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Abstract This paper presents a novel fault detection
and estimation (FDE) scheme for a class of Lipschitz
nonlinear systems subjected to modeling and measure-
ment uncertainties. Many works in this field assume
that the states of the system are measurable and the
fault function acts as an additive term. The proposed
FDE strategy deals with the uncertain nonlinear sys-
tems subjected to multiplicative faults, and it does not
rely on availability of the full state. Multiplicative fault
corresponds to the parameter or structure changes in the
system or in the process model. Also, actuator gain fault
is another important fault type which can be modeled
as a multiplicative fault. The effects of this kind of fault
are combined with the inputs and outputs of the system
in a multiplicative form which, in turn, make the detec-
tion and estimation of the fault complex. The proposed
scheme is based on an adaptive diagnostic observer
that not only can estimate the states of the system and
generate the residual signal simultaneously, but also is
able to estimate the characteristic and magnitude of an
unknown fault. In the fault detection step, the threshold
is derived analytically to ensure the robustness of the
proposed detection scheme against uncertainties. Also
in the fault estimation step, a robust adaptive law based
on the switching σ -modification is developed to esti-
mate the detected fault accurately. Design steps of the
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proposed estimation scheme are introduced in the form
of LMI problem. This formulation provides an effective
way to calculate the design parameters. The proposed
FDE scheme guarantees that all signals are uniformly
ultimately bounded. Simulation results of a single-link,
flexible joint, robotic arm show the effectiveness and
robustness of the proposed FDE strategy.
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1 Introduction

As engineering systems and industrial processes
become more complex, the probability of fault occur-
rence increases. Therefore, safety and reliability have
become the most important requirements of the sys-
tem. In order to achieve these requirements, fault tol-
erant control systems have been developed which need
early fault detection and isolation. So, this necessity
has motivated a significant research in the field of
fault detection (FD) during the last decades. The most
common approaches for model-based FD are based
on the state or parameter estimation schemes, which
employ techniques such as the adaptive observer [1,2],
the sliding mode observer [3,4] and the geometric
approaches [5,6]. However, detection of the fault occur-
rence and its location is not sufficient to accommo-
date fault or to design active fault tolerant control sys-
tems. So, it is necessary to provide more information
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about severity, magnitude and behavior of the faults.
These requirements are the main motivation to develop
fault estimation techniques. Fault estimation can pro-
vide more information about the fault function such as
severity, frequency and time characteristic, which are
helpful to identify the failure mode, to accommodate
the fault and to design the active fault tolerant control
systems.

Faults may occur in every possible location, such
as actuators, sensors and components of the system.
According to the effects of the faults on the system or
process, they are classified as additive and multiplica-
tive faults [7]. In general, additive faults are modeled
as an unknown input to the system or process. Sev-
eral approaches have been proposed to solve the fault
detection and diagnosis problem for nonlinear systems
subjected to additive faults [1,8–11]. Component faults
and some actuator and sensor faults appear in the form
of multiplicative faults. This is an important kind of
fault which corresponds to the parameter or structure
changes in the system or process model [12]. In contrast
to the additive fault representation, the multiplicative
fault representation depends on both the state and the
input variables. This coupling between the fault func-
tion and the state and input variables of the system
makes the detection and estimation of the multiplica-
tive fault different from the additive one.

Some research has been done in the area of mul-
tiplicative fault detection and estimation for linear
[12–16] and nonlinear systems [17–20]. In [12], the
parameter similarity approach was proposed for detec-
tion, isolation and identification of multiplicative faults
in linear dynamical systems. It does not take into
account the dynamics of the process and offers some
parameter similarity measures to assess the degree of
similarity between interesting data set and a template
data set for fault diagnosis. An adaptive observer-based
fault diagnosis technique was proposed for fault diag-
nosis in known deterministic linear dynamical sys-
tems [13]. The main disadvantage of this method is that
the fault may have unpredictable behavior and most of
the time is not constant, which means that its derivative
is not zero and may cause high gains. In [14] and [15],
sliding mode observers have been used to reconstruct
an unknown multiplicative fault for linear systems. A
fast active fault estimation algorithm using adaptive
fault diagnosis observer has been proposed for linear
systems in [16]. This scheme needs certain necessary
conditions, which strictly limit its application.

Parameter fault detection and estimation for a class
of nonlinear systems have been investigated in [17].
The fault estimation performance has not been stud-
ied and the effects of the unavoidable modeling
uncertainty, the external disturbance and measurement
uncertainty have not been considered in the design
step in [17]. The problem of fault detection and isola-
tion scheme for a class of nonlinear systems with par-
tially measurable states and nonlinear and unstructured
modeling uncertainty has been studied in [18]. The pro-
posed scheme in [18] addresses the detection and iso-
lation of nonlinear unknown fault functions that are
modeled as nonlinear functions of measurable signals
of the system (i.e., input and output variables of the sys-
tem). In [19], a robust fault estimation scheme has been
proposed for a class of nonlinear systems subjected to
multiplicative faults and unknown disturbances. Only
the fault estimation has been done, and no discussion
has been provided on the fault detection in the presence
of the external disturbance. In [19], the fault is declared
when the output of the estimator becomes nonzero. The
straightforward and practical way for improving the
robustness of the algorithm with respect to uncertainty
is to start adaptation when the residual is above a cer-
tain threshold. Multiplicative actuator fault detection
and isolation for the nonlinear systems based on neural
network has been proposed in [20]. The generated sig-
nals by the neural network are considered as the resid-
uals and are used for fault detection and identification,
simultaneously. A new data-driven method for diag-
nosing multiplicative key performance degradation in
automation processes has been proposed in [21]. It uses
the process data to extract the features of the multiplica-
tive faults and to identify and evaluate the impact of the
fault on each process variable. A robust actuator fault
diagnosis scheme for satellite altitude control systems
has been presented in [22]. It designs an unknown input
observer for fault detection, and then, a bank of adap-
tive unknown input observers (well-known generalized
observer strategy) is activated to isolate the fault, and
finally, the fault parameter is estimated.

Although some research has been done for diagnosis
of multiplicative faults, there are still deficiencies in this
area. For example, though many practical systems sat-
isfy the Lipschitz condition at least near the operating
point, they are subjected to unstructured uncertainty,
unmeasurable states and measurement uncertainty. But
fault detection and estimation problem is a motivation
for work.
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In this paper, a novel adaptive robust fault detec-
tion and estimation scheme is proposed for a class of
Lipschitz nonlinear systems, which are subjected to
multiplicative faults, modeling and measurement
uncertainties. It is assumed that all states of the sys-
tem are not measurable. More specifically, both of
the known nonlinear term and unknown fault func-
tions are modeled as nonlinear functions of the state
variables and input signals and satisfy the Lipschitz
condition. The design objective is to develop a robust
detection and estimation scheme which can detect and
estimate the multiplicative fault, simultaneously. The
proposed scheme should be robust against modeling
and measurement uncertainties and must be sensitive
to unknown faults. In fact, detection of such faults can
be formulated as detection of abrupt or incipient para-
meter changes at unknown time instants in the pres-
ence of uncertainty. An adaptive observer is designed
to estimate the system states and to generate the residual
signal, simultaneously. Decision for the fault detection
is made by evaluating the residual evaluation function
with proper threshold. The threshold is derived analyt-
ically. When the residual evaluation function exceeds
the derived threshold, a fault is detected and an alarm
signal is generated. Upon alarm generation, the adap-
tive estimation scheme is activated to estimate the
severity and characteristic of the detected multiplica-
tive fault. A robust adaptive law based on switching
σ -modification is developed to present an accurate esti-
mation of the unknown fault function and to avoid the
parameter drift. The proposed FDE scheme ensures
that all signals are uniformly ultimately bounded in
the presence of uncertainties. Also, design steps for
the proposed estimation scheme are expressed in the
form of the LMI problem. This formulation provides
an effective way to calculate the design parameters.

Also, in order to validate the results obtained by
the proposed FDE scheme, the FE strategy in [19]
is applied to the system. Simulation and compari-
son show that the proposed scheme has high estima-
tion accuracy and convergence speed. Moreover, it has
robust performance against modeling and measurement
uncertainties and has no undesirable transient response
characteristics.

The organization of this paper is as follows. The
problem statement is presented in Sect. 2. In Sect. 3,
the proposed fault detection and estimation scheme is
explained which is composed of the fault detection
scheme and development of the robust adaptive law for

fault estimation. Also, theoretical analysis is done to
show that all signals are uniformly ultimately bounded.
In Sect. 4, a single-link, flexible joint, robotic arm is
used to investigate the performance of the proposed
scheme. Finally, Sect. 5 presents the conclusions.

2 Problem statement

Consider a class of nonlinear multi-input, multi-output
system which is described by the following differential
equation:

ẋ = Ax + Bu + f (x, u) + η(x, u, t)

+β(t − T )F(x, u)

y = C x + Dd (1)

where x ∈ Rn, u ∈ Rq and y ∈ Rm are the state,
the input vector and the output vector, respectively,
A, B, C and D are known matrices with proper dimen-
sions, and the pair (A, C) is observable. f (x, u) :
Rn × Rq → Rn, η : Rn × Rq × R+ → Rn and
d : R+ → Rm are smooth vector fields that rep-
resent the known dynamics of the nominal model,
the modeling uncertainty and the measurement uncer-
tainty, respectively. Also, β(t − T )F(x, u) denotes the
change in the system dynamics due to occurrence of
a fault, where F(x, u) : Rn × Rq → Rn denotes the
nonlinear fault function and β(t − T ) is a diagonal
matrix and describes the time profile of the fault, i.e.,
β(t −T ) = diag(β1(t −T ), β2(t −T ), . . . , βn(t −T )),
where T is unknown fault occurrence time [23]. With-
out loss of generality, only the case of abrupt faults is
considered and the time profile of the i th fault is mod-
eled as follows:

βi (t − T ) =
{

0 if t < T
1 if t ≥ T

where βi (t − T ) : R → R is a function that represents
the time profile of the i th fault affecting the i th state
equation (i = 1, 2, . . . , n).

It is assumed that the nonlinear system (1) is sub-
jected to a component fault or an actuator gain fault.
So, the multiplicative modeling approach is invoked
to model these kinds of faults. Considering this expla-
nation, the nonlinear system (1) can be described as
follows:

ẋ = Ax + Bu + f (x, u) + η(x, u, t)

+β(t − T )ϕ(x, u)θ

y = C x + Dd(t) (2)
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where θ ∈ R p×1 is a vector of unknown functions
which denotes the magnitude and size of faults and
it is assumed to be bounded, i.e., ‖θ‖ ≤ θ . Also,
ϕ(x, u) ∈ Rn×p are nonlinear functions, which rep-
resent the functional structure of the faults.

Remark 1 In the fault diagnosis issues, modeling
uncertainty is assumed to be structured or unstructured.
The structured uncertainty is considered in the form of
η = Eω(t), where E is a distribution matrix and ω is
an unknown function of time. In this formula, E can
be known or approximately known and may not nec-
essarily be a constant matrix. If the distribution matrix
of uncertainty (E) is unknown, then the uncertainty is
called “unstructured.”

The objective of this paper was to present a simul-
taneous robust fault detection and estimation strategy
based on an adaptive observer, which can determine
the occurrence, characteristics and severity of a fault
by processing the input and the state information. The
fault detection consists of two main steps: residual
generation and residual evaluation (or decision mak-
ing). In residual generation step, a nonlinear diagnostic
observer is designed to estimate the states of the system
and to generate a residual signal. This residual signal
reflects the discrepancies between the behavior of the
actual system and the estimated behavior of its nominal
model. In residual evaluation step, the residual evalua-
tion function is compared with a proper threshold level
which is derived analytically. If the residual evaluation
function exceeds the derived threshold level, a fault is
detected and an alarm signal is generated. Upon the
alarm generation, an adaptive fault estimation scheme
is activated to make an accurate estimation for the size
and the severity of the fault. The proposed estimation
scheme ensures that all signals are uniformly ultimately
bounded. Before describing the proposed scheme, the
following assumptions are made:

Assumption 1 It is assumed that the state and the input
variables of the system are bounded before and after
the fault occurrence. So, there exist compact sets X ⊂
Rn and U ⊂ Rq such that the state and the control
input variables remain bounded before and after the
fault occurrence, i.e., for all t, x ∈ X and u ∈ U [24].

Assumption 2 f and ϕ are Lipschitz in x with Lip-
schitz constants γ1 and γ2, respectively, i.e.,∥∥ f (x, u) − f (x̂, u)

∥∥ ≤ γ1
∥∥x − x̂

∥∥ (3)∥∥ϕ(x, u) − ϕ(x̂, u)
∥∥ ≤ γ2

∥∥x − x̂
∥∥ (4)

Assumption 3 It is assumed that the modeling uncer-
tainty, represented by η in (1), is unstructured and
unknown nonlinear function of x, u and t, but is
bounded by known functional, i.e., ‖η(x, u, t)‖ ≤
η( y, u, t).

Assumption 4 It is assumed that the unknown mea-
surement uncertainty, represented by d in (1), and
its derivative are norm-bounded, i.e., ‖d(t)‖ ≤ d1,∥∥ḋ(t)

∥∥ ≤ d2, where d1 and d2 are known constants.

In the following section, the proposed multiplicative
fault detection and estimation scheme is described.

3 Proposed fault detection and estimation scheme

In this section, the proposed FDE scheme is described
in two parts: fault detection scheme and fault estimation
scheme.

3.1 Fault detection scheme

Simply speaking, fault detection means to find some-
thing is going wrong in the system. To estimate the
states of the system and to generate the residual sig-
nal for the fault detection, the nonlinear diagnostic
observer is designed as:

˙̂x(t) = Ax̂ + Bu+ f (x̂, u) + ϕ
(
x̂, u

)
θ̂ + L

(
y−C x̂

)
ŷ = C x̂ (5)

where x̂ ∈ Rn is the state vector of the observer, θ̂ is
the estimation of an unknown fault vector, which deter-
mines the severity, the size and the magnitude of the
detected fault and L is the observer gain matrix. Since
it has been assumed that the pair (A, C) is observable,
the gain matrix (L) of the observer can be chosen such
that the Riccati equation (A− LC)T X + X (A− LC)+
(γ + 1)X T X + γ 2

1 I < 0 has a symmetric positive def-
inite solution X where γ is a positive constant.

Let x̃ = x − x̂ be the state estimation error. So, the
dynamics of the estimation error is given by:

˙̃x = (A − LC )̃x + f (x, u) − f (x̂, u) + η(x, u, t)

+β(t − T )ϕ(x, u)θ − ϕ(x̂, u)θ̂ + L Dd (6)

Before the fault occurrence, i.e., t < T, θ is zero which
models the fault-free behavior of the system, also θ̂ is
set to zero and the dynamics of the estimation error is
obtained as follows:
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˙̃x = (A − LC )̃x + f (x, u)

− f (x̂, u) + η(x, u, t) + L Dd (7)

So, we have:

x̃ = eΛt x̃(0) +
t∫

0

eΛ(t−τ)( f (x(τ ), u(τ ))

− f (x̂(τ ), u(τ )) + η(x(τ ), u(τ ), τ ) + L Dd)dτ

(8)

where Λ = A − LC .

After designing the diagnostic observer, the remain-
ing important task in fault detection is the generation
and evaluation of the residual signal. One of the com-
mon approaches for evaluation of the residual signal is
selecting a proper threshold value Jth > 0 and using
the following logical relations for fault detection:

‖Jr(t)‖ ≥ Jth ⇒ Fault occurs ⇒ alarm (9)

‖Jr(t)‖ < Jth ⇒ No fault occurs ⇒ no alarm (10)

where Jr(t) is the residual evaluation function which is
selected as follows:

‖Jr(t)‖ =
⎡
⎣

t+T1∫
t

rT (t)r(t)dt

⎤
⎦

1/2

(11)

where r = y − ŷ is the residual signal and T1 is the
evaluation time window. Note that the length of the
time window is finite.

Lemma 1 ([25]) Since Λ is a stable matrix, there exist
positive constants k and λ, such that

∥∥eΛt
∥∥ ≤ ke−λt .

Theorem 1 Consider the nonlinear faulty system (2),
the diagnostic observer (5) and the evaluation func-
tion (11). Decision on the occurrence of the fault (fault
detection) is made when the evaluation function‖Jr(t)‖
exceeds its corresponding threshold Jth, which is:

Jth =
⎡
⎣

t+T1∫
t

(
k(η + ‖L‖ ‖D‖ d1) ‖C‖

λ − kγ1

+
(

kε − k(η + ‖L‖ ‖D‖ d1)

λ − kγ1

)
‖C‖ e−(λ−kγ1)τ

+ ‖D‖ d1
)2

dτ

⎤
⎦

1
2

(12)

where k and λ are positive constants, which are chosen
according to Lemma 1 and ε is a constant bound for
‖x(0)‖ such that ‖x̃(0)‖ = ‖x(0)‖ ≤ ε.

Proof See “Appendix 1.”

The derived threshold of (12) calculated by Jth =
sup f =0,η,d ‖Jr(t)‖ is based on a reliable estimation of
the upper bound of the evaluation function using the
worst-case modeling and measurement uncertainties,
which affect the system during fault-free operations.
So, when the evaluation function exceeds the threshold
Jth, a fault is detected and an alarm signal is generated.
Upon fault detection and alarm generation, an adaptive
strategy is activated to estimate the characteristics and
the size of the unknown fault.

3.2 Fault estimation scheme

The key step in development of the fault estimation
scheme is the design of an appropriate adaptive law.
Before fault detection, θ̂ is set to zero. After fault detec-
tion and alarm generation, the estimation scheme must
be activated to identify the type and the magnitude of
the fault.

In the following theorem, an adaptive law is pro-
posed to estimate the unknown fault vector θ such that
all signals remain uniformly ultimately bounded.

Lemma 2 Given the system (2) and its observer (5), if
P is any symmetric matrix, then we have

2x̃T P( f (x, u)− f (x̂, u))≤γ 2
1 x̃T P P x̃ + x̃T x̃ (13)

Proof See “Appendix 2.”

Remark 2 Considering Assumption 2 and using the
same procedure as Lemma 2, the following results are
obtained:

2
(

f (x, u) − f
(
x̂, u

))T
Γ x̃ ≤ γ 2

1 x̃T x̃ + x̃T Γ Γ x̃

(14)

2
(

f (x, u) − f
(
x̂, u

))T
Γ W d ≤ γ 2

1 x̃T x̃

+ dT W T Γ Γ W d (15)

2
((

ϕ (x, u) − ϕ
(
x̂, u

))
θ
)T

Γ x̃

≤ γ 2
2 θ

2
x̃T x̃ + x̃T Γ Γ x̃ (16)

2
((

ϕ (x, u) − ϕ
(
x̂, u

))
θ
)T

Γ W d ≤ γ 2
2 θ

2
x̃T x̃

+ dT W T Γ Γ W d (17)

Theorem 2 Consider the nonlinear faulty system (2),
the state observer (5) and the estimation error (6).
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Under Assumptions 1–4, if there exists a symmetric pos-
itive definite matrix P ∈ Rm×m such that the following
matrix inequality holds

Π =
⎡
⎣Ω1 (A − LC)T Γ W + Γ L D 0

∗ Ω2 0
∗ ∗ −σs I

⎤
⎦ < 0

(18)

then the following adaptive estimation algorithm

˙̂
θ(t) = γ ϕT (x̂, u)CT P r(t) − γ σs θ̂(t) (19)

can realize that all signals are uniformly ultimately
bounded, where γ > 0 is the learning rate, * denotes
the symmetric elements in the symmetric matrix, and

Γ = CT PC

Ω1 = (A−LC)T Γ + Γ (A−LC) + 2γ 2
1 I + 2γ 2

2 θ
2

I

+ 3Γ Γ + Γ W W T Γ

Ω2 = 3W T Γ Γ W + DT LT Γ W + W T Γ L D

+ W T Γ W W T Γ W

where W will be defined in the proof. σs is defined as
follows:

σs =

⎧⎪⎨
⎪⎩

0 if |θ(t)| < M0

σ0

( |θ(t)|
M0

−1
)

if M0 ≤|θ(t)|≤2M0

σ0 if |θ(t)| > 2M0

(20)

where the positive constants σ0 and M0 are the design
parameters.

Proof See “Appendix 3.”

Remark 3 Based on the Schur Complement Lemma
[25], Π < 0 in (18) can be rewritten as the following
linear matrix inequality with respect to matrix Γ :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω (A − LC)T Γ W + Γ L D 0 Γ Γ W 0 0
∗ DT LT Γ W + W T Γ L D 0 0 0 W T Γ W T Γ W
∗ ∗ −σs I 0 0 0 0
∗ ∗ ∗ −3I 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −2I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (21)

where Ω = (A − LC)T Γ + Γ (A − LC) + 2γ 2
1 I +

2γ 2
2 θ

2
I and Γ = CT PC . The matrix P can be derived

from P = (CCT )−1CΓ CT (CCT )−1.

Remark 4 Bounds of the state and parameter estima-
tion error and semi-negative definiteness of V̇ depend
on λ(−Π) and σs . Therefore, the trade-off in selecting
these parameters should be considered in the design
step.

In the next section, simulation results are provided
to investigate the performance of the proposed FDE
scheme and are compared with previous work to ver-
ify its effectiveness and superiority. It is worth noting
that the low-dimensional proposed example does not
alter the generality of the proposed strategy for higher-
dimensional problems.

4 Simulation results

In this section, a single-link robotic arm, with a revolute
joint, rotating in a vertical plane is considered to inves-
tigate the complete performance of the proposed FDE
scheme. This system is a well-known example in most
fault detection studies [16,18,19,26,27]. The equation
of motion for this system is given by [28]:

Jmq̈m + bq̇m − k(ql − qm) = kτ u

Jlq̈l + k(ql − qm) + mgh sin ql = 0 (22)

where qm and Jm are the angular position and the iner-
tia of the motor. ql, Jl, m and h are the angular position,
inertia, mass and length of the link, respectively. b, k
and kτ represent the viscous friction coefficient, the
torsion spring constant and the amplifier gain, respec-
tively. g is the gravity constant, and u is the torque
applied by the motor.

Choosing the angular position and the velocity of
the motor and the link as the state variables, i.e., x1 =
qm, x2 = q̇m, x3 = ql, x4 = q̇l, and assuming that the
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Fig. 1 a Evaluation
function and threshold, b
actual fault and its
estimation in the presence
of the abnormal friction
fault and in the absence of
uncertainty
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Fig. 2 a Evaluation
function and threshold, b
actual fault and its
estimation in the presence
of the actuator fault and in
the absence of uncertainty
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Fig. 3 a Evaluation
function and threshold, b
actual fault and its
estimation in the presence
of the actuator fault and
modeling uncertainty
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position and the velocity of the motor can be measured,
the above model can be written in the following state
space form:⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
− k

Jm
− b

Jm

k
Jm

0
0 0 0 1
k
Jl

0 − k
Jl

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
kτ

Jm

0
0

⎤
⎥⎥⎦ u +

⎡
⎢⎢⎣

0
0
0

−mgh
Jl

sin(x3)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
η

0
0

⎤
⎥⎥⎦ + β(t)ϕ(x, u)θ

y =
[

1 0 0 0
0 1 0 0

]
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ +

[
0
d2

]
(23)

It should be noted that the effects of modeling
and measurement uncertainties and multiplicative fault
have been included in the above model.

In order to verify the effectiveness of the proposed
scheme, detection and estimation of both the compo-
nent fault and the actuator gain fault (loss of effective-
ness) are addressed. Also, robustness of the proposed
scheme against modeling and measurement uncertain-
ties is investigated. To validate the efficiency of the
proposed FDE scheme, its performance is compared
with the reported FE scheme in [19].

To evaluate the performance of the proposed FDE
strategy, two types of faults, the process fault and the
actuator gain fault (loss of effectiveness), are consid-
ered as follows:

(a) A process fault which causes abnormal friction
in the motor (F1): The fault function which
affects the system is in the form of F1(x) =[

0 −(b/Jm)x2θ1 0 0
]T

which corresponds toϕ1 =[
0 −(b/Jm)x2 0 0

]T
and θ1 ∈ [0 1] where θ1 rep-

resents the real multiplicative fault parameter. Note
that the case θ1 = 0 implies that the system is oper-
ating in the normal mode while θ1 
= 0 describes its
faulty behavior. It is assumed that the viscous fric-
tion coefficient b is increased by 40 % at t = 6 s,
i.e., θ1 = 0.4, t ≥ 6 s.
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Fig. 4 a Evaluation
function and threshold, b
fault and its estimation in
the presence of the actuator
fault and measurement
uncertainty
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(b) The Actuator gain fault (loss of effectiveness) (F2):
This kind of fault is modeled via actuator multi-
plicative fault by letting u = uN + θ2uN , where
uN is the control input in the normal mode and
θ2 ∈ [−1 0] is the parameter which characterizes
the magnitude of the fault. Note that θ2 = 0 repre-
sents the normal operation condition, while θ2 
= 0
implies that the actuator is faulty and θ2 = −1
shows the complete failure of the actuator. In this
case, the fault function affecting the system is mod-

eled as F2(u) = [
0 (kt/Jm)uθ2 0 0

]T
which cor-

responds to ϕ2(u) = [
0 (kt/Jm)u 0 0

]T
and θ2 ∈

[−1 0]. It is assumed that this fault occurs at t = 5 s
and its amplitude is 50 % of the nominal control
input in the normal mode, i.e., θ2 = −0.5, t ≥ 5 s.

In order to implement the proposed scheme, the non-
linear diagnostic observer is constructed to estimate the
states of the system and to generate the residual signal.
Numerical values of the parameters are set according
to [29], the initial conditions of the estimator are cho-

sen to be zero, i.e., x̂(0) = 0 and the system is excited
by u = sin t . The observer gain matrix is set to:

L =
[

2.4114 0.922 2.442 0.864
0.922 43.13 20.37 125.1

]T

(24)

At the first step, the performance of the proposed
scheme against faults F1 and F2 in the absence of mod-
eling and measurement uncertainties is investigated.
The results are depicted in Figs. 1 and 2, respectively.
For fault F1, evaluation function is shown in Fig. 1a,
and the actual fault θ1 and its estimation θ̂1 are shown in
Fig. 1b. Since no uncertainty is considered, upon fault
occurrence, the evaluation function deviates from zero.
So, it detects the fault and generates an alarm signal.
Upon fault detection, the adaptive estimation scheme
is activated to model the detected fault. Convergence
of the evaluation function implies that the presented
model for the occurred fault is accurate and the adaptive
estimation scheme presents an accurate estimation of
the actual fault. Evaluation function in the presence of
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Fig. 5 Real fault and its
estimation by the proposed
FDE scheme
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fault F2 is shown in Fig. 2a. Also, the actual fault and its
estimation are depicted in Fig. 2b. As can be seen from
the figures, once the evaluation function exceeds zero,
fault is detected and the adaptive estimation scheme
starts to estimate the magnitude and the severity of the
fault. Again, the convergence of the evaluation function
indicates that the estimated parameter presents an accu-
rate estimation of the actual fault. Simulation results
reveal that the proposed scheme is not only able to
generate the residual signal and detect the fault simul-
taneously, but also can present an accurate estimation
of the fault after an acceptable time.

In order to verify the robustness of the proposed
scheme against modeling uncertainty, 10 % inaccuracy
in the value of amplifier gain kt is considered. This
results the bound η = (0.1kt/Jm) |u(t)| on the mod-
eling uncertainty. In order to achieve the robust fault
detection according to Theorem 1, the threshold (12)
is calculated analytically. Figure 3a shows the corre-
sponding threshold and the evaluation function in the
presence of the fault F2 and the uncertainty η. Also, the
actual fault function and its estimation are depicted in
Fig. 3b. It can be inferred from Fig. 3 that once the fault
occurs, the evaluation function increases and exceeds

the threshold which indicates the fault detection. Upon
fault detection, the adaptive estimation scheme is acti-
vated to model the occurred fault. The proposed switch-
ing σ -modification type adaptive law is used for a
robust fault estimation in the presence of uncertainty.

Finally, the effect of measurement uncertainty on the
system performance is investigated. The unknown mea-
surement uncertainty in the output equation is assumed
to be d2(t) = 0.01 sin(10t). Figure 4a shows the eval-
uation function and the threshold in the presence of the
fault F2 and the measurement uncertainty. Also, the
actual fault function and its estimation are depicted in
Fig. 4b. It can be inferred from Fig. 4 that the estimation
of the fault function remains zero before the occurrence
of the fault, and upon fault detection, it starts to estimate
the unknown fault.

In order to highlight the effectiveness and superiority
of the proposed scheme, the results for the fault estima-
tion for the two faulty scenarios are presented. In the
first simulation scenario, it is assumed that the viscous
friction coefficient b is increased by 20 % at t = 5 s,
i.e., θ1 = 0.2, t ≥ 5 s. In the second simulation sce-
nario, a 30 % gain fault is considered at t = 15 s, i.e.,
θ2 = −0.3, t ≥ 15 s. Figure 5 shows the actual and
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Fig. 6 Real fault and its
estimation by the robust
fault estimation scheme
in [19]
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Table 1 Performances of
the proposed scheme and
the reported FE approach of
[19]

Criteria Proposed FDE scheme FE scheme [19]

Fault θ1 Fault θ2 Fault θ1 Fault θ2

Detection time 5.1 s 15 s – –

MSE 7.6927e−4 1.9561e−4 4.1073 3.6982

Robustness to modeling
and measurement
uncertainties

� –

the estimated faults θ1 and θ2, which are obtained by
applying the proposed FDE scheme. It can be inferred
from Fig. 5 that the estimation of the unknown fault
parameters converges to their actual values rapidly and
shows no undesirable transient response characteristic.

In order to highlight the effectiveness and superior-
ity of the proposed method, the results are compared
with those obtained by the FE scheme in [19]. The
performance of the FE scheme in the presence of two
faulty scenarios is depicted in Fig. 6. Comparing the

results reveals that the proposed approach not only
can estimate the unknown fault accurately, but also has
fast convergence, while the FE scheme has undesirable
transient response specifications which are obvious in
Fig. 6. Also, the effectiveness of the proposed scheme is
numerically compared with the FE approach in Table 1.
The detection time, the mean square error (MSE) of the
fault estimation and the robustness of the two schemes
against uncertainty are investigated. It is worth noting
that in [19], the fault is declared when the output of the
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estimator becomes nonzero, while the practical way to
improve the robustness of the scheme with respect to
uncertainty is to start an adaptation when the residual is
larger than a certain threshold. Also, the scheme in [19]
does not have robust performance against modeling and
measurement uncertainties.

5 Conclusion

In this paper, a new robust FDE scheme for Lipschitz
nonlinear systems which are subjected to modeling and
measurement uncertainties is presented. Unlike many
proposed schemes in the literature which assume that
the states of the system are measurable and the fault
function acts as an additive term, the proposed FDE
scheme focuses on detection and estimation of the mul-
tiplicative faults and does not rely on the availability
of the full state measurements. Most of the compo-
nent faults and some of the actuator and sensor faults
are presented as multiplicative faults. The proposed
scheme can detect and estimate the unknown multi-
plicative faults, which are function of both the state and
the control input variables of the system. The proposed
scheme consists of an adaptive state observer together
with a robust adaptive law and can simultaneously
estimate the states of the system, generate the resid-
ual signal and estimate the fault. Also, the proposed
FDE method has a major advantage in contrast to the
previous results that the presented conditions for fault
estimation are obtained in terms of LMI. In order to
demonstrate the performance of the proposed strategy,
some simulation results for a single-link flexible joint
robotic arm are presented, which illustrate the effective-
ness and the superior performance of the proposed FDE
scheme.

Appendix 1

Proof of Theorem 1 Considering the state estimation
error in (8), applying the triangle inequality and uti-
lizing Assumptions 1–4, the following upper bound on
the norm of the estimation error is obtained:

‖x̃(t)‖≤∥∥eΛt
∥∥ ‖x̃(0)‖+

t∫
0

∥∥∥eΛ(t−τ)
∥∥∥ ‖ f (x(τ ), u(τ ))

− f (x̂(τ ), u(τ ))+η(x(τ ), u(τ ), τ )+L Dd
∥∥ dτ

≤ ∥∥eΛt
∥∥ ‖x̃(0)‖ +

t∫
0

∥∥∥eΛ(t−τ)
∥∥∥ (‖ f (x(τ ), u(τ ))

− f (x̂(τ ), u(τ ))
∥∥ + ‖η(x(τ ), u(τ ), τ )‖

+‖L‖ ‖D‖ ‖d‖) dτ

≤ ∥∥eΛt
∥∥ ε + γ1

t∫
0

∥∥∥eΛ(t−τ)
∥∥∥ ∥∥x(τ ) − x̂(τ )

∥∥ dτ

+ (η + ‖L‖ ‖D‖ d1)

t∫
0

∥∥∥eΛ(t−τ)
∥∥∥ dτ (25)

Here, ε is a constant bound for ‖x(0)‖ and based on
Assumption 2, it always exists. It is worth noting that
the initial condition of the estimator is set to zero,
i.e.,

∥∥x̂(0)
∥∥ = 0, so ‖x̃(0)‖ = ‖x(0)‖ ≤ ε. Using

Lemma 1, (25) can be rewritten as:

‖x̃(t)‖ ≤ kεe−λt + kγ1

t∫
0

‖x̃(τ )‖ e−λ(t−τ)dτ

+ k(η + ‖L‖ ‖D‖ d1)

λ
(1 − e−λt ) (26)

Now, by applying the Bellman–Gronwall Lemma
[24] to (26), the following inequality is obtained:

‖x̃(t)‖ ≤ k(η + ‖L‖ ‖D‖ d1)

λ − kγ1

+
(

kε − k(η + ‖L‖ ‖D‖ d1)

λ − kγ1

)
e−(λ−kγ1)t

(27)

Considering (1), the residual signal is obtained as
r = C x̃ + Dd. By applying the triangle inequality and
using (27), the following upper bound on the norm of
the residual signal is achieved as:

‖r(t)‖ ≤ k(η + ‖L‖ ‖D‖ d1) ‖C‖
λ − kγ1

+
(

kε − k
(
η + ‖L‖ ‖D‖ d1

)
λ − kγ1

)

‖C‖ e−(λ−kγ1)t + ‖D‖ d1 (28)

According to the selected evaluation function in
(12), the threshold will be:
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Jth =
⎡
⎣

t+T1∫
t

(
k(η + ‖L‖ ‖D‖ d1) ‖C‖

λ − kγ1

+
(

kε − k(η + ‖L‖ ‖D‖ d1)

λ − kγ1

)
‖C‖ e−(λ−kγ1)τ

+ ‖D‖ d1
)2

dτ
] 1

2
(29)

Note that the upper bound of the norm of the estimation
error in (27) is calculated by sup f =0,η,d ‖x̃(t)‖. This
is the worst-case evaluation for the possible influences
of η and d on the norm of the estimation error during
fault-free operation.

Appendix 2

Proof of Lemma 2 Representing ( f (x, u) − f (x̂, u))

by f̃ and using Assumption 2, the following equation
is obtained:

2x̃T P
(

f (x, u) − f (x̂, u)
)

≤ 2
∥∥∥x̃T P

(
f (x, u) − f (x̂, u)

)∥∥∥
≤ 2

∥∥∥x̃T P
∥∥∥ ∥∥ f̃

∥∥ ≤ 2γ1

∥∥∥x̃T P
∥∥∥ ‖x̃‖

So, it is verified easily that for numbers a and b, the
inequality 2ab ≤ a2 + b2 is true. Thus, the following
required result is achieved:

2γ1

∥∥∥x̃T P
∥∥∥ ‖x̃‖ ≤ (γ 2

1 x̃T P P x̃) + (̃xT x̃)

Appendix 3

Proof of Theorem 2 Consider the following Lyapunov
function:

V = rT P r + 1

γ
θ̃

T
θ̃ (30)

where θ̃ = θ − θ̂ is the parameter estimation error.
Taking into account (6), the derivative of V, V̇ =
ṙT P r + rT P ṙ − 2

γ
θ̃

T ˙̂
θ , is given by

V̇ = x̃T
[
(A − LC)T CT PC + CT PC(A − LC)

]
x̃

+ 2( f (x, u) − f (x̂, u))T CT PC x̃

+ 2(ϕ(x, u)θ − ϕ(x̂, u)θ̂)T CT PC x̃

+ ηT CT PC x̃ + dT DT LT CT PC x̃

+ ḋ
T

DT PC x̃ + x̃T (A − LC)T CT P Dd

+ 2( f (x, u) − f (x̂, u))T CT P Dd

+ 2(ϕ(x, u)θ − ϕ(x̂, u)θ̂)T CT P Dd

+ ηT CT P Dd + dT DT LT CT P Dd

+ ḋ
T

DT P Dd + x̃T CT PCη + x̃T CT PC L Dd

+ x̃T CT P D ḋ + dT DT PC(A − LC )̃x

+ dT DT PCη + dT DT PC L Dd + dT DT P D ḋ

− 2

γ
θ̃

T ˙̂
θ (31)

We choose D = CW and define Γ = CT PC , so (31)
can be rewritten as follows:

V̇ = x̃T
[
(A − LC)T Γ + Γ (A − LC)

]
x̃

+ 2
(

f (x, u) − f
(
x̂, u

))T
Γ x̃

+ 2
(
ϕ (x, u) θ − ϕ

(
x̂, u

)
θ
)T

Γ x̃

+ 2ηT Γ x̃ + dT DT LT Γ x̃

+ 2ḋ
T

W T Γ x̃ + x̃T (A − LC)T Γ W d

+ 2
(

f (x, u) − f
(
x̂, u

))T
Γ W d

+ 2
(
ϕ (x, u) θ − ϕ

(
x̂, u

)
θ̂
)T

Γ W d

+ 2ηT Γ W d + dT DT LT Γ W d

+ 2ḋ
T

W T Γ W d + x̃T Γ L Dd

+ dT W T Γ (A − LC) x̃ + dT W T Γ L Dd

+ 2
(
ϕ

(
x̂, u

)
θ̃
)T

CT PC x̃

+ 2
(
ϕ

(
x̂, u

)
θ̃
)T

CT P Dd − 2

γ
θ̃

T ˙̂
θ (32)

Using the results of Lemma 2 and its following
remark and considering the proposed adaptive law in
(19), we have:

V̇ = x̃T
[
(A − LC)T Γ + Γ (A − LC)

]
x̃ + γ 2

1 x̃T x̃

+ x̃T Γ Γ x̃ + γ 2
2 θ

2
x̃T x̃ + x̃T Γ Γ x̃ + x̃T Γ Γ x̃

+ 2ηT η + dT DT LT Γ x̃ + x̃T Γ W W T Γ x̃

+ 2ḋ
T

ḋ + x̃T (A − LC)T Γ W d

+ γ 2
1 x̃T x̃ + dT W T Γ Γ W d

+ γ 2
2 θ

2
x̃T x̃ + dT W T Γ Γ W d

+ dT W T Γ Γ W d + dT DT LT Γ W d

+ dT W T Γ W W T Γ W d

+ x̃T Γ L Dd + dT W T Γ (A − LC )̃x

+ dT W T Γ L Dd − 2σs θ̃
T
θ̂ (33)
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On the other hand, we have:

σs θ̃
T
θ̂ = σs θ̃

T
(θ − θ̃)

= σs θ̃
T
θ − σs θ̃

T
θ̃ = −1

2
σs θ̃

T
θ̃

− 1

2
σs

[
(̃θ − θ)T (̃θ − θ)

]
+ 1

2
σsθ

T θ (34)

Substituting (34) into (33) gives:

V̇ = x̃T
[
(A − LC)T Γ + Γ (A − LC)

]
x̃ + γ 2

1 x̃T x̃

+ x̃T Γ Γ x̃ + γ 2
2 θ

2
x̃T x̃ + x̃T Γ Γ x̃ + x̃T Γ Γ x̃

+ 2ηT η + dT DT LT Γ x̃ + x̃T Γ W W T Γ x̃

+ 2ḋ
T

ḋ + x̃T (A − LC)T Γ W d

+ γ 2
1 x̃T x̃ + dT W T Γ Γ W d

+ γ 2
2 θ

2
x̃T x̃ + dT W T Γ Γ W d + dT W T Γ Γ W d

+ dT DT LT Γ W d + dT W T Γ W W T Γ W d

+ x̃T Γ L Dd + dT W T Γ (A − LC )̃x

+ dT W T Γ L Dd + 2ηT η + 2ḋ
T

ḋ − σs θ̃
T
θ̃

+ σsθ
T θ − σs[(̃θ − θ)T (̃θ − θ)] ≤ ζ T Πζ + v

(35)

where ζ T = [ x̃T dT θ̃
T ], v = 2η2 + 2d

2
1 + σsθ

2
and

Π will be:

Π =
⎡
⎣Ω1 (A − LC)T Γ W + Γ L D 0

∗ Ω2 0
∗ ∗ −σs I

⎤
⎦

where Ω1 and Ω2 have been defined previously. Thus,
V̇ in (35) can be expressed as V̇ ≤ −δ ‖ζ (t)‖2 + v,
where δ = λ(−Π). If δ ‖ζ (t)‖2 > v, then V̇ < 0,
which means that ζ (t) converges to a small set accord-
ing to Lyapunov stability theorem. Therefore, the state
estimation error and the fault estimation error are uni-
formly ultimately bounded.
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