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Abstract In this paper, vibration isolator of single
degree of freedom systems having a nonlinear vis-
cous damping is studied under force excitation. Sta-
bility of the steady state periodic response has been
discussed. The influence of damping coefficients on
the force transmissibility and displacement transmissi-
bility is investigated. The relationship between ampli-
tude and frequency is derived by using the averaging
method. Results reveal that the performance of the non-
linear isolator has some beneficial effects compared
with linear isolator in a certain range. Numerical sim-
ulations are presented to illustrate the results.

Keywords Force excitation · Force and displacement
transmissibility · Nonlinear damping · Stability

1 Introduction

Vibration isolator is often inserted between the vibra-
tion source and the vibration receiver to reduce the
unwanted vibrations so that the adverse effects are con-
trolled within a specified range. Viscous damping is one
of the most commonly used damping in a vibration iso-
lator device. For linear viscous damping, increasing the
linear viscous damping coefficient can reduce trans-
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missibility in the resonant region, but this leads to the
deterioration of isolation performance at high frequen-
cies. This is a basically well-known dilemma associ-
ated with linear viscous damping systems. In order to
resolve this problem, isolators with nonlinear damp-
ing have deserved more attention from researchers for
years [2–9]. This is because all isolators in vibration
systems are inherently nonlinear [1,2], and the nonlin-
ear damping has the potential in proving the isolator
performance at both the resonance and the higher fre-
quencies.

Milovanovic et al. [4] compared vibration isolators
with linear and cubic nonlinearities in damping and
stiffness terms under base excitation, it was shown that
pure cubic damping has better performance if the damp-
ing parameter is smaller than a certain value. Lang [5,6]
proposed the concept of Output Frequency Response
Function and theoretically discussed the effects of non-
linear viscous damping on vibration isolation of single
degree of freedom systems. The results reveal that the
cubic nonlinear viscous damping can produce an ideal
vibration isolation such that only the resonant region
is modified and the non-resonant regions remain unaf-
fected. Peng et al. [7] investigated the performance of
passive vibration isolators with cubic nonlinear damp-
ing using Harmonic Balance Method. They presented
that either linear damping or cubic nonlinear damping
could reduce the transmissibility over the resonance
region and that the influence of the cubic nonlinear
damping is dependent on the type of the disturbing
force.
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The present study is concerned with nonlinear damp-
ing which is a function of the displacement and velocity
[10–14]. The vibration isolators with cubic nonlinear
damping under both force and base excitations have
been analyzed by Xiao et al. [13]. They pointed out
that the cubic-order nonlinear damping can improve the
transmissibility. Sun et al. [14] investigated the vibra-
tion isolators with geometric nonlinear damping, and
the results show that this kind of damping has advan-
tages in improving isolation performance at both reso-
nance and higher frequencies when the velocity expo-
nent is limited to a certain range.

Stability is a very important aspect in the vibration
system, it has a significant impact on the performance
of the system. Jazar et al. [15] analyzed the stability
of frequency response of a nonlinear passive vibration
isolator system by using perturbation method. Zhang et
al. [16,17] obtained the uniform stabilization of wave
equation with dissipative term and boundary damping
by using multiplier technique.

In the engineering applications, both displacement
exponent and velocity exponent are not always fixed
constants, they may be arbitrary positive values. There-
fore, it is necessary to discuss the general case of vis-
cous damping. In this article, a single degree of freedom
(SDOF) vibration isolation system with nth power vis-
cous damping is investigated. Stability of the steady
state periodic response has been discussed. The influ-
ence of damping coefficients on the transmissibility is
studied, and the equation described amplitude and fre-
quency is obtained. Simulation results are provided to
illustrate the results.

2 Theoretical analysis

A nonlinear SDOF system, as shown in Fig. 1, is inves-
tigated, where M and m are the mass of the base and
the body. The harmonic force

f (t) = Yω2 sinωt (1)

is directly exerted on the base M with excitation ampli-
tude Y and frequency ω. The isolator is modeled as a
parallel combination of a linear spring with stiffness k
and a damper. The damping force with cubic damping
can be written that it is proportional to the product of
the square of the displacement and the velocity [11].
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f (t)
f (t)

Fig. 1 A vibration isolator system subjected to force excitation

Using this transformation, general case can be inves-
tigated. In this paper, The damping is given using the
viscous damping laws expressed as [9]

fd(t) = c (1 + z)n ż (2)

where c is the damping coefficient, z = y − x is the
relative displacement, and n is a nonnegative coefficient
representing different damping laws. A linear damping
law is introduced when n = 0, and in other cases, the
damping is nonlinear.

The equation of motion of the isolation system with
respect to the relative displacement z is given by

M ÿ + kz + c(1 + z)n ż = Yω2 sinωt

mẍ − kz − c(1 + z)n ż = 0 (3)

where overdots denote derivatives with respect to time
t . Eliminate the variable x and y in Eq. (3). We have

z̈ + M + m

Mm
[c(1 + z)n ż + kz] = Y

M
ω2 sinωt (4)

Introducing the following dimensionless parameters:

u = z, ω0 =
√

k

μ
, Ω = ω

ω0
, τ = ω0t

ξ = c

2ω0μ
, μ = Mm

M + m
, A = Y

M
(5)

Equation (4) becomes

u′′ + 2ξ(1 + u)nu′ + u = AΩ2 sin(Ωτ) (6)

In order to obtain an approximate solution of Eq.
(6), the averaging method is used [4]. The solution is
assumed to be of the form
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u(τ ) = α(τ) sin (ϕ(τ)) (7)

with

ϕ(τ) = Ωτ + ψ(τ) (8)

where α is the amplitude of the relative motion, and ψ
is the phase.

The first derivative of Eq. (8) with respect to the time
has the form

u′ = α(τ)Ω cos(ϕ (τ)) (9)

differentiating Eq. (7) with respect to time, and com-
paring with Eq. (9), the constraint can be obtained as
follows

α′ sin ϕ + αψ ′ cosϕ = 0 (10)

The derivative of Eq. (9) is

u′′ = Ωα′ cosϕ −Ωα
(
Ω + ψ ′) sin ϕ (11)

Substituting for Eqs. (7), (9) and (11) in Eq. (6) yields

Ωα′ cosϕ + 2ξΩα (1 + α sin ϕ)n cosϕ

−Ωα (
Ω + ψ ′) sin ϕ + α sin ϕ = AΩ2 sin(Ωτ)

(12)

Using Eq. (10) to eliminateψ ′ in Eq. (12) and simplify
it to the following equations:

Ωα′ = −
[
α

(
1 −Ω2

)
sin ϕ

+ 2ξΩα (1 + α sin ϕ)n cosϕ

− AΩ2 sin (Ωτ)
]

cosϕ (13)

Ωαψ ′ =
[
α

(
1 −Ω2

)
sin ϕ − AΩ2 sin (Ωτ)

+ 2ξΩα (1 + α sin ϕ)n cosϕ
]

sin ϕ (14)

Averaging the right-hand sides of Eqs. (13) and (14)
over a period of 2π :

Ωα′ = − 1

2π

∫ 2π

0

[
α

(
1 −Ω2

)
sin ϕ

+ 2ξΩα (1 + α sin ϕ)n cosϕ

− AΩ2 sin (Ωτ)
]

cosϕdϕ (15)

Ωαψ ′ = 1

2π

∫ 2π

0

[
α

(
1 −Ω2

)
sin ϕ

− AΩ2 sin (Ωτ)

+ 2ξΩα (1 + α sin ϕ)n cosϕ
]

sin ϕdϕ (16)

For the purpose of reducing calculation amount, n is
constrained to a positive integer. Then, Eqs. (15) and
(16) can be rewritten as the following form:

Ωα′ = − 1

2π

[
AπΩ2 sinψ + 2ξΩαSn

]
(17)

Ωαψ ′ = 1

2π

[
α

(
1 −Ω2

)
π − AπΩ2 cosψ

]
(18)

where

Sn =
n∑

k=0

Ck
nα

k B

(
k + 1

2
,

3

2

)[
1 + (−1)k

]
(19)

and B stands for Bata function.
The steady state response, defined by α′ = ϕ′ = 0,

is found to satisfy

AπΩ2 sinψ + 2ξΩαSn = 0 (20)

α
(

1 −Ω2
)
π − AπΩ2 cosψ = 0 (21)

Combining Eqs. (20) and (21) gets the implicit
amplitude–frequency equation

4ξ2Ω2α2S2
n + α2π2

(
1 −Ω2

)2 = A2π2Ω4 (22)

3 Stability of periodic response

Stability of stationary oscillations plays an impor-
tant role in the vibration system, especially for high-
frequency oscillatory processes. Using the approach
[15], the stability of frequency response is discussed.
A very small displacement e(τ ) is used to the steady
state solution. The form is

u (τ ) = u0 (τ )+ e (τ ) (23)

where u0 is the periodic solution of the dimensionless
equation of system. Inserting Eqs. (23) into (6) yields

(u0 + e)′′ + 2ξ [1 + (u0 + e)]n (
u′

0 + e′)
+ u0 + e = AΩ2 sin (Ωτ) (24)

Since e and e′ are assumed to be very small, the
nonlinearities can be neglected. The simplified equa-
tion can be produced as follows

e′′ + 2ξ (1 + α sin ϕ)n e′

+
[
1 + 2ξnαΩ cosϕ (1 + α sin ϕ)n−1

]
e = 0 (25)
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Time is shifted by ψ/Ω , and the form of e can be
assumed as follows

e (τ ) = D sin (Ωτ)+ B cos (Ωτ) (26)

Substituting Eqs. (26) in (25) produces

−DΩ2 sin (Ωτ)− BΩ2 cos (Ωτ)

+ 2ξ

(
n∑

k=0

Ck
nα

k sink (Ωτ)

)
(DΩ cos (Ωτ)

−BΩ sin (Ωτ))

+
[

2ξnαΩ cos (Ωτ)

(
n−1∑
k=0

Ck
n−1α

k sink (Ωτ)

)
+ 1

]

× (D sin (Ωτ)

+ B cos (Ωτ)) = 0 (27)

Neglecting the coefficients of sin kΩτ and cos kΩτ when
k ≥ 2, Eq. (27) is rewritten as

⎡
⎣D − DΩ2 + 2BξΩ

⎛
⎝1 +

[ n
2

]∑
j=1

C2 j
n α

2 j 1

22 j

(
C j

2 j + C j−1
2 j

)⎞
⎠

+BξnαΩ

[
n−2

2

]
∑
j=0

C2 j+1
n−1 α

2 j+1 1

22 j+1

(
C j

2 j+1 − C j−1
2 j+1

)
⎤
⎥⎥⎦ sin(Ωτ)

+
⎡
⎣B − BΩ2 + 2DξΩ

⎛
⎝1 +

[ n
2

]∑
j=1

C2 j
n α

2 j 1

22 j

(
C j

2 j − C j−1
2 j

)⎞
⎠

+ DξnαΩ

[
n−2

2

]
∑
j=0

C2 j+1
n−1 α

2 j+1 1

22 j+1

(
C j

2 j+1 − C j−1
2 j+1

)
⎤
⎥⎥⎦ cos(Ωτ)

+ 2BξΩ

[
n−1

2

]
∑
j=0

C2 j+1
n U 2 j+1 1

22 j+1

+ BξnαΩ

⎡
⎢⎢⎣1 +

[
n−1

2

]
∑
j=1

C2 j
n−1α

2 j 1

22 j

(
C j

2 j − C j−1
2 j

)
⎤
⎥⎥⎦

= 0 (28)

This will produce the following algebraic equations from
the above equation

(
1 −Ω2) D

+
⎡
⎣2ξΩ

⎛
⎝1 +

[ n
2

]∑
j=1

C2 j
n α

2 j 1

22 j

(
C j

2 j + C j−1
2 j

)⎞
⎠

+ ξnαΩ

[
n−2

2

]
∑
j=0

C2 j+1
n−1 α

2 j+1 1

22 j+1

(
C j

2 j+1 − C j−1
2 j+1

)
⎤
⎥⎥⎦ B

= 0⎡
⎣2ξΩ

⎛
⎝1 +

[ n
2

]∑
j=1

C2 j
n α

2 j 1

22 j

(
C j

2 j − C j−1
2 j

)⎞
⎠

+ ξnαΩ

[
n−2

2

]
∑
j=0

C2 j+1
n−1 α

2 j+1 1

22 j+1

(
C j

2 j+1 − C j−1
2 j+1

)
⎤
⎥⎥⎦ D

+ (
1 −Ω2) B = 0⎡

⎢⎢⎣2ξΩ

[
n−1

2

]
∑
j=0

C2 j+1
n α2 j+1 1

22 j+1

+ ξnαΩ

⎡
⎢⎢⎣1 +

[
n−1

2

]
∑
j=1

C2 j
n−1α

2 j 1

22 j

(
C j

2 j − C j−1
2 j

)
⎤
⎥⎥⎦

⎤
⎥⎥⎦ B = 0

(29)

where [n] represents the largest positive integer less than
n.

Since C j
2 j − C j−1

2 j > 0, it can be got B = 0 from the
third equation of Eq. (29). Substituting the result of B = 0
into rest equations of Eq. (29), D = 0 is obtained.

Through the above analysis, the conclusion can be drawn
that the periodic solution of the dimensionless equation of
motion is stable.

4 The force and displacement transmissibility

In order to understand the effects of different nonlin-
ear viscous damping characteristics on the transmissibil-
ity of SDOF vibration isolation system, in this section, the
force transmissibility and force-displacement transmissi-
bility will be developed.

From Eqs. (3) and (7), variables d2x
dτ 2 and x(τ ) can be

got. Assuming that initial conditions are x(0) = 0 and
x ′(0) = 0, then

d2x

dτ 2 = M

M + m

(
AΩ2 sin(Ωτ)− d2u

dτ 2

)
(30)

x(τ ) = − M

M + m
(A sin (Ωτ)+ α sin (Ωτ + ψ)) (31)

The force transmissibility T f f can be expressed as

T f f =
max

∣∣∣mω2
0

d2
x

dτ 2

∣∣∣
Yω2

= m

A(M + m)

√
α2 + A2 + 2α2Ω−2(1 −Ω2)

(32)
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Fig. 2 a Force transmissibility T f f and b force-displacement transmissibility T f d with n = 0 and m = M = A = 1. In figures: solid
line, ξ = 0.1; plus, ξ = 0.4; asterisk, ξ = 0.7; dashed-dashed line ξ = 1.0

The force-displacement transmissibility T f d can be
defined as follows

T f d = max |x(τ )|
Yω2

= 1

AΩ2ω2
0(M + m)

√
α2 + A2 + 2α2Ω−2(1 −Ω2)

(33)

The relationship between force transmissibility T f f and
force-displacement transmissibility T f d can be derived
from Eqs. (32) and (33), and T f d = m

Ω2ω2
0

T f f . It is obvi-

ously that once characteristics of T f f have been obtained,
it is unnecessary to pay much attention to discuss T f d . In
the following part, T f f will be focused on.

5 Simulation results and discussions

In this section, we present the effects of nonlinear viscous
damping on vibration isolation, which have been theoret-
ically analyzed above. Numerical simulation studies are
conducted for the dimensionless; the figures will reveal
how the transmissibility T f f changes with the linear and
nonlinear viscous damping characteristic parameters ξ , n
and Ω .

Figure 2a shows the force transmissibility in four linear
viscous damping cases of ξ = 0.1, 0.4, 0.7, 1.0. This is a
well-known result that the peaks of transmissibility appear
near theΩ = 1. An increase of the linear viscous damping
characteristic parameter ξ can decrease transmissibility and
suppress the vibration at the resonant frequency; however,

the results are poor for vibration isolation at high-frequency
region with the increase of ξ .

Figure 3a represents the force transmissibility for the
isolator subjected to the force excitation under different
nonlinear damping coefficients when n = 2. It is shown
that the force transmissibility has been significantly sup-
pressed over the resonant frequency when viscous damping
characteristic parameter ξ increases, but the force trans-
missibility at high frequency is dramatically deteriorated
compared with that the damping coefficient ξ = 0.1. The
performance deteriorated at high frequency illustrates that
value of ξ selected should not be too large.

In Fig. 4a, the force transmissibility is plotted for dif-
ferent values of n when ξ = 0.1. It can be seen that as n
increases, the force transmissibility has been significantly
suppressed over the resonant frequency. But the perfor-
mance at high frequencies becomes worse. To compare the
performance of the viscous nonlinear damping and the lin-
ear damping (n = 0), it can be observed when the frequency
exceeds a threshold, linear damping has better performance
than nonlinear, the transmissibility of the nonlinear damp-
ing is larger than the linear asΩ increases. From the figure,
it can be observed that when n = 2, the difference between
linear and nonlinear is very small at high frequency, There-
fore, if the frequency range is wide, the case n ≤ 2 can
be considered in vibration isolation, it may perform better
than linear damping.

Figure 5a shows how the force transmissibility changes
with respect to ξ and n, whenΩ = 10. Force transmissibil-
ity increases with ξ and n in positive correlation. Hence, in
order to obtain a better performance at high frequencies, ξ
and n should be selected as small as possible. 5(b) plots the
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Fig. 3 a Force transmissibility T f f and b force-displacement transmissibility T f d with n = 2 and m = M = A = 1. In figures: solid
line, ξ = 0.1; plus, ξ = 0.4; asterisk, ξ = 0.7; dashed-dashed line, ξ = 1.0
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Fig. 4 a Force transmissibility T f f and b force-displacement transmissibility T f d with ξ = 0.1 and m = M = A = 1. In figures: solid
line, n = 0; plus, n = 2; asterisk, n = 4; dashed-dashed line, n = 6

case thatΩ = 50, the relationship between transmissibility
and ξ , and n is similar to Fig. 5a.

Based on Eqs. (17) and (18), for specific parameters n,
Ω and ξ , the relationship between force transmissibility
and non-dimensional variable τ can be derived. In Fig. 6a,
b, the effects of the nonlinear damping force on the time
history response curves of the force transmissibility at two
different excitation frequencies are evident. Initially, force
transmissibility fluctuates greatly, but it tends to be a con-
stant value as time τ increases. Compared with low fre-
quency (Ω = 0.5), high frequency (Ω = 3) takes less
time to be stable values. Under the two differently fre-
quencies, force transmissibility changes different with ξ .

When Ω = 0.5, as time τ goes on, force transmissibility
increases with ξ in negative correlation, that is the opposite
of Ω = 3.

6 Conclusion

In this article, stability of the frequency response has
been investigated. The force and displacement transmis-
sibility of nonlinear damping vibration isolation system
have been considered. Through theoretical analysis and
numerical simulations, it is found that compared with lin-
ear damping in the resonance region, nonlinear damping
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nonnegative coefficient n (from 0 to 6, step 1)
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Fig. 6 Time history response curves for the force transmissibility of the nonlinear isolator at a Ω = 0.5, b Ω = 3 with n = 2 and
m = M = A = 1. In figures: solid line, ξ = 0.1; plus, ξ = 0.4; asterisk, ξ = 0.7; dashed-dashed line, ξ = 1.0

has a beneficial response, but the performance becomes
very poor at high frequencies when exponent n and damp-
ing coefficient ξ increase. It can be concluded that in
order to achieve efficient performance for force exci-
tation, it is better to choose a relatively small number
of combinations of the damping parameter and expo-
nent, i.e., if the frequency range is wide, the value of
n should be selected less than 2, otherwise, it has detri-
mental effect on the transmissibility in the high-frequency
region.
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