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Abstract In this article, the mathematical model-
ing of a robotic system composed of n flexible links
and a mobile platform has been considered. Most of
the mechanical systems including the nonholonomic
constraints are analyzed by Lagrangian formulation
and its associated “Lagrange multipliers.” Eliminat-
ing these variables from the obtained equations is a
time-consuming and cumbersome task. So, the Gibbs–
Appell formulation and the assumed mode method
are used to make the derivation of motion equa-
tions easier. Also, to model the system thoroughly
and accurately, the dynamic interactions between the
manipulator and the mobile platform and the cou-
pling effects arising simultaneously from large motions
and small deflections are taken into consideration. The
links (assumed as 3D Timoshenko beams) undergo
tension-compression, torsion and spatial bending (in
two directions), while the effects of internal and exter-
nal damping (as dissipative forces) are also considered
in the mathematical modeling. A systematic approach
is developed based on the derived formulation to estab-
lish the dynamic equations of motion. In order to alle-
viate the computational complexity of the suggested
method, all the mathematical operations are carried

M. H. Korayem · A. M. Shafei (B)
Robotic Research Laboratory, Mechanical Engineering
Department, Center of Excellence in Experimental Solid
Mechanics and Dynamics, School of Mechanical
Engineering, Iran University of Science and Technology,
P.O. Box 16846-13114, Tehran, Iran
e-mail: shafei@iust.ac.ir

out through 3 × 3 and 3 × 1 matrices only. Finally,
this method is applied to a mobile manipulator with
two flexible links to demonstrate the ability of the pro-
posed method in deriving the equations of motion of
such complex systems.

Keywords Nonholonomic · Viscoelastic ·
Timoshenko · Assumed mode · Gibbs–Appell

1 Introduction

Spatial mobile manipulators consisting of flexible
robotic arms mounted on a mobile platform are com-
plex systems. Owing to the mobility feature of the
mobile base and the dexterity of the manipulator, these
robots are increasingly used in space applications such
as planetary explorations, launch of satellites, space-
craft recovery (for inspection, maintenance and repair)
and cargo displacement. All these missions require high
precision. However, in order to reduce the total mass
at launch, usually, very light and flexible manipulator
arms are used; these manipulators experience substan-
tial structural vibrations as they move, especially after
they complete a maneuver. So, to properly design these
types of mobile robotic manipulators which can accom-
plish their intended maneuvers, it is essential to appro-
priately model them, from the platform, to the elastic
characteristics of the links.

Since the flexible manipulator and the mobile base
have an integrated mechanical structure, the motion
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of any part affects the entire system configuration.
This makes the dynamic equations of such robotic sys-
tems highly nonlinear and fully coupled. However, it is
necessary to develop a complete and precise dynamic
model for these kinds of robots. The dynamic interac-
tions between the manipulator and the mobile platform
have been studied by Staicu [1], Wiens [2] and Megh-
dari et al. [3]. Yamamoto and Yun [4] improved the
mathematical modeling of mobile robots and included
all nonholonomic constraints of such systems. In their
works, the equations of motion are derived based on
the Lagrangian formulation and its associated Lagrange
multipliers. However, it is cumbersome to calculate the
Lagrange multipliers. So, to do away with Lagrange
multipliers, Thanjavur and Rajagopala [5] and Tanner
and Kyriakopouos [6] modeled the mobile manipula-
tors on the basis of Kane’s equations.

With the addition of more arms to the mobile plat-
form, the complete modeling of the wheeled mobile
manipulator system becomes more complicated. In
such cases, systematic approaches have to be employed
to make the derivation of the governing equations
easier. Examples of automatic formulation of elastic
robotic manipulators with fixed base can be found in
the works of Book [7], Changizi and Shabana [8], Kim
and Haug [9], Amirouche and Xie [10], Nikravesh and
Ambrosio [11], Znamenacek and Valasek [12], Lugris
et al. [13] and Bae and Haug [14]. However, there are
just a few works on systematic modeling on mobile
manipulators. For example, Yu and Chen [15] applied
forward recursive formulation to obtain the govern-
ing equations of nonholonomic mobile manipulators
based on the principle of virtual work. Also, a recur-
sive Newton–Euler formulation is used in Ref [16]
to present the inverse and forward dynamics of robot
manipulators with a moving base.

The derivation of the dynamic equations of motion
by Gibbs–Appell (G–A) formulation begins with a def-
inition of Gibbs’ function (acceleration energy). Next,
a set of independent quasi-velocities (linear combina-
tion of generalized velocities) should be selected. The
above-mentioned equations are then obtained by taking
the derivatives of Gibbs’ function with respect to quasi-
accelerations (time derivatives of quasi-velocities) and
setting them equal to the generalized forces. Despite
the great ability of this method in deriving the equa-
tions of motion, it has been used the least for deriv-
ing the dynamic equations of manipulator robots. In
the field of robotics, more recent investigations can be

found in [17] where G–A formulation has been used
by Vosoughi et al. for motion equations of snake-like
robots; in [18], where forward dynamics equations of
motion of n-rigid links have been presented in recur-
sive form by Mata et al.; and in [19,20], where motion
equations of viscoelastic link manipulators and non-
holonomic wheeled mobile robotic manipulators have
been presented by Korayem et al.

As mentioned above, in this article, by applying
the G–A formulation and the assumed mode method
(AMM), the mathematical model of an n-viscoelastic-
link robotic manipulator on a mobile base has been
presented. The paper’s focus is on obtaining precise
and complete equations of motion that include the
most relevant structural properties of lightweight elas-
tic manipulators and the nonholonomic constraints of
the mobile base. In this study, two important damp-
ing mechanisms including structural viscoelasticity
(Kelvin–Voigt) effect (as internal damping) and the vis-
cous air effect (as external damping) have been con-
sidered. To include the effects of shear and rotational
inertia, the assumption of Timoshenko beam theory
(TBT) has been applied. Gravity, torsion and longitudi-
nal elongation effects have also been considered in the
formulations. A recursive approach has been applied
in the modeling to systematically derive the equations
of motion and to improve the computational efficiency.
Finally, a computer simulation has been performed for
a manipulator with two viscoelastic links on a mobile
base to validate the proposed method.

2 Kinematics of the system

2.1 Kinematics of the manipulator

In this section, the kinematics of a chain of n-
viscoelastic links, interconnected by revolute joints and
mounted on a mobile platform, is considered. The coor-
dinate system of every link (xi yi zi , x̂i ŷi ẑi ) is attached
according to the rules developed in Ref [19]. Figure 1
shows an arbitrary differential element Q of the i th
link. The position vector of this element with respect
to the origin of xi yi zi coordinate system is composed of
two components. The first component shows the posi-
tion of this differential element when the i th link is
not deformed, and the second component displays the
small displacements of this element, which are mea-
sured from the undeformed link’s centerline. So,
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Fig. 1 Manipulator with
mobile platform and flexible
links
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i �rQ/Oi = ηi
i �xi + { ui vi wi

}T
(1)

where i �xi = {
1 0 0

}T
, ηi is the distance between

point Oi and differential element Q (when link i is
not deformed) and ui , vi andwi are the small displace-
ments in the Oi xi , Oi yi and Oi zi directions, respec-
tively. By using the AMM, these small displacements
can be presented as

{
ui vi wi

}T =
mi∑

j=1

δi j (t) �ri j (η) (2)

where �ri j = { xi j yi j zi j
}T

is the eigenfunction vector
whose components (xi j , yi j and zi j ) are the j th lon-

gitudinal and transverse mode shapes of link i ; δi j is
the j th time-dependent modal generalized coordinate
of link i ; and mi is the number of modes used to model
the deflection of link i .

The total slopes of the deflected link centerline
about the Oi yi and Oi zi directions, based on TBT, are
given by:

−∂wi

∂η
= θyi + φyi (3)

∂vi

∂η
= θzi + φzi (4)
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where θyi and θzi are the slopes of the deflected cen-
terline due to bending; and φyi and φzi are the slopes
of the deflected centerline due to shear. Shear has no
effect on the rotation of differential element Q, and this
differential element undergoes rotation only because of
bending and torsion. So, the rotations of this element in
the Oi xi , Oi yi and Oi zi directions can be considered
as θxi , θyi and θzi , respectively. These small angles by
using the AMM can be represented as

i �θi = { θxi θyi θzi
}T =

mi∑

j=1

δi j (t)�θi j (η) (5)

where �θi j = {
θxi j θyi j θzi j

}T
is the eigenfunction

vector, whose components (θxi j , θyi j and θzi j ) are the
j th rotational mode shapes of link i in the Oi xi , Oi yi

and Oi zi directions, respectively.
The absolute acceleration of differential element Q

expressed in the i th body’s local reference system can
be presented as

i �̈r Q = i �̈r Oi + i �̈r Q/Oi + 2i �ωi × i �̇r Q/Oi

+ i �̇ωi × i �rQ/Oi + i �ωi ×
(

i �ωi × i �rQ/Oi

)
(6)

where i �̈r Oi is the absolute acceleration of the origin of
the i th body’s local reference system and i �ωi and i �̇ωi

are the angular velocity and acceleration of the i th link,
respectively. Also i �̇r Q/Oi and i �̈r Q/Oi are the velocity
and acceleration of differential element Q with respect
to the origin of the i th body’s local reference system.
In Section 4, Eq. (6) will be used to construct the accel-
eration energy due to links’ motion.

2.2 Kinematics of the mobile platform and driving
wheels

The wheeled mobile platform moves on the ground is
subjected to two nonholonomic constraints. The no-
skidding condition states that the platform has no side-
way motion. So, the absolute velocity of point A in the
x0 y0z0 coordinate system can be expressed as

0�vA = vA
0 �x0 (7)

Also, the angular velocity of the platform is 0 �̇ϕ =
ϕ̇0 �y0, where i �yi = {

0 1 0
}T

. Now, by using Eq. (7),
the absolute acceleration of the platform and wheels’
center of mass (i.e., G), can be presented as

0 �̇vG =
(
v̇A − dϕ̇2

)
0 �x0 − (vAϕ̇ + dϕ̈) 0�z0 (8)

where i �zi = {
0 0 1

}T
, and d is the distance between

point A and G. In the next section, Eq. (8) will be used
to construct the Gibbs’ function for the platform.

As is shown in [20], the angular velocities for the
right and left driving wheels (θ̇R, θ̇L) in terms of vA

and ϕ̇ are obtained as

θ̇R/L = 1

ra
(vA ± bϕ̇) (9)

where ra is the radius of the driving wheels and b is the
distance between point A and the center of the driving
wheels. In the next two sections, Eq. (9) will be used to
calculate the Gibbs’ function of the driving wheels and
also the generalized forces due to the torques exerted
on the right and left driving wheels.

3 Dynamics of the system

3.1 The system’s acceleration energy and its
derivatives

The G–A method uses a scalar function in terms of
accelerations to derive the equations of motion. The
acceleration energy of the mobile manipulator arises
from three sources: (1) acceleration energy due to
links motion, (2) acceleration energy due to platform
motion and (3) acceleration energy due to the rotation
of the driving wheels. The Gibbs’ function (accelera-
tion energy) of the manipulator, based on TBT, can be
represented as

SM =
n∑

i=1

∫ li

0

1

2

[
μi (η)

(
i �̈r T

Q · i �̈r Q

)
+i �̈θT

i · Ji (η)
i �̈θ i

]
dη

(10)

where n is the total number of links; li is the length
of the i th link; and μi (η) and Ji (η) are the mass per
unit length and mass moment of inertia matrix per unit
length of the i th link, respectively. By using Eqs. (5)
and (6), the total acceleration energy of the manipulator
can be evaluated as

SM =
n∑

i=1

1

2
B0i

i �̈r T
Oi

· i �̈r Oi + i �̈r T
Oi

· i �B1i

−2i �̈r T
Oi

· B2i
i �ωi − i �̈r T

Oi
· B3i

i �̇ωi

−i �̈r T
Oi

· i ω̃i B3i
i �ωi + 1

2
B4i − 2i �ωT

i · i �B5i

+i �̇ωT
i · i �B6i − i �ωT

i · B7i
i �ωi + 2i �̇ωT

i · B8i
i �ωi

123



A new approach for dynamic modeling 2771

+1

2
i �̇ωT

i · B9i
i �̇ωi + i �̇ωT

i · i ω̃i B9i
i �ωi

+1

2
B10i + irrelevant terms (11)

where i ω̃i is the skew-symmetric tensor associated with
vector i �ωi . Also, the other variables that appeared in
Eq. (11) can be represented as

B0i =
∫ li

0
μi dη (12)

i �B1i =
mi∑

j=1

δ̈i j �C1i j (13)

B2i =
mi∑

j=1

δ̇i j C̃1i j (14)

B3i = C2i +
mi∑

j=1

δi j C̃1i j (15)

B4i =
mi∑

j=1

mi∑

k=1

δ̈i j δ̈ikC3i jk (16)

i �B5i =
mi∑

j=1

mi∑

k=1

δ̈i j δ̇ik �C4i jk (17)

i �B6i =
mi∑

j=1

δ̈i j �αi j (18)

B7i =
mi∑

j=1

δ̈i jβi j (19)

B8i =
mi∑

j=1

δ̇i jβi j (20)

B9i = C5i +
mi∑

j=1

δi j

(
CT

6i j + βi j

)
(21)

B10i =
mi∑

j=1

mi∑

k=1

δ̈i j δ̈ikC7i jk (22)

In Eq. (11), there is a term which is called “irrele-
vant terms.” In fact, in the Gibbs’ function, the terms
that are not functions of quasi-accelerations can be
ignored, because the partial derivatives of these terms
with respect to q̈ j and δ̈ j f are equal to zero. In the above
equations, C̃1i j is the skew-symmetric tensor associ-
ated with vector �C1i j . This vector and all the other
variables appearing in Eqs. (12) through (22) can be
expressed as

�C1i j =
∫ li

0
μi �ri j dη (23)

C2i =
∫ li

0
μi η̃dη (24)

C3i jk =
∫ li

0
μi �r T

i j · �rikdη (25)

�C4i jk =
∫ li

0
μi r̃i j �rikdη (26)

C5i =
∫ li

0
μi η̃

T η̃dη (27)

C6i j =
∫ li

0
μi η̃

T r̃i j dη (28)

C7i jk =
∫ li

0

�θT
i j · Ji �θikdη (29)

�C8i j =
∫ li

0
μi η̃�ri j dη (30)

C9i jk =
∫ li

0
μi r̃

T
i j r̃ikdη (31)

�αi j = �C8i j +
mi∑

k=1

δik �C4ik j (32)

βi j = C6i j +
mi∑

k=1

δikC9ik j (33)

where η̃ and r̃i j are the skew-symmetric tensors asso-
ciated with vectors �η and �ri j , respectively. Now, the
Gibbs’ function (acceleration energy) of the platform
and driving wheels will be presented as

SP + SW = 1

2
Mpw

[(
v̇A − dϕ̇2

)2 + (vAϕ̇ + dϕ̈)2
]

+1

2
Ipwϕ̈

2 + 1

2
Iw

(
θ̈2

R + θ̈2
L

)
(34)

where Mpw is the total mass of the platform and driving
wheels; Ipw is the total moment of inertia of the plat-
form and driving wheels about a vertical axis passing
through the center of mass G; and Iw is the moment
of inertia of the right and left driving wheels about the
wheels’ axis of revolution. The summation of Eqs. (11)
and (34) gives the acceleration energy of the whole sys-
tem (S = SM + SP + SW). Using the G–A method, the
motion equations of the system are achieved by differ-
entiating the Gibbs’s function with respect to quasi-
accelerations. Therefore, a set of appropriate indepen-
dent quasi-velocities should be selected. In this paper,
the generalized velocities of joints (i.e., q̇i ) modal gen-
eralized velocities of the links (i.e., δ̇i j ), velocity of
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point A (i.e., vA) and the platform’s angular velocity
(i.e., ϕ̇) are selected as quasi-velocities. So,

• Partial derivative of Gibbs’ function with respect to
q̈ j :

∂S

∂ q̈ j
=

n∑

i= j+1

∂ i �̈r T
Oi

∂ q̈ j
·
(

B0i
i �̈r Oi + i �B1i

−2B2i
i �ωi − B3i

i �̇ωi − i ω̃i B3i
i �ωi

)

+
n∑

i= j

∂ i �̇ωT
i

∂ q̈ j
·
(

B3i
i �̈r Oi + i �B6i

+2B8i
i �ωi + B9i

i �̇ωi + i ω̃i B9i
i �ωi

)

(35)

• Partial derivative of Gibbs’ function with respect to
δ̈ j f :

∂S

∂δ̈ j f
=

n∑

i= j+1

∂ i �̈r T
Oi

∂δ̈ j f
·
(

B0i
i �̈r Oi + i �B1i

−2B2i
i �ωi − B3i

i �̇ωi − i ω̃i B3i
i �ωi

)

+
n∑

i= j+1

∂ i �̇ωT
i

∂δ̈ j f
·
(

B3i
i �̈r Oi + i �B6i

+2B8i
i �ωi + B9i

i �̇ωi + i ω̃i B9i
i �ωi

)

+
m j∑

k=1

δ̈ jk
(
C3 j f k + C7 j f k

)

− 2 j �ωT
j ·

m j∑

k=1

δ̇ jk �C4 j f k − j �ωT
j · β j f

j �ω j

+ j �̈r T
O j

· �C1 j f + j �̇ωT
j · �α j f (36)

• Partial derivative of Gibbs’ function with respect to
v̇A:

∂S

∂v̇A
=

n∑

i=1

∂ i �̈r T
Oi

∂v̇A
·
(

B0i
i �̈r Oi + i �B1i

− 2B2i
i �ωi − B3i

i �̇ωi − i ω̃i B3i
i �ωi

)

− Mpwdϕ̇2 +
(

Mpw + 2Iw

r2
a

)
v̇A (37)

• Partial derivative of Gibbs’ function with respect to
ϕ̈:

∂S

∂ϕ̈
=

n∑

i=1

∂ i �̈r T
Oi

∂ϕ̈
·
(

B0i
i �̈r Oi + i �B1i

−2B2i
i �ωi − B3i

i �̇ωi − i ω̃i B3i
i �ωi

)

+ Mpwd (dϕ̈ + vAϕ̇)

+
n∑

i=1

∂ i �̇ωT
i

∂ϕ̈
·
(

B3i
i �̈r Oi + i �B6i

+ 2B8i
i �ωi + B9i

i �̇ωi + i ω̃i B9i
i �ωi

)

+
(

Ipw + 2Iw
b2

r2
a

)
ϕ̈ (38)

3.2 The system’s potential energy and its derivatives

The sources of the potential energy of the system can
be classified as (1) gravity and (2) elastic deformations.
The effect of gravity on manipulator can be obtained
by inserting 0 �̈r O0 = g0 �y0, where g is the acceleration
of gravity. To obtain the strain potential energy for an
n-viscoelastic-link robotic manipulator, based on TBT,
one may refer to [19], where this function has been
represented as

Vei = 1

2

∫ li

0

[

k Ai Gi

(
φ2

yi + φ2
zi

)
+ Ei Iyi

(
∂θyi

∂η

)2

+ Ei Izi

(
∂θzi

∂η

)2
+Ei Ai

(
∂ui

∂η

)2
+Gi Ixi

(
∂θxi

∂η

)2
]

dη

(39)

where Ei and Gi are the Young’s modulus and shear
modulus, respectively; Ixi , Iyi and Izi are the area
moments of inertia about the Oi xi , Oi yi and Oi zi axes,
respectively; Ai is the cross-sectional area of the i th
link, and k is the shear correction factor. By substitut-
ing Eqs. (2) and (5) into Eq. (39), the strain potential
energy for the whole system will be obtained as

Ve = 1

2

n∑

i=1

mi∑

j=1

mi∑

k=1

δi j (t) δik (t) Ki jk (40)

where

Ki jk =
∫ li

0

[
k Ai Gi

(
φyi jφyik + φzi jφzik

)

+ Ei Iyi
∂θyi j

∂η

∂θyik

∂η
+ Ei Izi

∂θzi j

∂η

∂θzik

∂η

+ Ei Ai
∂xi j

∂η

∂xik

∂η
+ Gi Ixi

∂θxi j

∂η

∂θxik

∂η

]
dη

(41)
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For deriving the equations of motion of this robotic
system, the partial derivatives of strain potential energy
with respect to quasi-coordinates are needed.
∂Ve

∂q j
= ∂Ve

∂xA
= ∂Ve

∂ϕ
= 0 (42)

∂Ve

∂δ j f
=

m j∑

k=1

δ jk (t) K jk f (43)

It should be noted that xA is a quasi-coordinate that has
no specific physical meaning.

3.3 Rayleigh’s dissipation function of the system
and its derivatives

Using the Rayleigh’s dissipation function is an appro-
priate way of considering the viscous damping forces.
For viscous air damping (as external damping), and
structural viscoelasticity effect (as internal damping),
the Rayleigh’s dissipation function can be obtained
from [19] as

Di = 1

2

∫ li

0
γ

[(
∂vi

∂t

)2

+
(
∂wi

∂t

)2
]

dη

+1

2

∫ li

0
Kvi

[

Izi

(
∂3vi

∂η2∂t

)2

+ Iyi

(
∂3wi

∂η2∂t

)2
]

dη

(44)

where Kvi is the Kelvin–Voigt damping coefficient of
the i th link, and γ is the air damping coefficient. Again
by inserting Eq. (2) into Eq. (44), the Rayleigh’s dissi-
pation function for the whole system will be obtained as

D = 1

2

n∑

i=1

mi∑

j=1

mi∑

k=1

δ̇i j (t) δ̇ik (t) Di jk (45)

where

Di jk =
∫ li

0
γ
(
yi j yik + zi j zik

)
dη

+
∫ li

0
Kvi

(
Izi
∂2 yi j

∂η2

∂2 yik

∂η2 + Iyi
∂2zi j

∂η2

∂2zik

∂η2

)
dη

(46)

By taking the partial derivatives of this function with
respect to quasi-velocities, the generalized forces due
to the internal and external damping will be obtained.
∂D

∂q̇ j
= ∂D

∂vA
= ∂D

∂ϕ̇
= 0 (47)

∂D

∂δ̇ j f
=

m j∑

k=1

δ̇ jk (t) D jk f (48)

3.4 Governing equations of the system

The generalized force (Uk) associated with the kth
quasi-velocity (uk) can be calculated as

Uk =
n∑

i=1

∂ q̇i

∂uk
τi + ∂θ̇R

∂uk
τR + ∂θ̇L

∂uk
τL

uk = q̇1, δ̇11, . . . , δ̇1m1 , . . . , q̇n, δ̇n1, . . . , δ̇nmn , vA, ϕ̇

(49)

where τi is the external torque exerted on the i th joint
of the robotic manipulator, and τR and τL are the exter-
nal torques that applied to the right and left driving
wheels, respectively. Now, the complete dynamic equa-
tions of motion for mobile robotic manipulators with
viscoelastic links, obtained by G–A formulation, can
be presented as

1. The equation of motion of j th joint

∂S

∂q̈ j
+ ∂D

∂ q̇ j
+ ∂Ve

∂q j
= τ j j = 1, 2, . . . . . . , n

(50)

2. The deflection equation of motion

∂S

∂δ̈ j f
+ ∂D

∂δ̇ j f
+ ∂Ve

∂δ j f
= 0

j = 1, 2, . . . . . . , n; f = 1, 2, . . . . . . ,m j (51)

3. The translational motion equation of the platform

∂S

∂v̇A
+ ∂D

∂vA
+ ∂Ve

∂xA
= 1

ra
(τR + τL) (52)

4. The rotational motion equation of the platform

∂S

∂ϕ̈
+ ∂D

∂ϕ̇
+ ∂Ve

∂ϕ
= b

ra
(τR − τL) (53)

The above equations are in the inverse dynamic form.
In this case, the torques applied by the actuators will
be evaluated algebraically, knowing the configuration
(position, velocity and acceleration) of the system.

4 Motion equations in forward dynamic form

In the forward dynamic form, the equations of motion
should be presented as

I () �̈ = −→
Re (54)
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where I () is the inertia matrix of the whole system,

and �̈ is the vector of quasi-accelerations.
−→
Re denotes

the vectors of gravitational, Coriolis, centrifugal forces
and also the generalized torques applied to the joints of
the robotic manipulator and to the right and left driving
wheels. These two vectors can be represented as

�̈ = {
q̈1 δ̈11 · · · δ̈1m1 q̈2 δ̈21

· · · δ̈2m2 · · ·
q̈ j δ̈ j1 · · · δ̈ jm j · · · q̈n

δ̈n1 · · · δ̈nmn v̇A ϕ̈
}T

(55)
−→
Re =

{
Req1 Reδ11 · · · Reδ1m1

Req2 Reδ21

· · · Reδ2m2
· · ·

Req j Reδ j1 · · · Reδ jm j
· · · Reqn Reδn1

· · · Reδnmn
RevA Reϕ

}T
(56)

where Req j , Reδ j f , RevA and Reϕ will be obtained after
excluding all the terms in Eqs. (50) through (53) that
contain quasi-accelerations.

To accomplish the aims of this section, i �̈r Oi and i �̇ωi

must be written in summation form as

i �̈r Oi = i �̈r Os,i + i �̈r Ov,i (57)
i �̇ωi = i �̇ωs,i + i �̇ωv,i (58)

where i �̈r Os,i and i �̇ωs,i are those components of i �̈r Oi

and i �̇ωi that contain q̈ j , δ̈ j f , v̇A and ϕ̈ as quasi-
accelerations; while i �̈r Ov,i and i �̇ωv,i are those com-
ponents of i �̈r Oi and i �̇ωi that do not contain quasi-
accelerations. These terms can be represented as

i �̈r Os,i =
i−1∑

k=1

i Rk

(
k �̈r Ok+1/Ok + k �̇ωs,k × k�rOk+1/Ok

)

+i R0

(
v̇A

0 �x0 − dϕ̈0�z0

)
(59)

i �̈r Ov,i =
i−1∑

k=1

i Rk

(
k �ωk ×

(
2k �̇r Ok+1/Ok + k �ωk

×k�rOk+1/Ok

)
+ k �̇ωv,k × k�rOk+1/Ok

)

+ i R0

(
−dϕ̇20 �x0+gy

0 �y0−vAϕ̇
0�z0

)
(60)

i �̇ωs,i = i R0
0 �y0ϕ̈ +

i∑

k=1

i Rk
k�zkq̈k

+
i−1∑

k=1

i Rk
k �̈θk (lk) (61)

i �̇ωv,i =
i−1∑

k=0

i Rk

(
k �ωk + k �̇θk (lk)

)

×i Rk+1
k+1�zk+1q̇k+1

+
i−1∑

k=1

i Rk

(
k �ωk × k �̇θk (lk)

)
(62)

where j Ri is a compound rotation matrix which shows
the orientation of the i th body’s local reference system
(xi yi zi )with respect to the j th one (x j y j z j ). This com-
pound rotation matrix can be recursively represented as

j Ri = j Ri−1 E ′
i−1 A′

i (63)

where A′
i is the rotation matrix of the i th joint, which

indicates the orientation of the xi yi zi coordinate system
with respect to the x̂i−1 ŷi−1 ẑi−1. This matrix can be
represented by dot products of pairs of unit vectors as

A′
i =

⎡

⎣
xi · x̂i−1 yi · x̂i−1 zi · x̂i−1

xi · ŷi−1 yi · ŷi−1 zi · ŷi−1

xi · ẑi−1 yi · ẑi−1 zi · ẑi−1

⎤

⎦ (64)

Also, E ′
i is the rotation matrix of the i th link, which

shows the orientation of the x̂i ŷi ẑi coordinate system
with respect to the xi yi zi . Like A′

i , this matrix is also
composed of dot products of pairs of unit vectors; but
because of the small angles between these vectors (θxi ,
θyi and θzi ), E ′

i can be exactly represented as

(65)
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where Cθ = cos θ and Sθ = sin θ . Now, the par-
tial derivatives of i �̈r Oi and i �̇ωi with respect to quasi-
accelerations can be expressed as

∂ i �̇ωi

∂q̈ j
= i R j

j �z j (66)

∂ i �̈r Oi

∂q̈ j
= i R j

j �z j × i �rOi /O j (67)

∂ i �̇ωi

∂δ̈ j f
= i R j �θ j f (l j ) (68)

∂ i �̈r Oi

∂δ̈ j f
= i R j �r j f (l j )+ i R j �θ j f (l j )× i �rOi /O j+1 (69)

∂ i �̇ωi

∂ϕ̈
= i R0

0 �y0 (70)

∂ i �̈r Oi

∂ϕ̈
= −i R0d0�z0 + i R0

0 �y0 × i �rOi /O1 (71)

∂ i �̈r Oi

∂v̇A
= i R0

0 �x0 (72)

4.1 Inertia matrix

To obtain the coefficients of the inertia matrix, Eqs. (66)
through (72) and also Eqs. (57) and (58) should be sub-
stituted into Eqs. (50) through (53). Keeping all the
terms, which have quasi-accelerations (q̈k , δ̈kt , v̇A and
ϕ̈) as their coefficients on the left-hand side, and arrang-
ing them in a matrix form, will yield to the inertia matrix
of the whole system. The details of the above procedure
will be explained in the following.

The coefficients of quasi-accelerations in the joint
equations of motion: In Eq. (50), all the terms that have
q̈k , δ̈kt , v̇A and ϕ̈ as their coefficients can be grouped
as
(

n∑

k=1

j �zT
j ·
(

jσk − jψk

)
k�zk

−
n−1∑

k=1

j �zT
j · jUk

k�zk

)

q̈k

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n−1∑

k=1

mk∑

t=1

j �zT
j · ( jσk+ − jψk+

) �θkt

+
n−1∑

k=1

mk∑

t=1

j �zT
j · ( jξk+ + jγk

) �rkt

−
n−2∑

k=1

mk∑

t=1

j �zT
j · jUk+ �θkt

+
n∑

k= j+1

mk∑

t=1

j �zT
j · j r̃Ok/O j

j Rk �C1kt

+
n∑

k= j

mk∑

t=1

j �zT
j · j Rk �αkt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

δ̈kt

+
(

j �zT
j ·
(

jξ0+ + jγ0

)
0 �x0

)
v̇A

+
(

j �zT
j ·
(

jσ0+ − jψ0+ − jU0+
)

0 �y0

− j �zT
j · d

(
jξ0+ + jγ0

)
0�z0

)
ϕ̈ (I)

where

jσk =
n∑

i=max(k, j)

j Ri B9i
i Rk (73)

jψk =
n∑

i=max(k, j+1)

j r̃Oi /O j
j Ri B3i

i Rk (74)

jUk =
n−1∑

t=k

(
jγt + jξt+

)
t r̃Ot+1/Ot

t Rk (75)

jσk+ =
n∑

i=max(k+1, j)

j Ri B9i
i Rk (76)

jψk+ =
n∑

i=max(k+1, j+1)

j r̃Oi /O j
j Ri B3i

i Rk (77)

jUk+ =
n−1∑

t=k+1

(
jγt + jξt+

)
t r̃Ot+1/Ot

t Rk (78)

jξk+ =
n∑

i=max(k+1, j)

j Ri B3i
i Rk (79)

jγt =
n∑

i=max(t+1, j+1)

j r̃Oi /O j B0i
j Rt (80)

In Fig. 2, that part of the inertia matrix of the whole
system, constructed by Exp. (I), is determined by 1, 2, 3
and 4 for q̈k , δ̈kt , v̇A and ϕ̈, respectively. By writing Exp.
(I) in matrix form, we can see that a symmetric matrix is
generated. This fact can be used to more quickly build
the inertia matrix of the whole system.
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Fig. 2 The inertia matrix of
n-viscoelastic-link robotic
manipulator on a mobile
base

ϕ&&Av&nnmδ&&
...

1nδ&&nq&&
...

22mδ&&
...

21δ&&2q&&11mδ&&
...

11δ&&1q&&

1q&&43212121

11δ&&

M76555

11mδ&&

2q&&4321212

21δ&&

M7655

22mδ&&( ) =ΘI

M

nq&&432122
1nδ&&

M765

nnmδ&&

Av&98
ϕ&&10

The coefficients of quasi-accelerations in the deflec-
tion equations of motion: Since the inertia matrix of
the whole system is symmetric, the coefficient of q̈ j in
Eq. (51) is the same as the coefficient of δ̈ j f in Exp.
(I). But the coefficients of the other quasi-accelerations
can be represented as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑n−1
k=1

∑mk
t=1

�θT
j f ·

(
j+σk+ − j+ψk+

) �θkt

−∑n−2
k=1

∑mk
t=1

�θT
j f · j+Uk+ �θkt

−∑n−2
k=1

∑mk
t=1 �r T

j f · j Vk �θkt

−∑n−1
k=1

∑mk
t=1 �r T

j f · j+ξk+ �θkt

−∑ j−2
k=1

∑mk
t=1

�CT
1 j f · j Wk �θkt

+∑ j−1
k=1

∑mk
t=1 �αT

j f · j Rk �θkt

+∑n−1
k=1

∑mk
t=1

�θT
j f ·

(
j+γk + j+ξk+

)
�rkt

+∑n−1
k=1

∑mk
t=1 �r T

j f · jλk�rkt

+∑ j−1
k=1

∑mk
t=1

�CT
1 j f · j Rk �rkt

+∑n
k= j+1

∑mk
t=1 �r T

j f · j Rk �C1kt

+∑n
k= j+2

∑mk
t=1

�θT
j f · j r̃Ok/O j+1

j Rk �C1kt

+∑n
k= j+1

∑mk
t=1

�θT
j f · j Rk �αkt

+∑mk
t=1

(
C3k f t + C7k f t

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

δ̈kt

+
(
�r T

j f · jλ0
0 �x0 + �θT

j f ·
(

j+γ0 + j+ξ0+
)

0 �x0

+ �CT
1 j f · j R0

0 �x0

)
v̇A

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�θT
j f ·

(
j+σ0+ − j+ψ0+ − j+U0+

)
0 �y0

−�θT
j f ·

(
j+γ0 + j+ξ0+

)
d0�z0 − �r T

j f · jλ0d0�z0

− �CT
1 j f · j R0d0�z0 − �CT

1 j f · j W0
0 �y0

+�αT
j f · j R0

0 �y0 − �r T
j f ·

(
j V0 + j+ξ0+

)
0 �y0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ϕ̈

(II)where

j+σk+ =
n∑

i=max(k+1, j+1)

j Ri B9i
i Rk (81)

j+ξk+ =
n∑

i=max(k+1, j+1)

j Ri B3i
i Rk (82)

j Vk =
n−1∑

t=k+1

jλt
t r̃Ot+1/Ot

t Rk (83)

j+ψk+ =
n∑

i=max(k+1, j+2)

j r̃Oi /O j+1
j Ri B3i

i Rk (84)

j+γk =
n∑

i=max(k+1, j+2)

j r̃Oi /O j+1 B0i
j Rk (85)

j Wk =
j−1∑

t=k+1

j Rt
t r̃Ot+1/Ot

t Rk (86)

j+Uk+ =
n−1∑

t=k+1

(
j+γt + j+ξt+

)
t r̃Ot+1/Ot

t Rk (87)

jλk =
n∑

i=max(k+1, j+1)

B0i
j Rk (88)
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The position of Exp. (II) in the inertia matrix of the
whole system is, respectively, determined by 5, 6 and
7 for δ̈kt , v̇A and ϕ̈ (Fig. 2).

The coefficients of quasi-accelerations in the trans-
lational motion equation of the platform: Again, by
using the symmetric feature of the whole system’s iner-
tia matrix, we can realize that the coefficient of q̈ j in
Eq. (52) is identical to the coefficient of v̇A in Exp. (I)
and also the coefficient of δ̈ j f in Eq. (52) is the same
as the coefficient of v̇A in Exp. (II). But the coefficients
of v̇A and ϕ̈ can be expressed as
(

Mtot + Mpw + 2Iw

r2
a

)
v̇A

−
(

0 �xT
0 ·
(

0V0 + 0ξ0+
)

0 �y0

)
ϕ̈ (III)

where

Mtot =
n∑

i=1

B0i (89)

Exp. (III) should be written in matrix form. The position
of this expression in the inertia matrix of the whole
system is shown by 8 and 9 for v̇A and ϕ̈, respectively.

The coefficients of quasi-accelerations in the rota-
tional motion equation of the platform: In a manner
similar to the previous three steps, the below expres-
sion will be obtained after grouping all the terms in
Eq. (53) that have ϕ̈ as their coefficients.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0�zT
0 · d

(
0V0 + 0+

ξ0+
)

0 �y0

+ 0 �yT
0 ·
(

0+
σ0+ − 0+

U0+ − 0+
ψ0+

)
0 �y0

− 0 �yT
0 · d

(
0+
γ0 + 0+

ξ0+
)

0�z0

+ d2
(
Mpw + Mtot

)+ Ipw + 2Iw

(
b2

r2
a

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ϕ̈ (IV)

It should be noted that the coefficients of q̈ j , δ̈ j f and
v̇A in Eq. (53) are the same as the coefficients of ϕ̈ in
Exp. (I), Exp. (II) and Exp. (III), respectively. But the
position of Exp. (IV) in the inertia matrix of the whole
system is determined by 10 for ϕ̈.

As was mentioned above, because of the symmetry
of the whole system’s inertia matrix, it is not necessary
to evaluate the gray regions of this matrix. This makes
the reduction in required mathematical operations for
constructing the inertia matrix of the whole system.

4.2 Right-hand side of motion equations

Now, the right-hand side of the governing equations
will be obtained in recursive form. To this end, in

Eq. (50), all the terms without q̈ j , δ̈ j f , v̇A and ϕ̈ should
be transferred to the right-hand side as

Req j = τ j −
n∑

i= j+1

∂ i �̈r T
Oi

∂ q̈ j
· i �Si

−
n∑

i= j

∂ i �̇ωT
i

∂ q̈ j
· i �Ti (90)

where
i �Si = B0i

i �̈r Ov,i − 2B2i
i �ωi

− B3i
i �̇ωv,i − i ω̃i B3i

i �ωi (91)
i �Ti = B3i

i �̈r Ov,i + 2B8i
i �ωi

+ B9i
i �̇ωv,i + i ω̃i B9i

i �ωi (92)

Substituting Eqs. (66) and (67) into Eq. (90) and con-
verting the obtained equation to a recursive form yields:

Req j = τ j − j �zT
j · j �χ j (93)

where
j �χ j = j �Tj + j r̃O j+1/O j

j �Φ j + j R j+1
j+1 �χ j+1 (94)

j �Φ j = j R j+1

(
j+1 �S j+1 + j+1 �Φ j+1

)
(95)

In Eq. (51), if the terms that do not have quasi-
accelerations as their coefficients are transferred to the
right-hand side, the below expression will be obtained.

Reδ j f = Q j f −
n∑

i= j+1

∂ i �̈r T
Oi

∂δ̈ j f
·i �Si

−
n∑

i= j+1

∂ i �̇ωT
i

∂δ̈ j f
· i �Ti (96)

where

Q j f = −
m j∑

k=1

(
δ jk K jk f + δ̇ jk D jk f

)

+ 2 j �ωT
j ·

m j∑

k=1

δ̇ jk �C4 j f k + j �ωT
j · β j f

j �ω j

− j �̈r T
Ov, j

· �C1 j f − j �̇ωT
v, j · �α j f (97)

Substituting Eqs. (68) and (69) into Eq. (96) and con-
verting it to a recursive form yields:

Reδ j f = Q j f − �r T
j f · j �Φ j − �θT

j f · j R j+1
j+1 �χ j+1 (98)

In Eq. (52), all the terms that do not have q̈ j , δ̈ j f , v̇A

and ϕ̈ as their coefficients can be grouped as

RevA = 1

ra
(τR + τL)+ Mpwdϕ̇2

−
n∑

i=1

∂ i �̈r T
Oi

∂v̇A
· i �Si (99)
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Substituting Eq. (72) into Eq. (99) and changing the
obtained equation to a recursive form yields:

RevA = 1

ra
(τR + τL)+ Mpwdϕ̇2 − 0 �xT

0 · 0 �Φ0 (100)

And finally in Eq. (53), if all the terms that do not have
quasi-accelerations as their coefficients are moved to
the right- hand side the following expression will be
obtained.

Reϕ = b

ra
(τR − τL)− Mpwdϕ̇vA

−
n∑

i=1

∂ i �̈r T
Oi

∂ϕ̈
· i �Si −

n∑

i=1

∂ i �̇ωT
i

∂ϕ̈
· i �Ti (101)

Inserting Eqs. (70) and (71) into Eq. (101) and changing
the resulting equation to a recursive form yields:

Reϕ = b

ra
(τR − τL)− Mpwdϕ̇vA

−0 �yT
0 · 0 R1

1 �χ1 + d0�zT
0 · 0 �Φ0 (102)

Equations (93), (98), (100) and (102) show the recur-
sive form of the right-hand side of the governing equa-
tions.

5 Computational complexity of the proposed
method

Based on the formulations developed in previous sec-
tions, the required mathematical operations for deriving
the motion equations by the G–A method for the two
dynamic systems, i.e., the n-viscoelastic-link robotic
manipulator with fixed base (Ref. [19]), and the one
with mobile base (this work), are presented in Table 1.

To compare the computational complexities of these
two robotic systems, first, the effect of increasing the
number of mode shapes on the mathematical operations
needed for deriving the equations of motion will be
studied. In this comparison, it is assumed that both of
these robotic systems have two links that each of them
is flexible (n = n f = 2).

As is shown in Fig. 3, with the increase in the number
of mode shapes, the number of mathematical operations
needed for deriving the motion equations of both fixed
and mobile robotic systems increase. Now, we consider
the conditions in which the number of mode shapes is
constant (m = 2), but the number of flexible links
increases.

Again, as seen in Fig. 4, by increasing the number of
flexible links, the number of mathematical operations

required for deriving the motion equations increases.
Moreover, the number of required mathematical opera-
tions for mobile robotic manipulators with viscoelastic
links is expected to be higher than that for systems with
fixed bases. However, it is shown in [19] that the num-
ber of mathematical operations in the recursive G–A
method is less than in the recursive Lagrangian method.
It is emphasized that even a few savings in multiplica-
tions or additions may have a significant effect on the
efficiency of the algorithm. As a result, one can satis-
factorily apply the algorithm in real-time applications
or use less advanced, less expensive computing systems
to perform the same work.

6 Computer simulation

In this section, a simulation is performed according
to the proposed formulation. The simulation involves
a two-link robotic manipulator with viscoelastic links
mounted on a mobile platform (Fig. 5).

To model the elastic properties of each link, the
AMM is applied, which has an advantage over the finite
element method, because in the latter, a lot of boundary
conditions should be considered in order to solve a large
set of differential equations. In the mathematical mod-
eling of elastic robotic manipulators by the AMM, the
proper selection of mode shapes is an important step for
improving the results. In this paper, the eigenfunctions
with clamped-free boundary conditions based on the
TBT (in which the mode shapes of deflections and rota-
tions are independently obtained) have been adopted
[21]. In all the previous works that have considered
multiple flexible links, the eigenfunctions are obtained
on the basis of the Euler–Bernoulli beam theory in
which the rotational mode shapes are acquired by sim-
ply differentiating the bending eigenfunctions. These
translational and rotational mode shapes are expressed
as

yi j = C1 sin (a · η)+ C2 cos (a · η)
+C3 sinh (b · η)+ C4 cosh (b · η) (103)

θzi j = α.C2 sin (a · η)− α · C1 cos (a · η)
+β · C4 sinh (b · η)+ β · C3 cosh (b · η)

(104)

where a, b, α, β,C1,C2,C3,C4 can be found in Table 2.
To explain computational procedure for the simula-

tion clearly, we rewrite Eq. (54) as (Ref. [22]):

�̈ = I −1
( �
)−→

Re (105)
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Table 1 Required mathematical operations based on recursive G–A for two dynamic systems

Dynamic system Products Sums

Viscoelastic links with mobile base
42n2

f m2 + 30n2
f m − 36n f m2 + 69n f m

− 6m2 − 42m + 475.5n2 − 340.5n + 27
53.5n2

f m2 + 52.5n2
f m − 53.5n f m2 + 49.5n f m

+ m2 − 49m + 351n2 − 180n − 47

Viscoelastic links with fixed base
42n2

f m2 + 30n2
f m − 60n f m2 + 6n f m

+ 18m2 − 15m + 475.5n2 − 790.5n + 300
53.5n2

f m2 + 52.5n2
f m − 89.5n f m2 + 49.5n f m

+ 18m2 + 6m + 351n2 − 553n + 188
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Fig. 3 Computational complexities of fixed and mobile bases with a constant number of flexible links
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Fig. 4 Computational complexities of fixed and mobile bases with constant number of mode shapes

Converting Eq. (105) in state form yields:

�̇X1 = �X2 (106)

�̇X2 = I −1
( �X1

)−→
Re (107)

where �X1 = � and �X2 = �̇. Also the initial conditions
are given as

q1 = q̇1 = δ11 = δ̇11 = q2 = q̇2 = δ21

= δ̇21 = xA = vA = ϕ = ϕ̇|t=0 = 0

All the other necessary parameters for the numerical
simulation can be found in Table 3. The time responses

of the system are obtained by solving a set of twelve
differential equations.

Figure 6 illustrates the end effector trajectories for
both the rigid and flexible links. This figure shows that
the time response of the flexible robotic manipulator
fluctuates around the time response of its rigid coun-
terpart. This time response can be used to prove the
correctness of the obtained recursive formulations in
generating the governing equations for these kinds of
robotic systems.
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Fig. 5 Two-link mobile
robotic manipulator with
viscoelastic links
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Table 2 The coefficients of
translational and rotational
mode shapes

i, j C1 C2 C3 C4

i = 1, j = 1 1.004932994 −1.363308865 −1 1.363308865

i = 2, j = 1 1.013709830 −1.365239196 −1 1.365239196

i, j a b α β

i = 1, j = 1 3.749216990 3.743072231 −3.736937544 3.755371834

i = 2, j = 1 6.245766842 6.217482169 −6.189325585 6.274180185

Now, to study the effects of damping coefficients, the
time response results of the system including the hub
angular positions (Figs. 7, 11), hub angular velocities
(Figs. 8, 12), modal generalized coordinates (Figs. 9,
13) and the variations of those coordinates with respect
to time (Figs. 10, 14) and also the trajectory of the plat-
form in the XY plane (Fig. 15) are presented for each
link, and for different values of air damping coefficients
and Kelvin–Voigt damping coefficients.

As is observed, with the increase in the value of
damping coefficient, vibration amplitude diminishes.
In other words, damping coefficient has a negligi-
ble effect on the time responses of the system’s large
motions, but it greatly influences the time responses of
small deflections. To quantitatively analyze this effect,
the root-of-mean-square (RMS) value of each joint’s
variation (as large motions) and each link’s variation

(as small deflections) should be evaluated. The RMS
value can be interpreted as the power of a signal. So, as
expected, by increasing the damping coefficient, this
value decreases for small deflections of links, but it
remains almost unchanged for the large motions of
joins (Table 4).

Here, the numerical stability of the proposed method
is investigated by using different modulus of elasticity
in the simulation of the above-mentioned robotic sys-
tem. To avoid the loss in accuracy of simulation results,
no stabilization method is employed and the simula-
tion results are obtained using the “ode45” function in
Matlab v. R2007b software. The time response of the
first joint is selected as the representative of the time
response of the whole system.

As is observed in Fig. 16, with the reduction in the
Young’s modulus of the links, the time response of the
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Table 3 Required
parameters for the
simulation of a
two-flexible-link mobile
robotic manipulator

Parameters Value Unit

Ipw 0.06363 kg m2

Mpw 6.64 kg

Iw 0.001 kg m2

d 0.2 m

ra 0.08 m

b 0.145 m

H 0.2 m

τR; τL τR = 0.1; τL = 0.2 N m

l1; l2 l1 = 0.5; l2 = 0.3 m

μ1 = μ2 3 kg m−1

A1 = A2 3.8462 × 10−4 m2

Iz1 = Iz2 1.1772 × 10−8 m4

J1 = J2

⎡

⎣
18.316 0 0
0 9.157 0
0 0 9.157

⎤

⎦× 10−5 kg m

k 5/6

E1 = E2 2.0 × 1011 N m−2

G1 = G2 77 × 109 N m−2

Kv1 = Kv2 125; 625; 1125; 1625; 2125 kg m−1s

γ 0.025; 0.125; 0.225; 0.325; 0.425 kg m−1s

g 10 m s−2

τ1 = τ2

⎧
⎨

⎩

if t ≥ 0 and t < 0.5 τ1 = τ2 = 1
if t ≥ 0.5 and t < 1 τ1 = τ2 = −1
else if t ≥ 1 and t ≤ 1.5 τ1 = τ2 = 0

N m
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1
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(m
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Fig. 6 End effector trajectory in the XYZ Plane

system becomes unstable and the numerical stability
fails at E1 = E2 = 2 × 107. Finally, to see whether
different Matlab ODE solvers get different results, the
governing equations were solved by ODE45, ODE23,
ODE23t, ODE23s and ODE15s, but no significant dis-
crepancy was observed.

7 Summery and conclusion

Dynamic modeling of viscoelastic-link robotic arms
becomes a complex and challenging task when the
number of these robotic arms increases or when the
system’s dynamic model is upgraded, which makes
the manual derivation of the motion equations practi-
cally impossible. Thus, recursive algorithms should be
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Fig. 7 Angular position of
the first joint
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Fig. 8 Angular velocity of
the first joint
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Fig. 9 Modal generalized
coordinate of the first link
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Fig. 10 Modal generalized
velocity of the first link

0 0.5 1 1.5
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t (sec)

D
el

ta
 D

ot
 1

1 
(1

/s
ec

)

GAMMA=0.025, Kv=125
GAMMA=0.125, Kv=625
GAMMA=0.225, Kv=1125
GAMMA=0.325, Kv=1625
GAMMA=0.425, Kv=2125

Fig. 11 Angular position of
the second joint
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Fig. 12 Angular velocity of
the second joint
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Fig. 13 Modal generalized
coordinate of the second
link
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Fig. 14 Modal generalized
velocity of the second link
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Fig. 15 Platform trajectory
in XY plane (point A)
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Table 4 RMS of the small deflections and large motions of two-viscoelastic-link mobile manipulator

RMS Damping

γ = 0.025
Kv = 125

γ = 0.125
Kv = 625

γ = 0.225
Kv = 1125

γ = 0.325
Kv = 1625

γ = 0.425
Kv = 2125

RMS of the 1st joint 0.6518 0.6519 0.6519 0.6519 0.6519

RMS of the 1st link 1.8762 × 10−5 1.6991 × 10−5 1.5696 × 10−5 1.4766 × 10−5 1.4090 × 10−5

RMS of the 2nd joint 4.6049 4.6046 4.6054 4.6039 4.6046

RMS of the 2nd link 3.7856 × 10−6 3.6472 × 10−6 3.5658 × 10−6 3.5487 × 10−6 3.4881 × 10−6
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Fig. 16 Angular position of the first joint with different values
of Young’s modulus

sought that can automatically and systematically derive
the equations of motion. In this manuscript, by employ-
ing the G–A formulation, a recursive formulation is pre-
sented for the automatic and systematic derivation of
motion equation of n-viscoelastic-link robotic manip-
ulators that mounted on a mobile platform. The most
important characteristic of the recursive formulations
presented in this manuscript is the use of the 3 × 3
rotational matrices instead of the 4 × 4 transformation
matrices, which reduces the computational complexity
of the mentioned algorithm. To improve the mathemat-
ical modeling of elastic robotic arms, Timoshenko’s
beam theory with considering the effects of internal
and external damping has been developed. Also, the
dynamic interactions between the manipulator and the
mobile platform, both nonholonomic constraints asso-
ciated with no-slipping and no-skidding conditions,
and the simultaneous large motion and small deflec-
tions of the elastic arms have been considered. So, the
proposed formulation can be prepared in the form of a
software package to be used in designing and analyzing
these robotic systems.
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