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Abstract In this paper, we consider a classical van der
Pol equation with state-dependent delayed feedback.
Firstly, solutions near equilibria are constructed using
perturbation methods to determine the sub/supercriti-
cality of the bifurcation and hence their stability. Then,
we choose a few examples of state-dependant delay to
test our analytical results by comparing them to numer-
ical continuation.
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1 Introduction

Time delays are important aspect of many systems
whether they are natural (e.g., biological or ecolog-
ical), or part of some technological process (elec-
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trical or mechanical). In other situations, it may be
appropriate for the delay to depend on the solution
of the governing differential equation. We call such
a delay a state-dependent delay. Functional differen-
tial equations with state-dependent delays (sd-FDEs)
arise in various applications, in particular, in math-
ematical ecology and bio-economics [1–4], in clas-
sical electrodynamics [5], in models of commodity
price fluctuations [6], and in models of blood cell
productions [7]. In this paper, we consider state-
dependent delay in van der Pol equations at the cur-
rent time only, although delays that depend on the
solution at previous times may also be considered.
Furthermore, we restrict attention only to ordinary
differential equation models and do not attempt to
include spatial effects. Our aim was to construct expres-
sions for periodic solutions which bifurcate from the
steady states in such models and to infer their sta-
bility from the sub/supercriticality of the bifurca-
tion.

The van der Pol oscillator is an oscillator with non-
linear damping governed by the second-order differen-
tial equation

ẍ − ε(1 − x2)ẋ + x = 0. (1)

This model was originally proposed by Balthasar van
der Pol [8]. The van der Pol equation, which was
later extensively studied as a host of a rich class of
dynamical behavior, including relaxation oscillations,
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quasi-periodicity, elementary bifurcations, and chaos,
plays an important role in electronics and mathematics
dynamical systems. Recently, the van der Pol equations
with time delay have been studied by many researchers.
Atay [9], Zhang and Guo [11], and Wei and Jiang [12]
have studied the behavior of the limit cycle of the van
der Pol equations of the form

ẍ − ε(1 − x2)ẋ + x = εkx(t − τ), (2)

where x is a dynamical variable and ε > 0 is a parame-
ter indicating the nonlinearity and the strength of the
damping. In this paper, however, we consider the van
der Pol equation with state-dependent delay

ẍ − ε(1 − x2)ẋ + x = εkx(t − τ(x(t))). (3)

It is easy to see that system (3) is more general than sys-
tem (2). Most practical implementations of feedback
have inherent delays, the presence of which results in
an infinite-dimensional system, thus complicating the
analysis.

Hopf bifurcation is the birth of a limit cycle from
an equilibrium in dynamical systems, when the equi-
librium changes stability via a pair of purely imagi-
nary eigenvalues. The bifurcation can be supercritical
or subcritical, resulting in stable or unstable (within
an invariant two-dimensional manifold) limit cycle,
respectively. A local Hopf bifurcation theory for sd-
FDEs was developed by Eichmann [13] with the help
of the Fredholm alternative Theorem. Hu and Wu [14]
develop a local and global Hopf bifurcation theory for
sd-FDEs by using the homotopy invariance property of
the S

1-equivariant degree to relate the Hopf bifurcation
problem of sd-FDEs to the change of stability of sta-
tionary states of the corresponding system of auxiliary
equations obtained through formal linearization. Very
recently, Sieber [15] extended the Hopf bifurcation
theorem by Eichmann [13] by showing that periodic
boundary-value problems for delay differential equa-
tions are locally equivalent to finite-dimensional alge-
braic systems of equations. In [13–15], however, there
is no result on the Hopf bifurcation direction. Our goal
in this paper is to apply the perturbation procedure to
describe the occurrence of local Hopf bifurcation from
a stationary state, and the bifurcation direction for such
a class of sd-FDEs as (3). In comparison, our results
here provide a tool and framework to study the Hopf
bifurcation problem and, in particular, local bifurca-

tion of periodic solutions of differential equations with
state-dependent delay. For an autonomous planar vec-
tor field, index theory can be used to show that: Inside
the region enclosed by a periodic orbit, there must be at
least one equilibrium (see, for example [16]). For such
sd-FDEs as (3), however, we shall see that there may be
no equilibrium inside the region enclosed by a periodic
orbit.

2 Hopf bifurcation analysis

The local stability of steady-state solutions of sd-FDEs
was studied in [17,18]. It was shown, under natural
assumptions on the right-hand side of the equation and
on the delay function τ , that generically the behavior
of the state-dependent delay τ except for its value τ has
no effect on the stability and that a local linearization
is valid by treating τ as a constant at the steady state.
Hence, to study the local stability of a steady state of
(3), we linearize (3) at x = 0 by treating τ = τ(0). The
resulting linear equation is a constant delay differential
equation,

ẍ − εẋ + x = εkx(t − r), (4)

where r = τ(0). Thus, the characteristic equation is
given by

λ2 − ελ− kεe−λr + 1 = 0. (5)

We know that ±iω (ω > 0) are a pair of purely imag-
inary roots of (5) if and only if ω satisfies

{
1 − ω2 = εk cos(rω),
ω = k sin(rω).

(6)

Hence, the Hopf bifurcation surface is given by

H = {(ε, r, k) : 1 − ω2 = εk cos(rω),

ω = k sin(rω), ω > 0}.
Then, it follows from (6) that ω satisfies

εω

1 − ω2 = tan(rω). (7)

Let {ξn}∞n=1 be the monotonic increasing sequence of
the positive solutions of x = tan x , and
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van der Pol oscillators with state-dependent delayed feedback 2409

r∗
n =

√
2 + ξ2

n , ε∗n = 2√
2 + ξ2

n

,

ω∗
n = ξn√

2 + ξ2
n

, k∗
n = ξn√

2 + ξ2
n sin ξn

.

(8)

Some version of the following result has appeared in
Guo and Wu [10] and Zhang and Guo [11], we include
the proof for the completeness of the presentation.

Lemma 1 At and only at (ε, r, k) ∈ H\{(ε∗n, r∗
n ,

k∗
n)}∞n=1, Eq. (5) has a pair of simple purely imaginary

solutions ±iω, where ω is a solution to (6). Moreover,
at and only at (ε, r, k) = (ε∗n, r∗

n , k∗
n) for some n ∈ N

+,
Eq. (5) has a pair of double purely imaginary solutions
±iω∗

n.

Proof If iω is not simple, then we have

d

dλ
(λ2 − ελ+ 1 − εke−λr ) |λ=iω= 0,

that is

2iω − ε + rεk(cosωr − isinωr) = 0.

Separating the real and imaginary parts, we obtain

1 = rkcosωr,

2ω = rεksinωr.
(9)

It follows from (6) and (9) that

rε = 2,

r(1 − ω2) = ε,

rω = ξ,

(10)

where x = ξ > 0 is a solution to the equation x = tanx .
Then, it follows from (10) that (ε, r, k) = (ε∗n, r∗

n , k∗
n)

for some n ∈ N
+. The proof is completed. ��

In what follows, we fix (ε, k) ∈ R
2 and regard r as

a bifurcation parameter. It follows from (6) that

ω4 + (ε2 − 2)ω2 + 1 − ε2k2 = 0. (11)

The number of positive solutions to (11) may be zero,
one, or two, which is determined by the signs of (ε2 +
4k2 −4) and (ε|k|−1). In fact, the curves ε2 +4k2 = 4
and ε|k| = 1 divide the right half (ε, k)-plane into six
regions (See Fig. 1):

D1 =
{
(ε, k) ∈ R

+ × R : ε2 + 4k2 < 4
}
,

ε

k

D3
+

D1

D2
+

D2
−

D3
−

D4
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Fig. 1 Curves ε2 + 4k2 = 4 and ε|k| = 1 and regions D1, D±
2 ,

D±
3 , and D4

D+
2 = {

(ε, k) ∈ R
+ × R : εk > 1

}
,

D−
2 = {

(ε, k) ∈ R
+ × R : εk < −1

}
,

D+
3 =

⎧⎨
⎩(ε, k) ∈ R

+ × R :
√

1 − ε2

4
< k <

1

ε
, ε <

√
2

⎫⎬
⎭,

D−
3 =

⎧⎨
⎩(ε, k) ∈ R

+ × R :
√

1 − ε2

4
< −k<

1

ε
, ε<

√
2

⎫⎬
⎭,

D4 =
{
(ε, k) ∈ R

+ × R : ε2 + 4k2 > 4,

ε|k| < 1, ε >
√

2
}
.

More precisely, Eq. (11) has two positive solutions
ω = ω±(ε, k)when (ε, k) ∈ D+

3 ∪ D−
3 , has exactly one

positive solution ω = ω+(ε, k) when (ε, k) ∈ D+
2 ∪

D−
2 , and has no positive solution when (ε, k) ∈ D1 ∪

D4, where

ω±(ε, k) =

√√√√
1 − ε2

2
± ε

√
k2 − 1 + ε2

4
.

Thus, the Hopf bifurcation values of r are given as
follows:

r+
j (ε, k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ω+(ε,k)

(
2π − arcsin ω+(ε,k)|k| + 2 jπ

)
if k ≤ −1,

1
ω+(ε,k)

(
π + arcsin ω+(ε,k)|k| + 2 jπ

)
if − 1 ≤ k < 0,

1
ω+(ε,k)

(
arcsin ω+(ε,k)|k| + 2 jπ

)
if 0 < k ≤ 1,

1
ω+(ε,k)

(
π − arcsin ω+(ε,k)|k| + 2 jπ

)
if k > 1,

r−
j (ε, k)

=
⎧⎨
⎩

1
ω−(ε,k)

(
π + arcsin ω−(ε,k)|k| + 2 jπ

)
if k < 0,

1
ω−(ε,k)

(
arcsin ω−(ε,k)|k| + 2 jπ

)
if k > 0,
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for j ∈ N0 := {0, 1, 2, . . .}. In summary, we have the
following conclusions.

Lemma 2 (i) For any fixed (ε, k) ∈ D+
3 (D−

3 ), the
characteristic equation (5) with r = r+

j (ε, k)

(respectively, r = r−
j (ε, k)) has a pair of simple

imaginary roots ±iω+(ε, k) (respectively, ±iω−(ε,
k)), j ∈ N0.

(ii) For any fixed (ε, k) ∈ D+
2 ∪ D−

2 , the characteristic
equation (5) with r = r+

j (ε, k) has a pair of simple
imaginary roots ±iω+(ε, k), j ∈ N0.

Lemma 3 (i) For any fixed (ε, k) ∈ D1 ∪ D+
2 ∪ D−

2 ∪
D4 and r ≥ 0, the characteristic equation (5) has
at least one solution λ satisfying Reλ > 0. Fur-
thermore, for any fixed (ε, k) ∈ D+

2 ∪ D−
2 , system

(3) undergoes Hopf bifurcation at the origin near
τ(0) = r+

j (ε, k), j ∈ N0.

(ii) For any fixed (ε, k) ∈ D+
3 , there exists a nonneg-

ative integer m such that (5) has a pair of roots
with positive real parts when r+

j−1(ε, k) < r <

r−
j (ε, k), j = 0, 1, 2, . . . ,m with r+

−1(ε, k) = 0,
and all roots of (5) have negative real parts when
r−

j (ε, k) < r < r+
j (ε, k), and (5) has at least

a pair of roots with positive real parts when r >
r+

m (ε, k). Furthermore, system (3) undergoes Hopf
bifurcation at the origin near τ(0) = r±

j (ε, k),
j ∈ N0.

Cooke and Huang [17] have shown that generically
the behavior of the state-dependent delay (except the
value of the delay) near an equilibrium has no effect on
the stability and that the local linearization method can
be applied by treating the delay τ(·) as a constant value
at the equilibrium. Thus, in order to investigate the local
stability of the steady state of (3), it suffices to discuss
the existence of solutions with positive real parts for
the characteristic equation (5). In view of Lemma 3,
we have the following result.

Theorem 1 The equilibrium point x = 0 of (3) is
asymptotically stable when (ε, k) ∈ D+

3 and τ(0) ∈
∪m

j=0(r
−
j (ε, k), r+

j (ε, k)) and is unstable when either

(ε, k) ∈ D1 ∪ D+
2 ∪ D−

2 ∪ D4 and τ(0) ≥ 0 or
(ε, k) ∈ D+

3 and τ(0) ∈ ∪m
j=0(r

+
j−1(ε, k), r−

j (ε, k)) ∪
(τ+

m (ε, k),+∞).

Theorem 1 does not present the local stability of the
equilibrium x = 0 in the case where (ε, k) ∈ D−

3 ,

because it is hard to determine the order of critical val-
ues {r±

j (ε, k)}∞j=0 of τ(0). Lemmas 1 and 2 implies that
Eq. (3) with the delay function τ(·) frozen at the steady
state x = 0 undergoes a Hopf bifurcation as (ε, τ (0), k)
passes through the points in H\{(ε∗n, r∗

n , k∗
n)}∞n=1, or

equivalently, points (ε, r±
j (ε, k), k), j ∈ N0. In the

subsequent section, we shall fix (ε, k) and construct
the bifurcating periodic solution of the nonlinear equa-
tion (3) for τ(0) near r+

j (ε, k) or r−
j (ε, k), j ∈

N0. These bifurcating periodic solutions have fre-
quency ω close to the linearized frequency ω+(ε, k)
or ω−(ε, k).

3 Perturbation expansion

For convenience, let (r0, ω0) = (r+
j (ε, k), ω+(ε, k)) if

(ε, k) ∈ D±
2 ∪D±

3 or (r0, ω0) = (r+
j (ε, k), ω+(ε, k)) if

(ε, k) ∈ D1, j ∈ N0. To construct the bifurcating peri-
odic solution of the nonlinear equation (3), we assume
that they have frequency ω close to the linearized fre-
quency ω = ω0. To introduce ω into the equation,
we set s = ωt . Letting u(s) = x(s/ω), the equation
becomes

ω2u′′ − εω(1 − u2)u′ + u = εku(s −ωτ(u(s))), (12)

Let C2π (respectively, C j
2π ) be the set of continuous

(respectively, j times differentiable) one-dimensional
2π -periodic mappings. If we denote

‖u‖0 = max
s∈[0,2π ]{|u(s)|}

for u ∈ C2π , and ‖u‖ j = max{‖u‖0, ‖u′‖0, . . . ,

‖u( j)‖0} for u ∈ C j
2π , then C2π and C j

2π are Banach
spaces when they are endowed with the norms ‖ · ‖0

and ‖ · ‖ j , respectively. We introduce the inner product
〈·, ·〉: C2π × C2π → R defined by

〈v, u〉 = 1

2π

∫ 2π

0
vT (t)u(t)dt,

for u, v ∈ C2π .
We now expand u(s) about the steady state u(s) ≡ 0,

ω about the linearized frequency ω0, and also τ(0), in
terms of a small parameter η by writing
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u(s) ∼
∞∑

i=1

ηi ui (s),

ω ∼ ω0 +
∞∑

i=1

ηiωi , (13)

τ(0) ∼ r0 +
∞∑

i=1

ηiτi (0).

Substituting (13) into (12) and collecting powers of η,
if we define the linear operator L : C2

ω → Cω as

(L u)(s) = ω2
0u′′(s)−εω0u′(s)+u(s)−εku(s−ω0r0),

(14)

then the first three equations are

(L u1)(s) = 0, (15)

(L u2)(s) = − 2ω0ω1u′′
1(s)+ εω1u′

1(s)

− εku′
1(s − ω0r0)[ω1r0 + ω0τ1(0)

+ω0τ
′(0)u1(s)], (16)

(L u3)(s) = − 2ω0ω1u′′
2(s)− 2ω0ω2u′′

1(s)− ω2
1u′′

1(s)

+ εω1u′
2(s)+ εω2u′

1(s)− εω0u2
1(s)u

′
1(s)

− εku′
2(s − ω0r0) [ω1r0 + ω0τ1(0)

+ω0τ
′(0)u1(s)

]
+ 1

2
εku′′

1(s − ω0r0) [ω1r0 + ω0τ1(0)

+ω0τ
′(0)u1(s)

]2

− εku′
1(s − ω0r0)

[
ω0τ

′(0)u2(s)

+ 1

2
ω0τ

′′(0)u2
1(s)+ ω1τ

′(0)u1(s)

+ω2r0 + ω0τ2(0)+ ω1τ1(0)] . (17)

Recall that (15) now has two linearly independent
solutions, namely sin s and cos s. For simplicity, we
take (without loss of generality)

u1(s) = A cos s. (18)

The adjiont L ∗ of linear operator of L is given by

(L ∗u)(s) = ω2
0u′′(s)+ εω0u′(s)

+ u(s)− εku(s + ω0r0), (19)

the kernel of which is spanned by

ψ1(s) = sin(s), ψ2(s) = cos(s).

Note that, although the adjoint equation L ∗u appears
to involve an advanced term, the adjoint equation is
only posed in a space of periodic functions, so we do
not need to worry about the issue of well posedness.

Substituting (18) into (16), we have

(L u2)(s) = 2Aω0ω1 cos s − Aεω1 sin s

+Aεk sin(s − ω0r0)[ω1r0 + ω0τ1(0)

+Aω0τ
′(0) cos s]. (20)

Now, applying the Fredholm orthogonality condition
to (20), we have

2Aω0ω1 + Aεk [ω1r0 + ω0τ1(0)] sin(r0ω0) = 0,

Aεω1 + Aεk [ω1r0 + ω0τ1(0)] cos(r0ω0) = 0.

(21)

This implies that

τ1(0) = 0, ω1 = 0.

Equation (20) now reduces to

(L u2)(s) = A2ω0τ
′(0)εk sin(s − ω0r0) cos s. (22)

which can be solved for u2(s) to give

u2(s) = A2[R0 + R1 sin(2s)+ R2 cos(2s)], (23)

where

R1 = bc − ad

a2 + b2 , R2 = ac + bd

a2 + b2 , R0 = d

1 − εk
,

and

a = 2εω0 − εk sin(2ω0r0),

b = 1 − 4ω2
0 − εk cos(2ω0r0),

c = 1

2
ω0τ

′(0)εk cos(ω0r0),

d = −1

2
ω0τ

′(0)εk sin(ω0r0).
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Substituting (18) and (23) into our final equation (17)
and applying the Fredholm orthogonality condition as
before results in

0 = ω0ω2 A−ω0τ
′(0)εk A3

4
cos(ω0r0)

(
3

4
ω0τ

′(0)+R1

)

−εk A

2
sin(ω0r0)

(
ω2r0 + ω0τ2 + ω0τ

′(0)R0 A2

+ω0τ
′′(0)A2

4
− ω0τ

′(0)R2 A2

2

)

−1

2
εkω0τ

′(0)A3(R1 cos(2ω0r0)+ R2 sin(2ω0r0)),

0 = εω0 A3

8
− εω2 A

2
− ω0τ

′(0)εk A3

4
sin(ω0r0)

×
(

1

4
ω0τ

′(0)+ R1

)
+ εk A

2
cos(ω0r0)

(
ω2r0+ω0τ2

+ω0τ
′(0)R0 A2 + ω0τ

′′(0)A2

4
− ω0τ

′(0)R2 A2

2

)

− 1

2
εkω0τ

′(0)A3 (R1 sin(2ω0r0)− R2 cos(2ω0r0)) ,

which solve to give

ω2 = −εω0e + (
1 − ω2

0

)
f

ε2 − 2 + 2ω2
0

A2,

τ2(0) = (εr0ω0 − 2ω0) e + (
r0 − r0ω

2
0 − ε

)
f

ω0
(
ε2 − 2 + 2ω2

0

) A2,

where

e =
(

2 − 2ω2
0

k
+ ε

2

)
ω0τ

′(0)R1

+
(

1 − ω2
0

2
+ 2εω2

0

k
− εk

)
τ ′(0)R2 − ε

4

+τ
′(0)2

8
εω2

0 − (1 − ω2
0)

(
τ ′(0)R0 + τ ′′(0)

4

)
,

f =
(

1 − ω2
0

2
− 2εω2

0

k
+ εk

)
τ ′(0)R1

+
(

2 − 2ω2
0

k
− ε

2

)
ω0τ

′(0)R2

+3τ ′(0)2

8
ω0(1 − ω2

0)+ εω0

(
τ ′(0)R0 + τ ′′(0)

4

)
,

Up to O(η2), we therefore have

ω = ω0 + η2ω2, τ = r0 + η2τ2(0), (24)

and have

u(s) = Aη cos s + A2η2[R0 + R1 cos 2s + R2 cos 2s]
(25)

as the solution to (12). Then, we have the following
theorem.

Theorem 2 The Hopf bifurcation occurs as τ crosses
r0 to the right (subcritical Hopf bifurcation) if τ2(0) >
0 and to the left (supercritical Hopf bifurcation) if
τ2(0) < 0. Moreover, the period of the bifurcating
periodic solutions is greater than (respectively, smaller
than) 2π

ω0
if ω2 is negative (respectively, positive).

It is easy to see that τ2(0) is highly dependent on
the values of τ(0), τ ′(0), τ ′′(0), and ω0. Thus, we can
regard τ2(0) as the function of r0, ω0, τ ′(0), and τ ′′(0).
This is to say,

τ2(0) = Υ (r0, ω0, τ
′(0), τ ′′(0)).

In addition, it is a standard result (see, for example
[19,20]) that for classical Hopf bifurcations, subcritical
bifurcating periodic solutions are unstable, while super-
critical bifurcating periodic solutions have the same sta-
bility as the trivial solution had before the bifurcation.
Thus, by Theorem 1, we have the following result.

Theorem 3 (i) System (3) with (ε, k) ∈ D+
2 ∪ D−

2
undergoes Hopf bifurcation at the origin near
τ(0) = r+

j (ε, k), j ∈ N0. More precisely, if

Υ (τ+
j (ε, k), ω0, τ

′(0), τ ′′(0)) > 0 (respectively,
< 0), then a branch of small-amplitude periodic
solutions exists only for τ(0) > r+

j (ε, k) (respec-

tively, τ(0) < r+
j (ε, k)) and is unstable.

(ii) System (3) with (ε, k) ∈ D+
3 undergoes Hopf

bifurcation at the origin near τ(0) = r+
j (ε, k)

and τ(0) = r−
j (ε, k), j ∈ N0. More precisely,

(a) If Υ (τ±
j (ε, k), ω0, τ

′(0), τ ′′(0)) > 0 (respec-
tively, < 0) then a branch of small-amplitude
periodic solutions exists only for τ(0) >

r±
j (ε, k) (respectively, τ(0) < r+

j (ε, k)).
(b) The bifurcating periodic solutions near τ(0) =

r±
j (ε, k) ( j > m) are unstable, where m is given

in Lemma 3;
(c) Necessary and sufficient conditions for the exis-

tence of stable small-amplitude periodic solu-
tions of (3) near τ(0) = τ+

j (respectively,

123



van der Pol oscillators with state-dependent delayed feedback 2413

Fig. 2 Numerical
simulations of system (26)
with τ = 2. a The
equilibrium point
(u, v) = (0, 0) is
asymptotically stable; b the
phase portrait of the
asymptotically stable
equilibrium
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τ(0) = τ−
j ) for some j ∈ {0, 1, 2, . . . ,m}

are Υ (τ+
j , ω0, τ

′(0), τ ′′(0)) > 0 (respectively,
<0).

(iii) System (3) with (ε, k) ∈ D−
3 undergoes Hopf

bifurcation at the origin near τ(0) = r+
j (ε, k)

and τ(0) = r−
j (ε, k), j ∈ N0. More precisely, if

Υ (τ±
j (ε, k), ω0, τ

′(0), τ ′′(0)) > 0 (respectively,
< 0) then a branch of small-amplitude periodic
solutions exists only for τ(0) > r±

j (ε, k) (respec-

tively, τ(0) < r+
j (ε, k)).

4 Illustrating examples

4.1 Constant delay

Equation (2) is a special case of (3), i.e., (3) with a con-
stant delay τ(x) ≡ τ . In this subsection, we investigate
the Hopf bifurcating periodic solution of (2) for τ near
r0, where r0 = r+

j (ε, k) when (ε, k) ∈ D+
2 ∪ D−

2 ∪
D+

3 ∪ D−
3 , or r0 = r±

j (ε, k) when (ε, k) ∈ D+
3 ∪ D−

3 ,
for some j ∈ N0. Obviously, then, we have τ ′(0) = 0
and

ω2 = ε2ω0 A2

4(ε2 − 2 + 2ω2
0)
, τ2(0) = ε(2 − εr0)A2

4(ε2 − 2 + 2ω2
0)
,

where ω0 = ω+(ε, k) (respectively, ω−(ε, k)) if r0 =
r+

j (ε, k) (respectively, r−
j (ε, k)), j ∈ N0. Obviously,

sgn{τ2(0)} = sgn{(2 − εr0)(ε
2 − 2 + 2ω2

0)}.
We next present some numerical results of system

(2) with (ε, k) = (0.01, 80). Namely, we consider the
following system to verify the analytical predictions
obtained in the previous discussion

{
u̇ = v,

v̇ = −u + 0.01(1 − u2)v + 0.8u(t − τ).
(26)

It follows from the previous section that

ω+(0.01, 80) = 1.3416, ω−(0.01, 80) = 0.4473,

and that r−
0 (0.01, 80) = 0.0125, r+

0 (0.01, 80) =
2.3292, r−

1 (0.01, 80) = 14.0617, r+
1 (0.01, 80) =

7.0125, r+
15(0.01, 80) = 72.5795. Notice that (ε, k) =

(0.01, 80) ∈ D+
3 , then it follows from Lemma 3 and

Theorem 1 that we obtain

Corollary 1 The equilibrium point (u, v) = (0, 0)
of system (26) is asymptotically stable for τ ∈
(0.0125, 2.3292)and is unstable for all τ ∈ [0, 0.0125)
∪ (2.3293,∞), which is shown in Fig. 2.

It follows from Lemma 3 that system (26) under-
goes Hopf bifurcation at the equilibrium point (u, v) =
(0, 0) as τ crosses r+

j and r−
j , where r±

j = r±
j (0.01,

80), j = 0, 1, 2, . . . Moreover, it is easy to see that⎧⎨
⎩
ω2 < 0 if (ε, ω0, r0)∈

{(
0.01, 0.4473, r−

j

)
: j ∈N0

}
,

ω2 > 0 if (ε, ω0, r0)∈
{(

0.01, 1.3416, r+
j

)
: j ∈N0

}
,

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ2(0) < 0 if (ε, ω0, r0)

∈
{(

0.01, 0.4473, r−
j

)
: 0 ≤ j ≤ 14

}
,

τ2(0) > 0 if (ε, ω0, r0)

∈
{(

0.01, 1.3416, r+
j

)
: 0 ≤ j ≤ 42

}
.

In view of Theorem 2, we have

Corollary 2 At the equilibrium point (u, v) = (0, 0)
of system (26), Hopf bifurcation occurs as τ crosses
each of r+

j (0 ≤ j ≤ 42) and r−
s (s ≥ 15) to the right,

and crosses each of r−
j (0 ≤ j ≤ 14) and r+

s (s ≥ 43)
to the left. Moreover, the period of periodic solutions
bifurcated from (u, v, τ ) = (0, 0, r+

j ) (respectively,

(u, v, τ ) = (0, 0, r−
j )) is less than 2π

ω+ (respectively,

greater than 2π
ω− ).
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Fig. 3 Numerical
simulations of system (26)
with a τ = 10 and b τ = 80
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Fig. 4 Numerical simulations of (28) with a τ = 0008, b τ = 001, c τ = 002

In view of Theorem 3, we have

Corollary 3 For system (26), only the arising periodic
solutions at τ = r+

0 are stable, all the arising periodic
solutions at τ = r+

j and τ = r−
s ( j ∈ N

+ and s ∈ N0)
are unstable.

Numerical simulations of system (26) with τ = 10,
τ = 80, τ = 0.008, τ = 0.01, and τ = 0.02 are shown
in Fig. 3 and 4.

4.2 Linear delay

For a linear delay τ(x) = αx +β, where τ(0) = β and
|β − r0| � 1, then

τ2(0) = (εr0ω0 − 2ω0)e + (r0 − r0ω
2
0 − ε) f

ω0(ε2 − 2 + 2ω2
0)

A2,

where

e = −(1 − ω2
0)αR0 +

(
2 − 2ω2

0

k
+ ε

2

)
ω0αR1

+
(

1 − ω2
0

2
+ 2εω2

0

k
− εk

)
αR2 − ε

4
+ α2

8
εω2

0,

f = εω0αR0 +
(

1 − ω2
0

2
− 2εω2

0

k
+ εk

)
αR1

+
(

2 − 2ω2
0

k
− ε

2

)
ω0αR2 + 3α2

8
ω0(1 − ω2

0).

We now present some numerical results of system
(3) with (ε, k) = (0.01, 80) and τ(x) = 2x + β.
Namely, we consider the following model to verify the
analytical predictions obtained in the previous discus-
sion

{
u̇ = v,

v̇ = −u + 0.01(1 − u2)v + 0.8u(t − 2u(t)− β).

(27)

As stated in the previous subsection, some critical val-
ues of β are r−

0 = 0.0125, r+
0 = 2.3292, r−

1 =
14.0617, r+

1 = 7.0125, r+
15 = 72.5795, and the crit-

ical frequencies are ω+ = 1.3416 and ω− = 0.4473.
Numerical simulations of system (27) with β = 2.3,
13, 13.5, 14, 20, 40, 50, 60, 70, 80, 90, and 100, respec-
tively, are shown in Figs. 5, 6, and 7. Most impor-
tantly, we see from Fig. 5 that the equilibrium point
(u, v) = (0, 0) is not inside the region enclosed by a
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Fig. 5 Numerical
simulations of (27) with a
β = 20, b β = 40, c
β = 50, d β = 60
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Fig. 6 Numerical
simulations of (27) with a
β = 70, b β = 80, c
β = 90, d β = 100
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Fig. 7 Numerical
simulations of (27) with a
β = 70, b β = 80, c β = 90,
d β = 100
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Fig. 8 Numerical
simulations of (28) with a β
= 006, b β = 04, c β = 35,
d β =5
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Fig. 9 Numerical
simulations of (28) with a β
= 10, b β = 30, β = 50, d β
= 150, e β = 280, f β = 30
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periodic orbit. This is different from the classical theory
of planar dynamical systems.

4.3 Exponential delay

For a linear delay τ(x) = β exp(αx),where τ(0) = β

and |β − r0| � 1, then

τ2(0) = (εr0ω0 − 2ω0)e + (r0 − r0ω
2
0 − ε) f

ω0(ε2 − 2 + 2ω2
0)

A2,

where

e =
(

2 − 2ω2
0

k
+ ε

2

)
ω0αβR1

+
(

1 − ω2
0

2
+ 2εω2

0

k
− εk

)
αβR2 − ε

4

+ α2β2

8
εω2

0 − (1 − ω2
0)αβ

(
R0 + α

4

)
,

f =
(

1 − ω2
0

2
− 2εω2

0

k
+ εk

)
αβR1

+
(

2 − 2ω2
0

k
− ε

2

)
ω0αβR2

+ 3α2β2

8
ω0(1 − ω2

0)+ εω0α
(

R0 + α

4

)
.

We now present some numerical results of system
(3) with (ε, k) = (0.01, 80) and τ(x) = β exp(2x).
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Namely, we consider the following model to verify the
analytical predictions obtained in the previous discus-
sion

{
u̇ = v,

v̇ = −u + 0.01(1 − u2)v + 0.8u(t−β exp(2u(t))).

(28)

As stated in the previous subsection, some critical val-
ues of β are r−

0 = 0.0125, r+
0 = 2.3292, r−

1 =
14.0617, r+

1 = 7.0125, r+
15 = 72.5795, and the crit-

ical frequencies are ω+ = 1.3416 and ω− = 0.4473.
Numerical simulations of system (28) with β = 0.06,
0.4, 3.5, 5, 10, 30, 50, 150, 280, 305, respectively, are
shown in Figs. 8 and 9.

5 Conclusions

In this paper, we present a detailed study of Hopf bifur-
cation in the van der Pol equation with state-dependant
delayed feedback. In studying the stability of equi-
librium states, it has been shown [17] that the linear
stability of an equilibrium can be analyzed by sim-
ply replacing the varying delay τ by its value at the
equilibrium. This is to say, the linear stability does not
depend upon any other properties of the delay func-
tion τ . In this paper, however, we show that both the
bifurcation direction and the stability of the bifurcat-
ing periodic solutions are strongly dependent on the
precise form of the delay function τ . In fact, they are
determined by the value of the delay function and its
first two derivatives at the equilibrium. For any given
delay function, it is possible to determine the parame-
ter space for which periodic solutions near the steady
states exist and to divide this into stable and unstable
regions.

Obviously, there is a question that is worthy of fur-
ther investigation. Liao et al. [21] investigated the lin-
ear stability and standard Hopf bifurcation for a van
der Pol equation with a distributed time delay. By
using the symmetric bifurcation theory of delay dif-
ferential equations combined with representation the-
ory of Lie groups, Song [22] investigated the spatio-
temporal patterns of Hopf bifurcating periodic oscilla-
tions in a pair of van der Pol oscillators with delayed
velocity coupling. Using the center manifold reduc-
tion technique, normal form theory, and symmet-
ric bifurcation theory, Zang et al. [23] investigated

the dynamics of a system of van der Pol–Duffing
oscillators with delay coupling. Algaba et al. [24,25]
employed the normal form analysis to investigate high
codimension bifurcations in a modified van der Pol-
Duffing electronic circuit. Using the method of aver-
aging to reduce the problem to the study of a slow
flow in three dimensions, Wirkus and Rand [26] stud-
ied the dynamics of a pair of van der Pol oscil-
lators where the coupling is chosen to be through
the damping terms but not of diffusive type. Edel-
man and Gendelman [27] investigated the dynami-
cal behavior in a system of two van der Pol oscil-
lators coupled by non-dispersive elastic rod. In this
paper, we only consider a single van der Pol oscillator
with state-dependent delayed feedback. It is interest-
ing to generalize our results in this paper to systems
of van der Pol oscillators with state-dependent delayed
coupling.
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