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Abstract This paper introduces an H∞ state-
feedback controller for uncertain linear systems with
quantized-input saturation and external disturbances.
The proposed controller comprises two parts: a linear
control part to achieve an H∞ performance against
model uncertainties and the mismatched part of the dis-
turbances and a nonlinear control part to eliminate the
effect of input quantization and the matched part of
the disturbances, which provides the better disturbance
attenuation performance than a controller that deals
with a unified disturbance regardless of the presence
of matched and mismatched parts. Simulation results
confirm the effectiveness of the proposed controller.
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1 Introduction

Quantization caused by analog-to-digital and digital-
to-analog converters in sensors and actuators [17,18,
25] or by encoders and decoders in network-based con-
trol systems (NCSs) [15,20,23,28,35] is a peculiar fea-
ture of many systems. Since quantization has adverse
effects on the general performance of systems, such as a
transient response, a steady-state response, and the sta-
bility of the system, many studies on this subject have
received considerable attention. Early studies on quan-
tization were conducted by [9] and [16], which investi-
gated the effect of quantization in a sampled data sys-
tem and least mean-squares state estimation in the pres-
ence of quantized outputs, respectively. Recently, many
researches have considered the stabilization problem
of quantized feedback systems. There are mainly two
approaches in the existing literatures on this subject.
The first approach handles the dynamic quantizers
[2,5,6,19,23,34]. In order to improve the steady-state
performance, this approach varies the quantization lev-
els dynamically. The second approach considers the
static quantizers such as uniform and logarithmic quan-
tizers [7,8,10–13,22,24,27–33]. The second approach
quantizes data using the static quantization levels so
that the static quantizers have relatively simple struc-
tures compared with the dynamic quantizers.

To the best of the authors’ knowledge, in the frame-
work of the second approach, intensive studies on H∞
control of uncertain systems with quantized-input satu-
ration and external disturbances have not been carried
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out thus far. Although [5,6] handled the problems of
dynamic output-feedback and state-feedback H∞ con-
trol for quantized discrete-time linear time-invariant
(LTI) systems, they employed the dynamic quantizers
proposed by [2,19]. Peng and Tian [23] addressed the
problem of H∞ controller design for linear systems
over digital communication networks, and they also
used the dynamic quantizers of [2,19]. Further, [29]
proposed an H2 state-feedback controller for uncertain
linear systems with input quantization and matched dis-
turbances; however, it did not consider the saturation
level of the uniform quantizers.

This paper introduces an H∞ state-feedback con-
troller for uncertain linear systems with quantized-
input saturation and external disturbances. The pro-
posed H∞ controller comprises linear and nonlinear
parts: a linear control part to achieve an H∞ perfor-
mance against model uncertainties and the mismatched
part of the disturbances and a nonlinear control part
to eliminate the effect of input quantization and the
matched part of the disturbances. In other words, each
component of the nonlinear control part is designed
as an integer multiple of the quantization level, which
enables us to remove the energy in the sense of Lya-
punov caused by quantization errors and the matched
part of the disturbances. The main contributions of this
paper are (1) the design of a state-feedback controller
to achieve asymptotic stability and H∞ performance
for uncertain linear systems with quantized-input sat-
uration and external disturbances, where such systems
with the uniform quantizer have not been introduced
thus far and (2) the separation of external disturbances
into the matched and the mismatched part of the distur-
bances using the projection matrix, where this method
improves an H∞ performance.

This paper is organized as follows. Section 2 pro-
vides a system description and some preliminary
results. Section 3 introduces an H∞ state-feedback
controller for uncertain linear systems with quantized-
input saturation and external disturbances. Section 4
presents some simulation results for validating the pro-
posed controller. Finally, Sect. 5 concludes the paper
with a summarization.

Notation: The notations in this paper are fairly stan-
dard. For x ∈ Rn, xT means the transpose of x and xi

denotes the i th element of x . The notation ei means
a unit vector with a single nonzero entry at the i th

position, i.e., ei
�= [0 · · · 1

︸︷︷︸

i th

· · · 0]T . The notation

X ≥ Y or X > Y , where X and Y are symmetric matri-
ces, denotes that X −Y is positive semi-definite or pos-
itive definite, respectively. I is an identity matrix with
appropriate dimensions. We use ||x ||p to indicate the p-

norm of x , i.e., ||x ||p
�= (|x1|p +· · ·+|xn|p)

1
p , p ≥ 1.

When p = ∞, ||x ||∞ �= max1≤i≤n |xi |. For X ∈
Rm×n, ||X ||p denotes the matrix p-norm, i.e., ||X ||p

�=
supx �=0

||X x ||p
||x ||p

. The space of square-integrable func-
tions is denoted by L2, that is, for any x ∈ L2,

||x ||2 �=
(∫ ∞

0
xT (t)x(t)dt

)1/2

< ∞.

Furthermore, Sym(X) = X +X T stands for any matrix
X .

2 System description and preliminaries

Consider the following continuous-time uncertain lin-
ear system with quantized-input saturation and external
disturbances:

ẋ(t) = (A +�A(t))x(t)+ B(I +�B(t))sat (Q(u(t)))

+ Dw(t), (1)

z(t) = Cx(t), (2)
where x(t) ∈ Rn , u(t) ∈ Rm , w(t) ∈ Rm , and
z(t) ∈ Rq are the state, the control input, the exter-
nal disturbance, and the controlled output, respectively.
�A(t), �B(t), Q(·), and sat (·) are the system char-
acteristic matrix uncertainty, input matrix uncertainty,
quantization operator, and saturation operator, respec-
tively. System (1) yields to

ẋ(t) = (A +�A(t))x(t)+ B {(I+
�B(t))sat (Q(u(t)))+ B̃w(t)

}

+ B̄w(t), (3)

where B̃ =(BT B)−1 BT D and B̄ = (I−B(BTB)−1BT )

D. That is, the external disturbances, Dw(t), can be
separated into the matched part, B(BT B)−1 BT Dw(t),
and the mismatched part, (I − B(BT B)−1 BT )Dw(t),
using the projection matrix. Here, we define ‖B̃‖∞ �
ϕ. For �A(t), �B(t), w(t), Q(·), and sat (·), it is
assumed that the following assumptions are valid:

– (A1) Each component of the disturbancew(·) ∈ L2

is bounded by εw(> 0), i.e.,
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‖w(t)‖∞ ≤ εw. (4)

– (A2) The operator Q(·) is defined by a function
round(·) that rounds toward the nearest integer,
i.e.,

Q(u(t))
�= εu round (u(t)/εu), (5)

where εu(> 0) is called a quantizing level and Q(·)
is the uniform quantizer with the fixed εu . We note
that the quantization error ∇u(t) is defined as ∇u(t)
� Q(u(t))− u(t). Based on the condition (5) and
the definition of ∇u(t), each component of ∇u(t)
at time t is bounded by the half of the quantizing
level εu , i.e.,

‖∇u(t)‖∞ ≤ εu/2. (6)

– (A3) For a saturation levelμ (> εw), the saturation
operator sat (·) is defined as

[sat (σ )]i
�=
⎧

⎨

⎩

σi if |σi | < μ

μ if σi ≥ μ

−μ if σi ≤ −μ
. (7)

where [sat (σ )]i denotes the i th element of sat (σ ).
– (A4)�A(t) and�B(t) are unknown time-varying

uncertainties satisfying

�A(t) = F1�1(t)G1, �1(t)�
T
1 (t) ≤ I, (8)

�B(t) = F2�2(t)G2,

�2(t)�
T
2 (t) ≤ I, ‖�B(t)‖∞ ≤ ψ < 1, (9)

where F1,G1, F2, and G2 are known real constant
matrices with appropriate dimensions, �1(t) and
�2(t) are unknown matrix functions, and ψ is a
known nonnegative constant.

We introduce the following lemmas that are required
to prove a theorem in the next section.

Lemma 1 (Hölder’s inequality) For α, β ∈ Rn, p ≥
1, and q ≥ 1, the following inequality holds:

|αTβ| ≤ ||α||p||β||q , p−1 + q−1 = 1. (10)

Lemma 2 ([3,26]) Assume that X and Y are matrices
with appropriate dimensions. For any scalar η > 0, if a
matrix�with appropriate dimensions satisfies��T ≤
I , then the following inequality holds:

X�Y + Y T�T X T ≤ ηX X T + η−1Y T Y. (11)

Lemma 3 ([4,14]) Let u, v ∈ Rm,

u = [

u1 u2 . . . um
]T
, v = [

v1 v2 . . . vm
]T
.

Suppose that |eT
i v| ≤ μ for all i ∈ [1,m] and a real

number μ > 0, then

sat (u) ∈ Co
{

E j u + E−
j v j ∈ [1, 2m]

}

, (12)

where Co is a convex hull, E j denotes a diagonal
matrix whose diagonal elements are either 1 or 0,

and E−
j

�= I − E j . Further, for given two matrices

F, H ∈ Rm×n and the relations that
∑2m

j=1 ξ j = 1 and

ξ j ≥ 0, suppose that |eT
i H x(t)| ≤ μ for all i ∈ [1,m],

then we have

sat (Fx) =
2m
∑

j=1

ξ j {E j Fx + E−
j H x}. (13)

Lemma 4 (Set invariance condition) For a given pos-
itive definite matrix Ω , let us define an ellipsoid E(Ω)
as

E(Ω) � {x(t) ∈ Rn | xT (t)Ωx(t) ≤ 1}. (14)

For system (3), it is assumed that V (x(t))=xT (t)Px(t)
where P is a positive definite matrix. For a given ellip-
soid E(P) and a given state-feedback gain matrix K ,
if there exist a matrix H ∈ Rm×n and a positive scalar
λ such that

V̇ (x(t)) < λ( 1 − xT (t)Px(t) ), (15)

|eT
i H x(t)| ≤ μ, ∀x(t) ∈ E(P), ∀i ∈ [1,m] (16)

subject to (4), then E(P) is a (strictly) invariant set for
the closed-loop system under the state-feedback con-
troller.

Proof In (15), it is obvious that V̇ (x(t)) < 0 for x(t) /∈
E(P), i.e., xT (t)Px(t) > 1. Further, on the boundary
of E(P), i.e., xT (t)Px(t) = 1, the relation V̇ (x(t)) <
0 is also satisfied. This implies that the ellipsoid E(P)
is a (strictly) invariant ellipsoid. ��
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3 Main results

Firstly, consider the system (3) with �A(t) = 0 and
�B(t) = 0, i.e.,

ẋ(t) = Ax(t)+ B{sat (Q(u(t)))+ B̃w(t)} + B̄w(t).
(17)

The following theorem can be obtained for the system
(17).

Theorem 1 For all x(t) ∈ E(P̄−1), i ∈ [1,m], j ∈
[1, 2m], and a given positive scalar λ, the proposed
system (17) with assumptions (A1), (A2), and (A3) is
locally asymptotically stable with the H∞ performance
γ if there exist a symmetric positive definite matrix P̄,
matrices K̄ and H̄ , a positive definite diagonal matrix
M, and positive scalars γ such that

0 <

[

(μ− (N + 1
2 )εu)

2 eT
i H̄

H̄ T ei P̄

]

, (18)

0 > ε2
w1T

m M1m − λ, (19)

0 >

[

Γ j + λP̄ B̄
B̄T −M

]

, (20)

0 >

⎡

⎣

Γ j P̄CT B̄
C P̄ −γ I 0
B̄T 0 −γ I

⎤

⎦ , (21)

where Γ j
�= AP̄ + P̄ AT + B E j K̄ + K̄ T ET

j BT +
B E−

j H̄ + H̄ T E−T
j BT , 1m

�= [

1 1 · · · 1 1
]T ∈ Rm.

In this case, the control input is constructed as u(t) =
K x(t)+ ū(x(t)), where K = K̄ P̄−1 and each compo-
nent of ū(x(t)) is defined as

ūi (x(t))
�= −εu Nsgn( σi (x(t)) ), (22)

where σi (x(t)) is the i th component of σ(x(t)),

σ(x(t))
�= BT Px(t), P � P̄−1, sgn(�) is the sign

of �, N =
⌈

εu+ϕεw
εu

⌉

, and the operator ρ� denotes

the nearest integer greater than or equal to a scalar ρ.
Moreover, the γ -performance bound can be reduced
by solving the following minimization problem: for all
j ∈ [1, 2m] and i ∈ [1,m], min γ subject to (18), (19),
(20), and (21).

Proof We first construct an input u(t) and an auxiliary
input v(t) such that

u(t) = K x(t)+ ū(x(t)), (23)

v(t) = H x(t)+ ū(x(t)), (24)

where v(t) is employed to utilize Lemma 3 for handling
the input saturation in (7).

In order to use the polytopic representation method
in Lemma 3, the following relation should be satisfied:
for all i ∈ [1,m], μ ≥ |eT

i Q(v(t))| = |eT
i v(t) +

eT
i ∇v(t)|, or equivalently,

μ ≥ | eT
i H x(t)+ eT

i ū(x(t))+ eT
i ∇v(t) |. (25)

Using the nonlinear control part in (22), the right side
of inequality (25) can be represented as follows:

|eT
i H x(t)+ eT

i ū(x(t))+ eT
i ∇v(t)|

= |eT
i H x(t)− εu Nsgn(σi (x(t)))+ eT

i ∇v(t)|
≤ |eT

i H x(t)| + εu N + εu/2.

Then, inequality (25) is satisfied if it holds that for i ∈
[1,m],

|eT
i H x(t)| ≤ μ− (N + 1

2
)εu . (26)

Using (26), the polytopic representation of the input
saturation in Lemma 3 is guaranteed if it holds that

eT
i H P−1 H T ei ≤

(

μ−
(

N + 1

2

)

εu

)2

, (27)

or equivalently,

0 ≤
[

(

μ− (

N + 1
2

)

εu
)2

eT
i H

H T ei P

]

. (28)

Then, pre- and post-multiplying both sides of (28) by
diag{I, P−1} yield (18), i.e.,

0 ≤
[

(

μ− (

N + 1
2

)

εu
)2

eT
i H̄

H̄ T ei P̄

]

, (29)

where H̄ � H P̄ .
If the above linear matrix inequality (LMI) condition

is satisfied, it is ensured that there exists a weighting
factor ξ j such that

sat (Q(u(t))) =
2m
∑

j=1

ξ j { E j Q(u(t)) + E−
j Q(v(t)) }

=
2m
∑

j=1

ξ j {E j u(t)
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+ E−
j v(t)+ E j∇u(t)+ E−

j ∇v(t)}

=
2m
∑

j=1

ξ j Fx(t)+
2m
∑

j=1

ξ j∇F(t). (30)

where F � E j K + E−
j H and ∇F(t) � E j∇u(t) +

E−
j ∇v(t)+ ū(x(t)).

Using (30) and the relation
∑2m

j=1 ξ j = 1 in Lemma
3, the resultant closed-loop system is given as follows:

ẋ(t) =
2m
∑

j=1

ξ j {A + B F} x(t)

+
2m
∑

j=1

ξ jB
{

∇F(t)+ B̃w(t)
}

+B̄w(t). (31)

Then, the derivative of V (x(t)) is

V̇ (x(t)) = 2xT (t)
2m
∑

j=1

ξ j P {A + B F} x(t)

+ 2σ T (x(t))
2m
∑

j=1

ξ j

{

∇F(t)+ B̃w(t)
}

+ 2xT (t)P B̄w(t). (32)

Using the conditions (4) and (6), the relations |αTβ| ≤
‖α‖1‖β‖∞ and ||Xα||∞ ≤ ||X ||∞||α||∞ from Lemma
1 and the definition of the matrix p-norm, respectively,
it is shown that ū(x(t)) in (22) ensures that the second
term of V̇ (x(t)) is negative, i.e., for all j ∈ [1, 2m],
2σ T (x(t))∇F(t)+ 2σ T (x(t))B̃w(t)

= 2σ T (x(t))ū(x(t))+ 2σ T (x(t))E j∇u(t)

+ 2σ T (x(t))E−
j ∇v(t)+ 2σ T (x(t))B̃w(t)

≤ 2σ T (x(t))ū(x(t))

+ 2‖σ(x(t))‖1‖E j‖∞‖∇u(t)‖∞
+ 2‖σ(x(t))‖1‖E−

j ‖∞‖∇v(t)‖∞
+ 2‖σ(x(t))‖1‖B̃‖∞‖w(t)‖∞

≤ −2εu N‖σ(x(t))‖1 + 2εu‖σ(x(t))‖1

+ 2ϕεw‖σ(x(t))‖1

= 2{−εu N + εu + ϕεw}‖σ(x(t))‖1

≤ 2
{

−εu

(

εu+ϕεw
εu

)

+ εu + ϕεw

}

‖σ(x(t))‖1 = 0,

where, by choosing N as
⌈

εu+ϕεw
εu

⌉

and using the rela-

tion −�� ≤ −� for a scalar � ≥ 0, we can make the

second term of V̇ (x(t)) negative. Then, V̇ (x(t)) can be
rewritten as

V̇ (x(t)) ≤
2m
∑

j=1

ξ j xT (t)A j x(t)+ 2xT (t)P B̄w(t),

(33)

where

A j = Sym(P A + P B E j K + P B E−
j H).

Next, we shall derive a set invariance condition for
(15). To this end, we use the following constraint that
comes from (4):

wT (t)Mw(t) ≤ ε2
wT r(M), (34)

where M ∈ Rm×m is a positive definite diagonal matrix
and T r(M) is a trace of M . Combining (15) and (34)
with the S-procedure [1] yields the following relation:

0 >V̇ (x(t))− λ( 1 − xT (t)Px(t) )+ ε2
wT r(M)

− wT (t)Mw(t). (35)

Relation (35) is ensured if it holds that

0 > xT (t)
2m
∑

j=1

ξ j A j x(t)+ 2xT (t)P B̄w(t)

− λ
(

1 − xT (t)Px(t)
)

+ ε2
wT r(M)

− wT (t)Mw(t), (36)

which is obtained by using (33) and can be represented
as the following matrix inequality: for all j ∈ [1, 2m],

0 >
[

xT (t) wT (t) 1
]M1, j

[

xT (t) wT (t) 1
]T
, (37)

where

M1, j
�=
⎡

⎣

A j + λP P B̄ 0
B̄T P − M 0

0 0 ε2
wT r(M)− λ

⎤

⎦ .

(38)

We remark that (37) is ensured if it holds that M1, j <

0. Pre- and post-multiplying both sides of M1, j by
diag{P̄, I, I } yield (19) and (20).
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Further, we derive an H∞ performance condition.
As is well known, the condition can be derived by

0 > V̇ (x(t))+ γ−1zT (t)z(t)− γwT (t)w(t). (39)

Using (33), relation (39) is ensured if it holds that

0 >xT (t)
2m
∑

j=1

ξ j A j x(t)+ 2xT (t)P B̄w(t)

+ γ−1zT (t)z(t)− γwT (t)w(t), (40)

which is represented as the following matrix inequality:
for all j ∈ [1, 2m],

0 >
[

xT (t) wT (t)
]M2, j

[

xT (t) wT (t)
]T
, (41)

where

M2, j =
[

A j + γ−1CT C P B̄
B̄T P −γ I

]

.

Relation (41) is satisfied if M2, j < 0. Thus, pre- and
post-multiplying both sides of M2, j by diag{P̄, I }
and using the Schur complement technique [1] afford
the resultant H∞ performance condition (21). ��

Using the method in Theorem 1 and the approach for
the analysis of the uncertainties, the following result is
obtained.

Theorem 2 For all x(t) ∈ E(P̄−1), i ∈ [1,m], j ∈
[1, 2m], and a given positive scalar λ, the proposed sys-
tem (3) with assumptions (A1), (A2), (A3), and (A4)
is locally asymptotically stable with the H∞ perfor-
mance γ if there exist a symmetric positive definite
matrix P̄, matrices K̄ and H̄ , a positive definite diag-
onal matrix M, and positive scalars η1, η2, η3, and γ
such that (18), (19),

0 >

⎡

⎢

⎢

⎢

⎢

⎣

Γ j + λP̄ P̄GT
1 K̄ T ET

j GT
2 H̄ T E−T

j GT
2 B̄

G1 P̄ −η1 I 0 0 0
G2 E j K̄ 0 −η2 I 0 0
G2 E−

j H̄ 0 0 −η3 I 0
B̄T 0 0 0 −M

⎤

⎥

⎥

⎥

⎥

⎦

,

(42)

0 >

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Γ j P̄GT
1 K̄ T ET

j GT
2 H̄ T E−T

j GT
2 P̄CT B̄

G1 P̄ −η1 I 0 0 0 0
G2 E j K̄ 0 −η2 I 0 0 0
G2 E−

j H̄ 0 0 −η3 I 0 0
C P̄ 0 0 0 −γ I 0
B̄T 0 0 0 0 −γ I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(43)

where Γ j
�= AP̄ + P̄ AT + B E j K̄ + K̄ T ET

j BT +
B E−

j H̄ + H̄ T E−T
j BT + η1 F1 FT

1 + η2 B F2 FT
2 BT +

η3 B F2 FT
2 BT . In this case, the control input is con-

structed as u(t) = K x(t)+ū(x(t)), where K = K̄ P̄−1

and each component of ū(x(t)) is defined as

ūi (x(t))
�= −εu Nsgn( σi (x(t)) ), (44)

where σi (x(t)) is the i th component of σ(x(t)),

σ (x(t))
�= BT Px(t), P � P̄−1, sgn(�) is the sign of

�, N =
⌈

(1+ψ)εu+ϕεw
(1−ψ)εu

⌉

, and the operator ρ� denotes

the nearest integer greater than or equal to a scalar ρ.
Moreover, the γ -performance bound can be reduced
by solving the following minimization problem: for all
j ∈ [1, 2m] and i ∈ [1,m], min γ subject to (18), (19),
(42), and (43).

Proof For the system with uncertainties, the derivative
of V (x(t)) is rewritten as

V̇ (x(t))

= 2xT (t)
2m
∑

j=1

ξ j P {(A+�A(t))+ B(I +�B(t))F} x(t)

+ 2σ T (x(t))
2m
∑

j=1

ξ j

{

(I +�B(t))∇F(t)+ B̃w(t)
}

+ 2xT (t)P B̄w(t). (45)

Using the conditions (4) and (6), the relations
|αTβ| ≤ ‖α‖1‖β‖∞ and ||Xα||∞ ≤ ||X ||∞||α||∞
from Lemma 1 and the definition of the matrix p-norm,
respectively, it is shown that ū(x(t)) in (44) ensures
that the second term of V̇ (x(t)) is negative, i.e., for all
j ∈ [1, 2m],

2σ T (x(t))(I +�B(t))∇F(t)+ 2σ T (x(t))B̃w(t)

= 2σ T (x(t))ū(x(t))+ 2σ T (x(t))�B(t)ū(x(t))

+ 2σ T (x(t))(I +�B(t))E j∇u(t)

+ 2σ T (x(t))(I +�B(t))E−
j ∇v(t)
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+ 2σ T (x(t))B̃w(t)

≤ 2σ T (x(t))ū(x(t))

+ 2‖σ(x(t))‖1‖�B(t)‖∞‖ū(x(t))‖∞
+ 2‖σ(x(t))‖1‖I +�B(t)‖∞‖E j‖∞‖∇u(t)‖∞
+ 2‖σ(x(t))‖1‖I +�B(t)‖∞‖E−

j ‖∞‖∇v(t)‖∞
+ 2‖σ(x(t))‖1‖B̃‖∞‖w(t)‖∞

≤ −2εu N‖σ(x(t))‖1 + 2ψεu N‖σ(x(t))‖1

+ 2(1 + ψ)εu‖σ(x(t))‖1 + 2ϕεw‖σ(x(t))‖1

= 2{−(1 − ψ)εu N + (1 + ψ)εu + ϕεw}‖σ(x(t))‖1

≤ 2

{

−(1 − ψ)εu

(

(1 + ψ)εu+ϕεw
(1 − ψ)εu

)

+(1 + ψ)εu+ϕεw
}

‖σ(x(t))‖1 =0,

where, by choosing N as
⌈

(1+ψ)εu+ϕεw
(1−ψ)εu

⌉

and using the

relation −�� ≤ −� for a scalar � ≥ 0, we can make
the second term of V̇ (x(t)) negative. Then, V̇ (x(t))
can be rewritten as

V̇ (x(t)) ≤ 2xT (t)
2m
∑

j=1

ξ j P {(A+�A(t))

+ B(I +�B(t))F} x(t)+ 2xT (t)P B̄w(t). (46)

This inequality is relaxed by Lemma 2 as

V̇ (x(t)) ≤
2m
∑

j=1

ξ j xT (t)A j x(t)+ 2xT (t)P B̄w(t),

(47)

where

A j = Sym(P A+P B E j K+P B E−
j H)+η1 P F1 FT

1 P

+ η2 P B F2 FT
2 BT P + η−1

2 K T ET
j GT

2 G2 E j K

+ η3 P B F2 FT
2 BT P + η−1

3 H T E−T
j GT

2 G2 E−
j H

+ η−1
1 GT

1 G1,

since

P F1�1(t)G1 + GT
1 �

T
1 (t)F

T
1 P

≤ η1 P F1 FT
1 P + η−1

1 GT
1 G1, (48)

P B F2�2(t)G2 E j K + K T ET
j GT

2 �
T
2 (t)F

T
2 BT P

≤ η2 P B F2 FT
2 BT P + η−1

2 K T ET
j GT

2 G2 E j K ,

(49)

P B F2�2(t)G2 E−
j H + H T E−T

j GT
2 �

T
2 (t)F

T
2 BT P

≤ η3 P B F2 FT
2 BT P + η−1

3 H T E−T
j GT

2 G2 E−
j H.

(50)

By applying (47) to (36) and (40), (42) and (43)
are derived using the same procedure of the proof in
Theorem 1. ��

Remark 1 The matrix inequalities (20) in Theorem 1
and (42) in Theorem 2 are nonconvex with respect to λ
and P̄ . If λ is fixed, then (20) and (42) become an LMI.
In order to obtain the global infimum, we minimize γ
by varying λ from 0 to sufficiently large value (< ∞).

Remark 2 For perfectly rejecting the effect of ∇u(t),
∇v(t), and w(t) that have known bounds and satisfy
matched conditions, ū(x(t)) is designed as (22) and
(44) by employing variable structure control (VSC)
technique, which provides an effective and robust
means of controlling dynamic systems with bounded
and matched uncertainties [21]. That is, adding ū(x(t))
to K x(t) enables us to eliminate the energy in the sense
of Lyapunov caused by ∇u(t),∇v(t), and w(t).

4 Numerical examples

In this section, we discuss the performance of the fol-
lowing two types of controllers: the Type-1 controller
for system (1) is designed as (23) with

ūi (x(t)) = −εu Nsgn(σi (x(t))),

σ (x(t))
�= BT Px(t), N =

⌈

(1 + ψ)

(1 − ψ)

⌉

,

and the Type-2 controller for system (3), the proposed
controller, is constructed as (23) with

ūi (x(t)) = −εu Nsgn(σi (x(t))),

σ (x(t))
�= BT Px(t), N =

⌈

(1 + ψ)εu + ϕεw

(1 − ψ)εu

⌉

.

In particular, in the case of the Type-1 controller, the
linear control part can be designed by Theorem 2 except
that B̄ in (42) and (43) is replaced with D.

123



2464 B. Y. Park et al.

4.1 Example 1

Consider the following system: for x(0) = [

0.9 0.5
]T

,

A =
[

0 1
−5 3

]

, �A(t) =
[

r(t) 0
0 0

]

,

B = [−1 1
]T
, C = [

1 1
]

, D = [

1 −2
]T
,

�B(t) = 0.2r(t), r(t) = cos(2π t),

w(t) = 0.3 exp(−t)r(t), εu = 0.2, μ = 4.

From the above data, we obtain the following additional
information:

F1 = G1=I,�1(t)=�A(t),F2=0.2,G2=1,

�2(t) = r(t), ψ=0.2, εw=0.3. (51)

In Theorem 2, the solutions are as follows:

– Type-1 controller

K = [

9.7701 −15.2312
]

,

P =
[

3.7841 −2.3557
−2.3557 7.2160

]

,

– Type-2 controller

K = [

9.1329 −39.0831
]

,

P =
[

3.0951 −1.2231
−1.2231 17.2548

]

,

and an H∞ performance γ is 4.1893 for Type-1 con-
troller and 0.6810 for Type-2 controller.

Table 1 presents the H∞ performance γ of the Type-
1 controller in comparison with that of the Type-2 con-
troller for different values of μ. In this table, for a cer-
tain saturation level μ, the Type-2 controller gives a
smaller H∞ performance γ than the Type-1 controller.

Table 1 Comparison of H∞ performance γ for different values
of μ

μ Type-1 controller Type-2 controller

4 4.1893 0.6810

3 8.8545 1.3044

2 Infeasible 5.9965
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0.6

0.8

1
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)|
| 2

 

 

Type−1
Type−2

Fig. 1 Trajectories of the states for each controller (μ = 4)

Further, for a small saturation level μ, the Type-2 con-
troller is feasible but the Type-1 controller is infeasible.
This is because the nonlinear part of the Type-2 con-
troller perfectly rejects the effect of input quantization
and matched part, simultaneously; on the other hand,
the nonlinear part of the Type-1 controller only elimi-
nates the effect of input quantization. That is, the Type-
1 controller considers the unified disturbance despite
the presence of matched and mismatched disturbances,
which results in the deterioration of the performance.
Figure 1 presents the trajectories of the states for each
controller. In this figure, the states in the Type-1 con-
troller and the Type-2 controller asymptotically con-
verge to the origin regardless of model uncertainties,
quantization error, and external disturbances.

4.2 Example 2

The system parameters are as follows: for x(0) =
[

1 −1 0.5
]T

,

A =
⎡

⎣

−3 0 1
1 2 0
0 1 −2

⎤

⎦ ,�A(t) =
⎡

⎣

r(t) 0 0
0 0 r(t)
0 r(t) 0

⎤

⎦ ,

B = [

0 1 0
]T
, C = [

1 0 0
]

, D = [

1 2 1
]T
,

�B(t) = 0.5r(t), r(t) = sin(2π t),

w(t) = 0.2 exp(−0.5t)r(t), εu = 0.1, μ = 5.

From the above data, we obtain the following additional
information:
F1 = G1 = I, �1(t) = �A(t), F2 = 1, G2 = 0.5,

�2(t) = r(t), ψ = 0.5, εw = 0.2. (52)
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Fig. 2 Trajectories of the states for each controller (μ = 5)

In Theorem 2, the solutions are as follows:

– Type-1 controller

K = [−6.1837 −27.0341 −4.8357
]

,

P =
⎡

⎣

3.6622 3.6695 0.6798
3.6695 16.0424 2.8695
0.6798 2.8695 5.7545

⎤

⎦ ,

– Type-2 controller

K = [−5.4592 −22.6638 −3.6457
]

,

P =
⎡

⎣

2.0844 4.0708 0.8502
4.0708 16.9002 2.7187
0.8502 2.7187 2.5094

⎤

⎦ ,

and an H∞ performance γ is 19.4070 for Type-1 con-
troller and 2.6932 for Type-2 controller.

Figure 2 presents the trajectories of the states for
each controller. In this figure, the states in the Type-
1 controller and the Type-2 controller asymptotically
converge to the origin regardless of model uncer-
tainties, quantization error, and external disturbances.
Table 2 describes the H∞ performance γ of the Type-1
controller in comparison with that of the Type-2 con-
troller for different values of μ. In this table, we can
clearly show that the performance of the Type-2 con-
troller outperforms that of the Type-1 controller.

Tables 3 and 4 show the H∞ performance γ for the
Type-1 controller and the Type-2 controller for different
D. Table 3 presents the H∞ performance γ under exter-
nal disturbances, Dw(t), in the direction of Bw(t).
In this table, the Type-2 controller gives a very small
H∞ performance γ that is almost zero. This is due
to that the nonlinear part of the Type-2 controller per-

Table 2 Comparison of H∞ performance γ for different values
of μ

μ Type-1 controller Type-2 controller

5 19.4070 2.6932

4 Infeasible 4.8660

3 Infeasible 12.6393

2 Infeasible Infeasible

Table 3 Comparison of H∞ performance γ under matched dis-
turbance (D = [0 2 0]T , μ = 5)

Type-1 controller Type-2 controller

11.4588 3.17 × 10−11

Table 4 Comparison of H∞ performance γ for different values
of external disturbances (D = [1α 1]T , μ = 5)

α Type-1 controller Type-2 controller

1 7.4910 2.2216

2 19.4070 2.6932

3 Infeasible 3.5025

4 Infeasible 4.1974

5 Infeasible 5.6129

6 Infeasible 8.7831

fectly removes external disturbances, Dw(t), because
the external disturbances only exist as the matched part
for system (3). However, the nonlinear part of the Type-
1 controller only rejects the effect of input quantization
and the linear part of that handles both stability of sys-
tem and the H∞ performance because the external dis-
turbances only exist as the mismatched part for system
(1).

Table 4 illustrates the H∞ performance γ of the
Type-1 controller in comparison with that of the Type-
2 controller for different values of α. In this table, the
component of Dw(t) in the direction of Bw(t) that is
the matched part is varied by different values of α. In
this table, the Type-2 controller gives a smaller H∞ per-
formance γ than the Type-1 controller. In addition, for a
large α, the Type-2 controller is feasible but the Type-1
controller is infeasible. This is due to that the nonlinear
part of the Type-2 controller successfully banishes the
effect of matched part and quantization error so as the
H∞ performance. Therefore, the proposed controller,
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Type-2 controller, guarantees H∞ performance under
large external disturbance that has a large component
of Dw(t) in the direction of Bw(t).

5 Conclusion

In this paper, based on a uniform quantizer with a
saturation nonlinearity, we introduced an H∞ state-
feedback controller for uncertain linear systems with
quantized-input saturation and external disturbances.
The proposed controller consisted of two control parts:
a linear part to achieve the H∞ performance against
model uncertainties and the mismatched part of the dis-
turbances and a nonlinear part to eliminate the effect
of input quantization and the matched part of the dis-
turbances. In the simulation, we compared two con-
trollers: the Type-1 controller for system (1) and the
Type-2 controller for system (3). As shown in the sim-
ulation results, the Type-2 controller outperformed the
Type-1 controller because the Type-1 controller consid-
ered the unified disturbance regardless of the presence
of matched and mismatched disturbances.
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2014R1A1A2055122).
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