +
1
2 z2

i−1 + z2
i ϕ̂

k
i (z̄i ) ,−τ 2

i ωTω + ∣

∣zi Ak
i (z̄i ) ω

∣

∣ ≤ −
∣

∣

∣τiω

− 1
2τi

zi Ak
i (z̄i )

∣

∣

∣

2 + 1
4τ 2

i

(

zi Ak
i (z̄i )

)2 ≤ 1
4τ 2

i
(zi Ai (z̄2))

2

where Ai (z̄2) ≥ Ak
i (z̄i ), ϕ̃i (z̄i ) ≥ 0, ϕ̂k

i (z̄i ) ≥
0,∀i ∈ Im are some smooth functions. Thus, one can
get

V̇ i (z̄i ) + yT y − δ2
i ωT ω

≤ − (n − i + 2)
(

z2
1 + . . . + z2

i−1

)

+ z2
1 + . . .

+ z2
i−1 + 1

4τ 2
i

(zi Ai (z̄2))
2 + ϕ̂k

i (z̄i ) z2
i

+ ϕ̃i (z̄i ) z2
i + ziφi (z̄i ) + zi zi+1

≤ − (n − i + 2)
(

z2
1 + . . . + z2

i−1

)

+ z2
1 + . . . + z2

i−1 + 1

4τ 2
i

(zi Ai (z̄2))
2

+ϕi,max (z̄i ) z2
i + ziφi (z̄i ) + zi zi+1,

(61)

where ϕi,max (z̄i ) ≥ ϕ̃i (z̄i )+ ϕ̂k
i (z̄i ) is a smooth func-

tions.
Design the common stabilizing function

φi (z̄i )=−zi [ϕi,max (z̄i )+ 1

4τ 2
i

(Ai (z̄2))
2zi +(n− i +1)].

(62)

Then, substituting (62) into (61) yields

V̇ i (z̄i ) + yT y − δ2
i ωT ω

≤ − (n − i + 1)
(

z2
1 + . . . + z2

i−1

)

+ϕi,max (z̄i ) z2
i − ϕi,max (z̄i ) z2

i

− (n − i + 1) z2
i + zi zi+1,

= − (n − i + 1)
(

z2
1 + . . . + z2

i

)

+ zi zi+1,

(63)

where the coupling term zi zi+1 will be canceled in the
subsequent step.

Step n. By repeating the inductive argument above,
it is straightforward to see that at the final step, there
exists a CLF of the system (31)

V n(z̄n) = V1(z1) + 1

2

n
∑

l=2

z2
l . (64)

Then, we can explicitly design a smooth-state feed-
back controller as follows

u(z̄n) = −zn

[

ϕn,max (z̄n) + 1

4τ 2
n

(An (z̄n))
2zn + 1

]

,

∀k ∈ Im (65)

such that

V̇ n (z̄n) + yT y − γ 2ωT ω ≤ −(z2
1 + · · · + z2

n) (66)

with γ 2 = δ2
n .

For any ∀T ≥ 0, we let tk < T < tk+1, t0 = 0, for
any integer k ≥ 0. Taking integration over both sides
of the above inequality from t = 0 to T yields
∫ T

0
V̇ n + yT y − γ 2ωT ωdt

= (V n (t1) − V n (t0) + V n (t2) − V n (t1) + . . .

+ V n (T ) − V n (tk) +
∫ T

0
yT y − γ 2ωTωdt

= V n (T ) − V n (t0) +
∫ T

0
yT y − γ 2ωTωdt . (67)

Furthermore, we have
∫ T

0
yT (t)y(t)dt ≤ γ 2

∫ T

0
ωT (t)ω(t)dt + V n(T ).

When ω ≡ 0, it follows from (66) that

V̇ n(z̄n) ≤ −(z2
1 + . . . + z2

n). (68)

Thus, asymptotical stability of the closed-loop sys-
tem (31) in a domain without violation of the state con-
straint (38) can be found based on the proof of Theo-
rem 1.

5 Illustrative examples

In this subsection, we present two illustrative examples
to demonstrate the applicability and effectiveness of the
proposed approach.
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Example 1 Consider the following nonlinear switched
system:
⎧

⎨

⎩

ẋ1 = f i
1 (x1) + x2,

ẋ2 = f i
2 (x̄2) + gi (x̄2) u, i = 1, 2,

y = x1,

(69)

where f 1
1 (x1) = 2x1 − 0.8, f 1

2 (x̄2) = x1x2(3 +
x1x2), f 2

1 (x1) = 0, f 2
2 = 2x2

1 x2
2 , g1(x̄2) = [−1.2x2

1 x2
2 ,

1.6], g2 = [− sin2(x1 + x2), 1.3 − cos(x3
1 x2

2 )]. The
objective is for y (t) to track the desired trajectory yd =
0.4, subject to a symmetric constraint L = L̄ = 0.2.

First, in view of the symmetric system constraint
L = L̄ = 0.2 and Remark 2, we choose z1 =
�(x1d ,−0.2, 0.2) = tan( 5π

2 (x1 − 0.4)) and V1(z1) =
1
2 z2

1. Moreover, we can show that φ1 = −3z1 is a com-
mon smooth stabilizing function for the auxiliary z1-
equations. In this case

d1
1 = −5

2
πsec2

(

5

2
π(x − 0.4)

)

z2
1, d2

1

= −15

2
πsec2

(

5

2
π(x − 0.4)

)

z2
1. (70)

Define z2 = x2 − φ1. Then, V2(z̄2) = 1
2 z2

1 + 1
2 z2

2 is
positive definite and radially unbounded. Thus, V2 is a
common Lyapunov function for the two subsystems in
(69). For k = 1, 2, let

ak = d1
k + z2

[

5

2
πsec2

(

5

2
π(x − 0.4)

)

z1 + f k
2 (x̄2)

−∂φ1

∂x1
(x2 + f k

1 (x̄1))

]

,

bk = z2gk (x̄2) . (71)

It is clear that M = {2}, F = {1}. From (24)–(26), we
can obtain the following controller:

u = [u1, u2]T (72)

with

u1 =
⎧

⎨

⎩

maxi∈{1,2}
{

pi,2
}

, if z2 > 0,

mini∈{1,2}
{

pi,2
}

, if z2 < 0,

z2 = 0, if z2 = 0,

(73)

and

u2 =
⎧

⎨

⎩

mini∈{1,2}
{

pi,1
}

, if z2 > 0,

maxi∈{1,2}
{

pi,1
}

, if z2 < 0,

z2 = 0, if z2 = 0,

(74)

where
pk
(

x̄2, ỹd2

) = [

pk,1
(

x̄2, ỹd2

)

pk,2
(

x̄2, ỹd2

)]

=
{

−bT
k

max
{

ak+bk bT
k ,0

}

bk bT
k

, if z2 �= 0,

0, if z2 �= 0.

(75)
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Fig. 1 Output tracking for the desired signal yd = 0.4

0 1 2 3 4 5 6 7 8
0.8

1

2

2.2

t/s

S
w

itc
hi

ng
 s

ig
na

l

Fig. 2 The given switching signal for the system (69)

Let the initial values be x1 (0) = 0.58, x2 (0) =
−1.2. Fig. 1 shows that asymptotic tracking perfor-
mance is achieved under a random switching signal
depicted in Fig. 2. Moreover, with various initial val-
ues of x1, Fig. 3 indicates that the error x1d(t) converge
to 0 while remaining in the set (−0.2, 0.2),∀t ≥ 0.

Example 2 In this example, we will apply the proposed
approach to the continuous stirred tank reactor (CSTR)
with two modes feed stream (see Fig. 4), which is
molded as a switched nonlinear system [16,40]:

ĊA = qσ

V
(CA fσ − CA) − a0e− E

RT CA,

Ṫ = qσ

V
(T fσ − T ) − a1e− E

RT CA

+ U A

VρC p
(Tc − T ). (76)
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Fig. 3 Tracking error x1d for various initial values satisfying
|x1 (0)| < 0.2

Fig. 4 Schematic diagram of the process

The physical meaning of the parameters of this sys-
tem can be found in [40]. Under a coordinate transfor-
mation and smooth feedback [40], the system can be
expressed as:
{

ẋ1 = f σ(t)
1 + x2,

ẋ2 = gσ(t)u
(77)

with f 1
1 (x1) = 0.5x1, f 2

1 (x1) = 2x1, g1 = g2 =
[1, 1]. From the point of view of engineering appli-
cation, the objective is for y(t) to track desired trajec-
tory yd(t), subject to an asymmetric constraint L =
0.2, L̄ = 0.3. For simplicity, we consider the system
to be known for a stabilization task, i.e., yd(t) ≡ 0.

First, defining z1 = �(x1, 0.2, 0.3) = tan[π
2 (2h(x,

−0.2, 0.3)−1)]− tan[π
2 (2h(0,−0.2, 0.3)−1)] as the

p-times differentiable unbounded function candidate
and with V1 = 1

2 z2
1, we can show that φ1 = −2.5z1 is

0 1 2 3 4 5 6 7 8

−0.2

−0.1

0

0.1

0.2

0.3

t/s

x
1

Fig. 5 The state response of the closed-loop system (77)

a dominating feedback law for the auxiliary first-order
subsystems of (77). In this case

d1
1 =−2� ′(x1, 0.2, 0.3)z2

1,

d2
1 =−0.5� ′(x1, 0.2, 0.3)z2

1. (78)

Furthermore, define z2 = x2 − φ1, we further con-
struct V2(z̄2) = 1

2 z2
1 + z2

2. Thus, a common Lyapunov
function for (77) is obtained by choosing V2(z̄2). For
k = 1, 2, let

ak = d1
k + z2[� ′(x1, 0.2, 0.3)z1 + f k

2 (x̄2)

− ∂φ1

∂x1
(x2 + f k

1 (x̄1))],
bk = z2gk (x̄2) . (79)

It is clear that M = {1, 2} and F is empty set. From
(24)–(26), we can obtain the following controller:

u = [u1, u2]T (80)

with

u1 =
⎧

⎨

⎩

mini∈{1,2}
{

pi,1
}

, if z2 > 0,

maxi∈{1,2}
{

pi,1
}

, if z2 < 0,

z2 = 0, if z2 = 0,

(81)

and

u2 =
⎧

⎨

⎩

mini∈{1,2}
{

pi,2
}

, if z2 > 0,

maxi∈{1,2}
{

pi,2
}

, if z2 < 0,

z2 = 0, if z2 = 0,

(82)

where

pk
(

x̄2, ỹd2

) = [

pk,1
(

x̄2, ỹd2

)

pk,2
(

x̄2, ỹd2

)]

=
{

−bT
k

max
{

ak+bk bT
k ,0

}

bk bT
k

, if z2 �= 0,

0, if z2 �= 0.

(83)
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Fig. 6 The given switching signal for the system (77)

Given the initial values as x1 (0) = −0.19, x2 (0) =
−1.0, Fig. 5 shows that asymptotic tracking perfor-
mance is achieved, and we can see that the output stays
strictly within the set (−0.2, 0.3). Furthermore, the ran-
dom switching signal is demonstrated in Fig. 6.

6 Conclusions

In this paper, we have designed controller to deal with
the problems of OCTC and SCHC of a class of switched
nonlinear systems in a strict feedback form. In our
approach, smooth or p-times differentiable unbouded
functions are first introduced and incorporated in out-
put tracking error (or the constrained state) transfor-
mations to convert the problem of controlling the sys-
tems with output tracking error constraints (or the con-
strained state) to a new problem of regulating the con-
verted systems without a constraint but still in a strict
feedback form. Then, the backstepping technique is
employed to design controller for the transformed sys-
tems. Two illustrative examples of applications of the
general results are presented at the end.
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